

Fun. de Deu. de Prob. Coujun la

$$\int_{X} (x) = \int_{-\infty}^{\infty} \int_{XY} (x, q) dq$$

$$\int_{Y} (q) = \int_{-\infty}^{\infty} \int_{XY} (x, q) dx$$

$$\int_{X|Y} (x|q) = \frac{\int_{XY} (x, q)}{\int_{Y} (q)} \qquad \int_{Y} (q) > 0$$

$$\int_{Y|X} (q|x) = \frac{\int_{XY} (x, q)}{\int_{X} (x)} \qquad \int_{X} (x) > 0$$

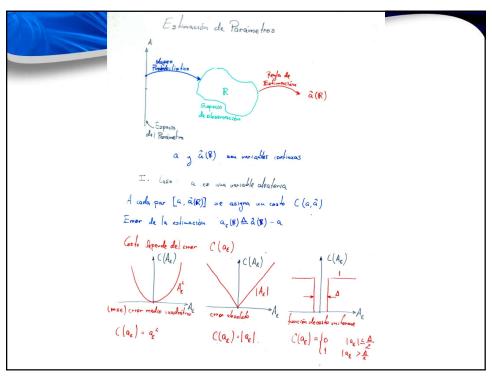
$$\int_{Y|X} (q|x) = \frac{\int_{XY} (x|q)}{\int_{X} (x)} \int_{Y} (y) dx$$

$$\int_{-\infty}^{\infty} \int_{X|Y} (x|x) \int_{Y} (x|x) dx$$

$$\int_{-\infty}^{\infty} \int_{X|Y} (x|x) \int_{X} (x, q) dx dy$$

$$\int_{XY} = \frac{\mathcal{E}[x, x]}{\mathcal{E}[x, x]} \int_{XY} (x, q) dx dy$$

$$\int_{XY} = \frac{\mathcal{E}[x, x]}{\mathcal{E}[x, x]} \int_{XY} (x, q) dx dy$$



```
Tancolor de carlo debe

a) Satisfacer (-2 requeriments del usuario

b) Familio resolver of publicula

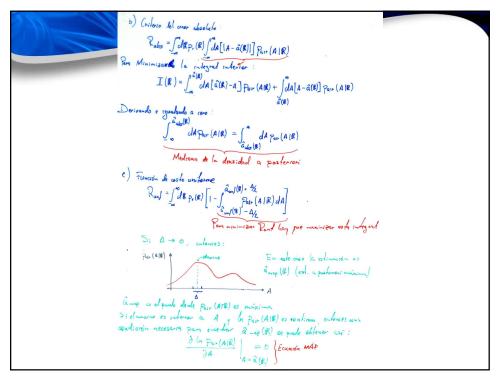
Re(A) Densidud de publicit dad a priori (conocida)

Si Pa(A) es descenacido, outoneer se sigue un precedenzento Millerax

Riesgo R\(\text{A}\) \( \int \) descenacido, outoneer se sigue un precedenzento Millerax

Riesgo R\(\text{A}\) \( \int \) \( \int \) ([A\) \( \int \) [A\) \( \int \) [A\) \( \int \) ([A\) \( \int \) \( \int \) (A\) \( \int \) (A\) \( \int \) \( \int \) (Interior del coror medio exaculaciónic:

\[
\begin{align*}
\text{A} = \int A \int A
```



```
Recestlements Rer (AIR) = Per (RIA) pa (A)

Per (RIA) = Per (RIA)

Per (RIA) = Per (RIA)

Per (RIA) = Per (RIA)

Recestlements

Per (AIR) = Per (RIA)

Recestlements

Reces
```

en la modia condicional. Intences:

$$\hat{a}_{map}(R) = \hat{a}_{ms}(R)$$

En funciones Canzianas, la mediana condicional fambién ocurre en la media condicional. Per le fanto:

cuando la función de costo es simetrica, convexa hacia arriba y no decrecionto, y la función de densidad a posteriori Pair (AIR) es simetrica con respecto a su media condicional, entonces, el valor estimado de à que minimiza cualquier función de costo, dentro de la clase mencionada, es igual a âms.

9

Teorema de Bayes para Clasificación

• Sea "x" un vector de características y "Ci" una clase:

$$P(C_i|x) = \frac{P(x|C_i)P(C_i)}{P(x)}$$

 Si tenemos dos clases, C1 y C2, y queremos saber a cuál clase pertenece x, simplemente usamos la anterior fórmula y vemos cuál de las dos clases tiene mayor probabilidad.

$$P(C_1|x) = \frac{P(x|C_1)P(C_1)}{P(x)}$$

$$P(C_2|x) = \frac{P(x|C_2)P(C_2)}{P(x)}$$

Se observa que como el denominador es el mismo, entonces el denominador no importa y típicamente solo se calcula el numerador y se ve cuál es más grande.

- Entonces el Clasificador solo necesitaría calcular esto para clasificar a un vector "x": $P(C_i|x) \propto P(x|C_i)P(C_i)$
- Y, por tanto, en el entrenamiento, solamente se necesita obtener:

$$P(x|C_i)$$
 $P(C_i)$

Bayes Ingenuo (Naive Bayes)

Imaginando que "x" es un vector de 3 componentes, tendríamos la siguiente probabilidad conjunta:

$$P(x|C_i) = P(x_1, x_2, x_3|C_i)$$

13

 Y recordando la expansión de la probabilidad conjunta en probabilidades condicionales, tendríamos:

$$P(x_1, x_2, x_3 | C_i)$$

$$= P(x_1 | C_i) P(x_2 | x_1, C_i) P(x_3 | x_2, x_1, C_i)$$

- Intentar calcular las probabilidades para todo x1, x2 y x3, suele resultar muy complicado, por lo que se asume que x1, x2 y x3 son independientes.
- Asumiendo que son independientes la anterior fórmula se simplifica:

$$P(x_1, x_2, x_3 | C_i) = P(x_1 | C_i) P(x_2 | x_1, C_i) P(x_3 | x_2, x_1, C_i)$$
$$= P(x_1 | C_i) P(x_2 | C_i) P(x_3 | C_i)$$

Bayes Ingenuo

- A este clasificador se le llama Bayes Ingenuo, ya que resulta ingenuo pensar que los elementos del vector de características son independientes.
- Sin embargo se simplifica mucho la fórmula, haciendo que sea uno de los clasificadores más rápidos para entrenar.

Generalizando a un vector x de tamaño n, simplemente tendríamos:

$$P(x|C_i) = \prod_{j=1}^n P(x_j|C_i)$$

Y entonces en el entrenamiento tendríamos que calcular

$$P(x_i|C_i)$$

para toda j para todo i.

17

Naive Bayes

Resumiendo:

$$\begin{split} p\Big(C_j \mid x_1, x_2, ..., x_d \Big) & \propto p\Big(x_1, x_2, ..., x_d \mid C_j\Big) p\Big(C_j\Big) \\ \\ p\Big(X \mid C_j\Big) & \propto \prod_{k=1}^d p\Big(x_k \mid C_j\Big) \end{split}$$

$$p(C_j \mid X) \propto p(C_j) \prod_{k=1}^{d} p(x_k \mid C_j)$$

Entrenamiento (Contar)		
Palabra	Spam	No Spam
Oferta	1	0
Es	1	1
Secreto	3	1
Click	1	0
Link	2	0
Deportes	1	5
Practica	0	2
Hoy	0	2
Fue	0	1
Evento	0	1
Cuesta	0	1
Dinero	0	1
TOTAL:	9	15

Entrenamiento (Calcular Probabilidades)

Palabra	P(Palabra Spam)	P(Palabra No Spam)
Oferta	1/9	0
Es	1/9	1/15
Secreto	3/9	1/15
Click	1/9	0
Link	2/9	0
Deportes	1/9	5 / 15
Practica	0	2 / 15
Hoy	0	2/15
Fue	0	1/15
Evento	0	1/15
Cuesta	0	1 / 15
Dinero	0	1 / 15
TOTAL:	1	1

21

Entrenamiento (Calcular Probabilidades)

- Así ya obtuvimos todas las P(xj | Ci)
- Luego para obtener P(Ci) recordamos que teníamos solo 8 correos, 3 eran de spam y 5 no eran de spam, entonces:

$$P(Spam) = 3/8$$

 $P(No Spam) = 5/8$

Ejemplo de Predicción

- Tenemos un mensaje M, lo preprocesamos y terminamos con "secreto es deportes"
- Queremos clasificarlo, así que buscaremos calcular:

 $P(Spam|secreto es deportes) \propto P(secreto es deportes|Spam)P(Spam)$

 $P(No Spam|secreto es deportes) \propto P(secreto es deportes|No Spam) P(No Spam)$

23

 Como estamos usando Bayes Ingenuo, calculamos las probabilidades de cada palabra de manera independiente.

P(secreto es deportes |Spam)P(Spam)

=P(secreto|Spam)P(es|Spam)P(deportes|spam)P(Spam)

=(3/9)(1/9)(1/9)(3/8)

 Haciendo los cálculos para ambas clases, se obtiene:

P(secreto es deportes |Spam)P(Spam)=(3/9)(1/9)(1/9)(3/8)=0.00154

P(secreto es deportes | No Spam) P(No Spam) = (1/15)(1/15)(5/15)(5/8) = 0.00092

Por lo tanto se clasifica como Spam

25

Problema: Datos no vistos

• Si tenemos "Oferta practica secreto" sucedería lo siguiente:

P(oferta practica secreto | Spam) P(Spam) = (1/9)(0)(3/9)(3/8) = 0

P(oferta practica secreto | No Spam) P(No Spam) = (0)(2/15)(1/15)(5/8) = 0

¡No podría clasificarlo!

SO	lución	"Smoothing"
50	ucion.	Jillootilling

Palabra	P(Palabra Spam)	P(Palabra No Spam)
Oferta	(1 + 1) / (9 + 12)	(0 + 1) / (15 + 12)
Es	(1 + 1)/(9 + 12)	(1 + 1) / (15 + 12)
Secreto	(3 + 1)/(9 + 12)	(1 + 1) / (15 + 12)
Click	(1 + 1)/(9 + 12)	(0 + 1) / (15 + 12)
Link	(2 + 1)/(9 + 12)	(0 + 1) / (15 + 12)
Deportes	(1 + 1)/(9 + 12)	(5 + 1) / (15 + 12)
Practica	(0 + 1) / (9 + 12)	(2 + 1) / (15 + 12)
Hoy	(0 + 1) / (9 + 12)	(2 + 1) / (15 + 12)
Fue	(0 + 1) / (9 + 12)	(1 + 1) / (15 + 12)
Evento	(0 + 1) / (9 + 12)	(1 + 1) / (15 + 12)
Cuesta	(0 + 1) / (9 + 12)	(1 + 1) / (15 + 12)
Dinero	(0 + 1) / (9 + 12)	(1 + 1) / (15 + 12)
TOTAL:	1	1

En SCIKIT LEARN

En scikit learn hay 3 tipos de clasificadores de Bayes Ingenuo:

Clasificador	Tipo de Features en X
Gaussiano	Continuo
Multinomial	Discreto (entero no negativo)
Bernoulli	Binario

Así que para poder usarlo es necesario que todas las características del vector x sean del mismo tipo.

 Scikit hace el smoothing adecuado de manera automática para evitar probabilidades iguales a 0 que impidan clasificar a un vector

 Para usarlo, simplemente se utiliza este código:

```
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(X, y)
y_pred = gnb.predict(X)
```

29

Ventajas y desventajas

Ventajas	Desventajas
Es muy rápido de entrenar	Es necesario aplicar Smoothing para evitar probabilidades iguales a 0
Es fácil de implementar	Aunque sirve bien para clasificar,no es un buen estimador de probabilidades
Funciona bien con muchas dimensiones del vector de característica	Puede no generalizar bien a partir del training set
Como se asume independencia, el cálculo de la probabilidad de cada dimensión se puede hacer de manera independiente	Si las características están correlacionadas, puede tener resultados sesgados

Referencias

- https://blog.sicara.com/naive-bayes-classifier-sklearn-python-example-tips-42d100429e44
- https://www.kdnuggets.com/2017/03/email-spam-filtering-an-implementation-with-python-and-scikit-learn.html
- http://scikit-learn.org/stable/modules/naive bayes.html