6.

Design of digital filters.

6.1. The design procedure

6.2.

The procedure for the design of a digital filter consists of a

number of steps that can roughly be described as follows:

step 1: Specification of the requirements. This can be an
attenuation scheme, an impulse response, phase charac-
teristic, which may or may not be combined with a set of
constraints such as: '

- it must be FIR/IIR
- desired number of bits for signals/coefficients
- filter degree or length of impulse response etc.

step 2: Selection of a filtertype (FIR or IIR) if not specified,
and of a configuration (direct from I and II, cascade, or
parallel or other)

ste : The approximation. During this step the degree and the
filter coefficients are determined that realize the given
specifications.

ste : Determination of the required number of bits for the

coefficients so that the specifications are still satis-
fied. If this appears to be too large, step 3 can be re-
peated with somewhat increased specifications, or an other
filter type or configuration can be selected (step 2).

ste : Determination of the location and effects of the necessary
quantization and overflow non-linearities and their effect
on the filter behaviour. From this analysis the required
internal wordlength can be determined. In case of a non-
satisfactory result in this step it is again possible to
recommence in an earlier stage of the procedure.

step 6: The hardware (or software) realization.

In this section we will mainly concentrate on step 3, that
is given a specification of the filter requirements, de-
termine the filter degree and/or coefficients.

Section 6.2. will deal with such methods for FIR filters,
while section 6.3 deals with IIR filters.

Approximation procedure for FIR filters.

If the filter specifications are given in the time-domain and
a desired finite impulse response is given, then the FIR filter
design is trivial since a transversal filter with coefficients
equal to the nonzero impulse response values will do the job.

We will therefore discuss now some procedures for the case that
the desired impulse response is infinite or that the
specifications are given in the frequency-domain.
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6.2.1. Windowing.

Let the desired transmission function Hd(e) be specified for
-n&06 Ln.

The corresponding impulse response h (n) will in general be an
infinite sequence. The first thing to think of is to approximate
hd(n) by a finite impulse response hN(n) with length N such that:

h.N(n) = hd(n) o¢n g N=1
(6.1)
0 elsewhere
Introducing the function
pN(n) = 1 o¢ngN-1
(6.2)
0 elsewhere
eq.(6.1) can be written as:
hy(n) = hy(n). py(n). (6.3)
Eq.(6.3) is a special form of windowing, which is the multi-
plication of an infinite time series with a finite duration
"window function" wN(n).
hy(n) = h,(n). wy(n)
Due to its particular form pN(n) is called a rectangular
window.
Using the properties of the FID, the frequency domain inter-
pretation of this windowing technique can be derived!
TC
1
H(0) = Hy(0)x Wy(e) = 77 | Hy(E) wy(e -€) ak . (6.4)
where B
pat ~jn6
WN(Q) = g;% wN(n) e . (6.5)
For the rectangular window the spectrum is given by:
. N© N-1
= sin 7= -7
sin El

The modulus of this function is schematically shown in fig.6.1.
for N = 24.
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To determine the influence of this window function on the trans-
mission function we must solve the convolution equation (6.4).

As an example consider the case of a lowpass filter, and for
simplicity assume that both the desired filter and the realizable
filter are zero-phase filters, i.e. their impulse response is
symmetrical around n=0. In that case the window function will like-
wise be made symmetrical around n=0: wN(n) = wN(—n).

(The filter so obtained will be non causal, but can be made causal
by a mere shift of the impulse response) .

Thus let
Hd(O) = 1 \9\<ec
0 90<|o]gn

Taking a rectangular window, which when symmetrical around n=0 must
hawe N odd, gives the spectrum:

._ N©
sin ‘_2"
wN(e) =
sin —

The resulting low-pass filter has a transmission function as shown
in figl 6.20
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Due to the truncation of the impulse response caused by the
rectangular window the following effects occur:

1) ripples in the passband and in the stopband caused by the
gsidelobes of the spectrum of PN(G)

2) a transition region between passband and stopband of width a6,
determined by the width of the main lobe of WN(G).

With a rectangular window the ripples in passband and stopband
will not decrease in amplitude when N is increased but the width
of both the main lobe and the side lobes decrease.

In general what we want is that both the ripples and 48 can be

made small by taking a sufficiently large N. But then a different
window function must be taken, i.e. a function that more "smoothly"
goes to zero near the end points. Several of these window functions
have been proposed of which a pumber are listed in table 6.1. All
these functions have the property that their main lobe is wider than
for the rectangular window (resulting in an increase of the transition
bandwidth) but the amplitude of the sidelobes is less (giving less
passband ripple and larger stopband attenuation). More details con-
cerning these window functions can be found in all modern text

books on digital signal processing.
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Table 6.1. Window function.
name WN(n) amplitude |width of
side lobe main lobe
rectangular 1 0¢n¢N-1 -13dB 4n/N
2n/(N-1) ogzxgﬁgl
Bartlett -25dB 8n/N
> - 2n/(N-1) Nl ¢n g1
. 21n
Hanning 1 [:1 - cos(m] 0 £n {N-1 -31dB 8n/N
. 21nn
Hamming 0.54 - 0.46 cos(ﬁ:T 0 ¢n ¢N-1 ~414dB 8n/N
Blackman 0.42 - 0.5 cos(%%%)
0 <n ¢ N-1 -574B 12n/N
+ 0.08 cos(Azg)
N-1
2 2
10(8/1 -(F= - 1)
Kaiser 0¢n<N-1 -30 ~ =3004B | > 4n/N
I (8) depends on depends on
. B J

2.2,

In conclusion, windowing techniques are relatively simple, and form a viable
design method for filters for which a piecewise constant transmission func-
tion is desired.

Fregquency sampling.

In applications such as data transmission, filter specifications are often
not in terms of a passband with a prescribed ripple, a stopband with pres-
cribed attenuation and a transition band with prescribed width. Rather what
one wants is a smooth transmission function satisfying certain symmetry rela
tions around some frequency to fulfil one of the Nyquist criteria. In that
case a windowing technique is not easily applicable.

A method suitable for this case is frequency sampling. Let Hgq(8) be speci-
fied. Then on the fundamental interval (0,2n) N equidistant points are con-
sidered.

Let 2n

8, = J k k=0,...,N-1 (6.7)
and define the numbers

H, = Hy(e,) k=0, + .., N=1 (6.8)

These numbers satisfy the relation:
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- — e
B o= Hy k=1, , N-1 {6.9)

Therefore, when the inverse discrete Fourier tranform (IDFT ,
see Signal Analysis,  ° chapter 8) is applied to these numbers

we get N real valued numbers hn:

=

-1 _ j.;_n.kn

(=]
o]
il
I
w
It

0

Now we take an FIR filter with impulse response

hy(n) = h 0<&n¢N-1
N N
n (6.4
0 elsewhere
The corrsponding transmission function is
o -.9
HN(G) = Z hN(n) e 9"
n=- oo
N-1 .
=S & e
n=0 n
and thus
T T S (
a] = h e = h e 6.
Nk n=0 =» 2;6 n

The last expression in (6.12) is the DFT equation and thus we can
conclude that

By(e, )-8, = H,(8)) (6.13)

Therefore the filter with impulse response specified by eq.(6.11)
has a transmission function that is equal to the desired frequency
response on N equidistant points of the fundamental interval of

the spectrum. In between these points the two transmission functions
will be different in general.

HN(Q) can after some manipulation be written as

N-1 -j(8-0,)(N-1)/2 sin N (6 - 6,)/2

1
= = A
liN(Q) N H e in ( Y7 (6 4)
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which means that it is an interpolated version of the discrete

-je(N-1)/2

set{ ﬁk} with interpolation function e sin(N 6/2)/sin (86/2).

Especially in the neighbourhood of discontinuities in Hd(G) large
ripples can be observed in H (9), but for a smooth
Hd(Q) very nice results can ¥e obtained.

For filters with a transition region it is possible to obtain better
results by taking the values of Hk for Ok in the transition region

as free parameters and applying optimization techniques. We will not
consider these techniques here, however.

6.2.%. Optimum linear phase FIR filters.

As was remarked before linear phase filters have an impulse response
that satisfies the symmetry relation of eq.(4.12) .Four different
cases can be distinguished.

case 1: N odd, positive symmetry: h(N-1-n) = h(n)
Writing N=2K+1 the symmetry relation can be rewitten as:

h(X-n) = h(X+n) n=1,-v-0....,K
From this it follows that
-3 K
H(B) = e JKQ. z: 'b1(n) cos n®o (6.15)
n=0
where b1(n) = {:2h(K-n) n=1,...,K.
h(K) n=0.

case 2¢ N even, (N=2K+2)
positive symmetry: h(N-1-n) = h(n)

A rather involved computation reveals that in this case
the transmission function can be written as:

_jﬁzlg

K
H2(9) =e 2 cos % .2{% b2(n) cos né (6.16)
n=

where the coefficienﬁsbz(n) are related to the original
coefficients h(n) in a rather complicated way.

case 3: N odd,(N = 2K+3)
negative symmetry: h(N-1-n) = - h(n)

Similarly as in case 2 the transmission function can be
brought into the form:

—jN_1 o K
H3(9)= e "2 7, gind z: bs(n) cos né (6.17,

n=0
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case 4: N even (N = 2K+2)

negative symmetry: h(N-1-n) = - h(n)
In this case N1
KPR 6 <«
H4(9) = e . sin 3 . > b4(n) cos né (6.18)

=0

Therefore all linear phase FIR filters have a transmission function
of the form:

N-1
-5 8
H(B) = e . q(e). HO(G) (6.19)
where
Q(e) = 1 case 1
cos 9/2 case 2 (6.20)
sin © case 3
sin /2 case 4
and HO(G) is a function of the form.
K
HO(O) = 2: b(n) cos nd (6.21)

n=0

From (6.20) it ocan be concluded that for case 2 H(n)=0 so that
high-pass filters cannot be realized.
For case 3 H(o) = H(n)= 0, which means that only filters with a
bandpass characteristic are possible. In case 4 H(o) = O and thus
low-pass filters cannot be made with an even length impulse res-
ponse with negative symmetry.

_jE:l e
Ignoring the phase factor e 2 the difference between the de-
sired and the actual tramsission function is

Hd(g) - q(e). HO(Q) (6.22)

Now, using methods of numerical mathematics it is possible
to determine the coefficents b(n)such that the weighted error

5(6) = (o) [E,(e) - (@) ()] (6.23)

is minimized in some sense, where W(®)is any appropriate
weighting function.
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Let @ be the interval on which the minimization is required.
(union of passbands and stopbands). An optimum solution is
obtained if the minimization of E is performed in the Chebychev
sense, i.e.if the bgn) are found so as to minimize the maximum
absolute value of E(8):

I 0e® ol | (6.24)

The solution so obtained is optimum in the sense that mo other
filter has a smaller peak error over the entire interval of
optimization (:). The transmission function will be equiripple
which means that all passband ripples will have the same ampli-
tude &4 and all stopband ripples the value &, for a two-band design
(a gimilar statement holds for a multiband design).

(o), b(x)]

It will not be necessary to go into details concerning the nu-
merical methods of the Chebychev approximation. A number of
sophisticated computer programs exist that can compute the filter
coefficients for given specifications of low-pass, bandpass, high-
pass, bandstop and some other types of filters. A computer program
developed at Rice university by Parks and McGlellan has become quite
popular. The Fortran text of this program can be found in the book
by Rabiner and Gold. pp.187-204.

Whatever program will be used, it will always be necessary tolave
an initial guess of the filter length N that is required for satis-
fying the filter specifications. A too small N will make that these
specifications cannot be satisfied, too large an N results in a
filter which is more complex than necessary. Therefore the opti-
mization has often to be performed a number of times with different
values of N to find the one which gives the "best performance". A
good initial guess may considerably reduce the computational ex-
penditure of this procedure. To this end Rabiner et al. have deter-
mined experimentally (i.e. by computing a very large number of
different filters) a set of design formula, among which one that gives
an estimate for the filter length N required for a low-pass filter
with passband ripple * 61, stopband attenuation 62 and transition

bandwidth AF:

D(5,,6
N = ( 1 2) - f(61,62).AF+ 1 (6.25)
AT
where
D(5,,6,)= [5.309.10'3(1og 61)2 + 7.114.1072 1og &,

-4.761.10'1] logd, - 2.66 107 (Logs,)?

~5.941.10"" log b, - 4.278.1071 (6.26)
and

f(é1,62)= 11.01217 + 0.51244 (log 5, - log 52) (6.27)
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6.3. Design procedures for IIR filters.

The design procedures that have been developed for IIR filters can
roughly be divided into two groups:

1. Optimization methods in the digital frequency domain. In these method:
the problem of finding the filter coefficients is treated as an op-
timization problem that is solved by applying well-known optimiza-
tion algorithms as for example linear programming. The most diffi-
cult part of the procedure is to bring the problems into the for-
mat required for such an algorithm.

These methods require knowledge of optimization theory, and there-
fore we will not discuss them here,

2. Methods that transform the design of a digital filter into a desig™
of an analog filter by linking in some way or the other the digit:
and analog worlds. The analog design is a well-solved problem, since
many algorithms, design charts, tables etc. exist for designing all
types of analog filters. The basic difference in these techniques
is the way in which the analog and digital worlds are tied to-
gether. This latter problem is very interesting, and its study may
lead to more insight into the similarities and differences between
analog and digital systems.

6.%3.1. Relation between analog and digital systems.

Consider the analog system in fig.6.3, consisting of a resistance R
and a capacitance C.

Il

all

$ PV

@

fig.6.3.

If v,(t) is viewed as the input signal and vz(t) as the output signal
the }ollowing ways exist to describe the transmission of this circuit.

a) The differential equation:

dv,(t)
T 5t vz(t) = v1(t) , T = R.C (6.28)
b) The impulse response:
vz(t) = ha(t)i v1(t) | (6.29)
where
ha(t) = % e—t/T,ua(t) (6.30)



- 6.11 -

¢) The transmission function Ha(w) which is the Fourier transform
of ha(t):

1
H —4 6- 1
a(w) 1+jwT (6.31)

4
a) Th? §ystem function Ha(p) which is the laplace transform of
h (t,:
a

¥ (p) = — (6.32)

]
Po =~ % (6.33)

A similar set of descriptions exists for the simple digital system
of fig.6.4.

.___.’1+

= LD g(»)
T

je—4

A
<<

fig.6.4.

a) The difference equation:

y(n) = a y(n-1) + x(n) (6.34)
b) The impulse response:

¥(n) = h(n)x x(n) (6.35)

where

h(n) = a® u(n) (6.36)
¢) The transmission function:

H(8) = 1 mre (6.37)

1 - 2a.,e
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d) The system function:

s 1
f(z) = —— (6.38)
1 - a2
or its pole
z =a (6.39)

Starting from any of the descriptions of the analog circuit a
corresponding digital circuit can be determined which in some
sense resembles the analog system. Several of such techniques will
now briefly be reviewed, not as much because each of them pro-
vides an efficient method for designing IIR filters, but rather
because they yield more insight into the relation and differences
between analog and digital systems.

6.3.2. Mapping of differential eguations.

The differential equations of the analog filter can be mapped
into a set of difference equations by the transformation:

y (+) = v() | (6.40)

d

3T Y. (t) = x(n) - y(n-1)
where T in principle may be any normalization constant, but in prac-
tice will be taken equal to the sampling period.

1f y(n) is obtained from ya(t) by sampling with rate 1/T, then it will
be clear that for T-+0 the operation

v(n) = y(n-1) ya(nT) - Ya(nT-T)
T - T

will closely resemble the differentiation operation.

We therefore may expect that for low frequencies the digital system
so obtained will behave similar as the analog prototype.

Returning to the previous example we get from eq. (6.28) with

v, (1) x(n), v,(t)=> y(n):

y(a). G+ 1) - g yl-1) = x(@a)

or with
a=v/(r4z), b = T/ (T+7)

y(n) = a y(n-1) +® x(n)

thus
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n(n) = a".b u(n),
H(8) = —2——57 ,
1 - ae
H(z) = 22—
1 -1
- a3z
n . ‘nT/T
Only for T/t « 1 does a b approximate e for small values of n,

which means that the impulse response of the digital system will
in general differ considerably from h (nT), i.e. from a sampled
version of ha(t). &

As was already hypothesized, for small values of © the transmission
functions will not be very different.
Indeed for 8 o we have

H(8)% b - ——
1-2a(1-j8) 1+ 87
which means
B(ul)x——— = H_ (o) w0

1 + joT

Finally the relation between ﬁa(p) and ﬁ(z) can be derived from the
transformation given by eq. (6.40).

Ly (1) =1 [y - y(a-1]
£| l &
pY (p) =5 (1=27) T(z) (6.41)

The interpretation of (6.41) is that (6.40) specifies a relation
between p~domain and z-domain of the form:

% (1-27" (6.42)

o)
]

or

1 N
= ——— 6.
z 1 - pT ( 43/

Therefore

~

H(z) = B,( 21 - 27)) (6.44.



- 6.14 -

To see the effect of the mapping (6.43) we can determine the mapping
of the imaginary axis p = Jjw, which is given Dby:

Z = _.1____ y —oow< oo
1 - juwl

The locus of this mapping is a circle with radius 1/2 in the z-plane
with centre at z = 1/2, see fig.6.5. ‘

// /‘ /\.dm 11"‘);23 ,
// / @ G plane O
/ R
s yd // SN
r y \
//i///‘,//—u)=0 / W= 00 \ w=0
: v A o —-—5 ' . / -~
- //// = 7 Y / / 1 ReS23
Ve / \\\ j /
////é N ‘\ unit circle
//' P [2] =1
e A

fig.6.5.

It can be shown that the mapping (6.43) maps the left half of the
p-plane into the interior of this circle. Therefore, applying the
mapping to a stable analog filter results in a stable digital filter,
but a digital filter so obtained can only have poles in a small part
of the region inside the unit circle, and thus this technique is
certainly not suitable for designing general types of digital fil-
ters, and certainly not high-pass filters.

The transmission function H(®) of the digital filter is equal to the
system functions when evaluated on the unit cirle lzl =1. For the
analog filter the system function must be evaluated on the imaginary
axis to obtain the transmission function.

From fig.6.5. it can immediately be seen that only for w=o the
identity

(D) = 5(e3T) = B, (J0) = E (0)

holds, so that only for w20 we have that H(wT)zHa(w) as we had
derived before for the special example.
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The choice of the mapping in (6.40) was rather arbitrary,
and we could just as well have taken the forward difference

d
Ly, (0 = 7 1) - y@)] (6.45)
resulting in the p-plane to z-plane mapping *
p =7 (2-1) (6.46)
z = pT + 1 . (6.47)

Intuitively one could have the impression that there should

be little difference between the two mappings defined by (6.40)
and (6.45). This is not so.

If we display the mapping given by (6.47) we see that the
jwu-axis in the p-plane maps to the straight line z = jwT+1 and
the left half of the p-plane is mapped into the half plane to
the left of this line, as shown in fig. 6.6.

s
)

}
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V' /

2
=

\

e
e

fig.6.6.

As before we see that only for ww0 we have that

H(or) = B(e3T) 2 E_(ju) = H,(0)

But, using this mapping it cannot be guaranteed that a stable analog
filter results in a stable digital filter. Only if the analog filter
had all its poles inside the cross-hatched circular region will the
digital filter be stable too.

Many more mappings of the differentials like (6.40) and (6.45) can
be defined each with its own properties but none of these really
provides an attractive method for designing digital filters.
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Impulse invariant transformation.

The previous technique had the property that the impulse response
of the digital filter in general did not much resemble that of the
analog protctype. This means that if we desire some specific pro-
perties for the impulse response, for example, little overshoot,
equidistant zero values or whatever, and we have an analog filter
which has these properties, then the filter resulting from applying
the previous technique will in general not have these properties.
In cases where it is important to maintain:-certain characteristics
of the impulse response the impulse invariant transformation can be
used. In that case what one does is to .take

h(n) = ha(nT) (6.48)

which means that the impulse response of the D.F. is a sampled
version of the impulse response of the analog prototype filter.
Two questions now arise:

1) can a filter with this impulse response always be realized 7

2) what is the corresponding transmission function? The answer to
the first question is positive if the analog prototype filter has a
rational system function in p, and thus can be written in the form

N
~ a.
E (p) = 2 = (6.49),
i=1 P - pi
This means that
N pit
n () = 3 &y e i’ ult) (6.50)
i=1
and thus
N
T
h(n) = ;E; ai(e Pi Y2 u(n) (6.51)
i=
Therefore
- N a,
HORSS - (6.52)
i=1 1 - e piT -1
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If ﬁ;(p) has real coefficients then either p is real (and negative
if Ha is stable) and then a; is real or there exist two complex

conjugate poles Py and pj such that

R . s —_ " _ jya
P; =Py = oy + Ju; » 8y =8y = age
Applying this to eq. (6.52) gives:
-1
a, - -
%( y - Z: i ;E: 2aicosy& 2z aipicos(yi wiT)

zZ) = —_— (6.5

real ] p;T -1 complex -1 5 ’
-e z -
poles poles 1 (2F&coswiT)z +Pi z a1
P":e

and this system function can be composed of first and second order
sections with real coefficients. This proves that indeed a digital
filter exists that has the given impulse response.

To obtain the corresponding transmission function we could use

(6.53) and evaluate this expression on the unit circle. It is

easier, however, to use the fact that h(n) is obtained by sampling h_(4
Using eq.(2.7) we find immediately: a

H(e) =% kz H, ( E’I—T‘-‘z—“ ) (6.5¢

Therefore T.H(wT) will only be equal to H_(w) if this latter
function is bandlimited to m/T, but this will never be exactly

so because we required that the system function has the form
of eq. (6.49). Therefore always aliasing will occur.

For the example of fig.6.3 this technique gives

- 1/ ~ 1
Ha(p) = e—T—=>H(z) = _TT
Pt 1/1: 1 -e /T z-‘1
and thus
1
H (o) = ——=>u(uT) = A
1+jort 1o~z - 3uT

Fig.(6.7) shows the two functions Ha(w) and H(wT). T on a loga-
rithmic scale.
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In conclusion, the impulse invariant transformation is useful

in a design where constraints are imposed on the impulse response.
With this technique poles of the analog prototype filter at

pP=p; = 6'i+jwi in the p-domain are mapped into poles at

2=z, = e(s'i"’j“’i)T in the z-domain, but a similar mapping does not
exist for the zeros. This mapping of the poles guarantees that if
the prototype filter is stable (G'i <0 i=1,---,N) then the digital

filter will be stable too ( [z;] = i’ <1).

In general the transmission function of the digital filter will
differ from that of the analog prototype filter especially for
8a n, due to aliasing.
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6.3.4._The bilinear trangforpation.

Instead of starting with the time domain descriptions such as
differential equations or impulse responses we can also start with the
frequency domain specifications. What we want is a digital filter with
system function H(z), such that for |z]|= 1 i.e. on the unit circle

of the z-plane.

H(z) = H(8)

je

Z=e

satisfies a set of specifications. On the other hand, the analog
filter from which we want to derive the D.F. is characterised by H (p)
in the p-domain and its transmission function can be found by evaluating
Ha(p) on the imaginary axis:

B_(p) = 1_(0)

pP=jw

It is therefore quite natural to look for a mapping of the p-plane
to the z-plane that has the following properties:

1) The mapping must be a rational function (to ensure realizability)

2) The imaginary axis in the p-plane must map onto the unit circle(to
connect Ha(w) with H(e))and such that

3) the left half of the p-plane maps into the inside of the unit
circle (to maintain stability)

4) p=o maps into z=1 (to maintain low pass characteristics w=o=§9=o)

5) p=jeemaps into z=-1 (to maintain high pass characteristics w=q“9=n).

A simple transformation that satisfies all these requirements is:

Q
s _ 0P (6.55)

Qo-p

where © is a suitable (positive) normalization factor, to which
we will return later.
The inverse transform is given by

z-1
p = Qo. ;:T (6-56)

Both equations (6.55) and (6.56) are bilinear forms which explains
the name of the method.
It is easily verified that conditdors 1 through 5 are satisfied.
To see how the jw-axis maps into the unit circle we set p=juw,
z=ed® and insert this into (6.56):

eJ® =1 o]

ju =R . =/ =0, J. =z
o ng 1 o jetan >



- 6.20 -

Thus
8
w =R tan 7. (6.57)
o = 2 arctan £ ~ (6.58)
(o]

Eq.(6.58) shows that the whole frequency axis (-¢4) of w is
mapped onto a fundamental interval (-n,n) of the ©-axis.

How do we use this bilinear transfornation 7

The best way to demonstrate this is by an example.

Assume that a lowpass digital filter is required satisfying the
following specifications (see fig.6.8)

1-s, B (0)] < 1 [el<e,

6.
|H (0)] < 5, e <|ef<n (6:59)

Step 1. The bilinear transform specifies a mapping of the unit
circle onto the jw-axis given by eq. (6.57). This
(inverse) transform can be used to transform the spe-
cifications of eq. (6.59) to a corresponding set of
specifications for an analog filter.

For this example we have:

1-6, < \Ha(w)l < 1 [wl< oy
(6.60)
|5, ()] < 8, o <o)< o
where
e
w = tan ~L
P o] 2
6 (6.61)
wy = Qo tan -

This is shown in fig. 6.8.

Step 2. An analog filter is sought that satisfies the specifi-
cations (6.60). To this end any analog filter approxima-
tion procedure may be used. A very convenient way is to
use a book with filter tables, and if possible, one that
specifies the pole and zero-locations, such as for example

E.Christian, E.Eisenmann

Filter design tables and graphs
J.Wiley, New York 1966.
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When looking for such a filter the as yet not specified
parameter QO can be selected conveniently. In most books

with filter tables the frequency is normalized such that

w = 1 rad .
o /sec

Taking

)
- -2
Q = 1/ tan > (6.62)

it follows from (6.61) that wp=1 rad/sec, which means

that no normalization of the analog fregquency axis is
necessary to apply the tables.

Find the location of the poles{'piz and zeros {qiz of the

analog filter, and apply the bilinear transform. This giver
the pole and zero locations of the digital filter:

R +ps
i

poles at 2 = o
Qo-pi
Qo+q:.L

zeros at = Bi
2573

Therefore the system function of the digital filter is:

d( ) ?v(z-ﬁi)
M(z) = K. =——
i T (z-a,) (6.63)
i 1
and K can be found by setting H(z) = E_(p)
z=1 jp=o

In case the poles and zeros are not specified, one can
take the system function H (p) in any other suitable form

and apply the bilinear transformatlon to obtain H( ):

~ ~ z=1
H(Z) = Ha (QO Z+1

In the example we used a low-pass filter. It is known that
other types of analog filters such as high-pass and band-pass
filters can be obtained from a low-pass design by using a
suitable transformation. These have been described in the
course notes on filter design of Mr.Carriere. Such trans-
formations can be used to advantage during step 2, when
determining an analog filter satisfying the constraints in
the w-domain.
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-

In conclusion the bilinear transform is a viable technique
for designing digital filters using all the existing powerful
methods of analog filter design.

The resulting transmission function H(6) is a warped version
of the analog frequency response Ha(w) due to the nonlinear
relation between 6 and w.

For small values of © this relation is approximately linear:
9::(2/Qo)w, but especially for © near n the relation becomes

very nonlinear. If we take Q_ = 2/T then for small values of 6
we have that 6~ T and this feans that the frequency behavior
of the analog and digital filters are quite close for low fre-
quencies. Therefore this may be a convenient choice for Qo

in certain cases, But when the analog filter is merely used

as a reference filter in the filter design, then the value
given in (6.62) is much more suitable.
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Wave digital filters

In the methods discussed in the previous sections a certain system
characterization like the impulse response, the system function or
differential equation(s) of the analog system was transformed to a
similar characterization in the digital domain. This means that in
general with these methods there is no direct mapping of the structure
and the corresponding parameters of the analog prototype filter and
the resulting digital structure.

The basic idea behind the wave digital filter concept, which has

been developed by Fettweis, is to make a mapping per element of

an analog prototype filter into a digital structure. The advantage
then is that in this way certain desirable properties of the analog
filter can be retained in the digital filter. In particular, it

is known that analog LC filters have a low sensitivity for variations
of the element values (L and C values). In an element-wise
transformation a low-sensitivity digital filter may then be obtained,
which will have the advantage that its coefficients can be represented
by a small number of bits.

Design procedure

The design procedure starts with writing the 'voltage-wave'-equations
for an analog one-port (impedance Z). This one-port is depicted in
fig. 6.9. (We use a tilde (™) for denoting analog signals in this

——
¢ (+)

Z(p)

-

Fig. 6.9.

section). We define the wave variables:

a(t) = V(t) + R I(t) (6.64)

B(t) = V(t) - RA(L) (6.65)

where‘V(t) is the voltage across, and q?t) the current through the
one-port. R is, for the moment being, an arbitrary normalization
constant. &(t) and B(t) are called the incident (input) and
reflected (output) waves, respectively.
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Let us now consider the case that the one port is an inductor,
i.e.

~ d 7(¢t)
t) = —— .66
v(t) L at (6.66)
Taking Laplace transforms yields
~ ~
V(p) = pL I(p). (6.67)

Using (6.64), (6.65) and (6.67) we find for the Laplace transforms
of the wave variables:

4
_ pL-R ~
B(p) = LR A(p) (6.68)
Defining Qo by
Qo = R/L (6.69)
this gives:
B(p) = Y0P Ap) (6.70)

If we now apply the bilinear transform
+
Qo P

Qo-p

to these equations we find a relation between the corresponding
digital variables A(Z) and B(Z) of the form

B(Z) = 27t A(Z) (6.71)

which corresponds with a digital structure described by

b(n) = -a(n-1)
Thus, with a wave-digital transformation, an inductor is to be
replaced by a cascade of an inverter and a delay element, as

shown in fig. 6.10a.

Similarly, if we repeat this procedure for a capacitor we find

d V(t)
¢ =
1(t) C at
and hence
~ l.é- -R ~r
B(p) = r1> A(p) . (6.72)
— 4R

pC
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Wave digital transformations

Analog prototype Digital equivalent

a) inductor

+ ../—?rH:)\.. - aln) b(n)
—~ 0TI '———E— T _}—
Tit)
Tt) = L d gﬁt) b(n) = -a(n-1)
& . _ R/L-p~ _ -1
B(p) = R/L +p A(p) B(Z) = -2 A(Z)

b) capacitor

a-LE)
0———-—+ }——-—’——4 e T b
Cit)
_ o Y o
T(t) = C It b(n) = a(n-1)
Lo
B(p) = ?C A(p) B(Z) = 2°% AZ)
RC P

c¢) voltage source + resistor sfnk source

+*"3'U")R\-*- Y

aln) b(n)
- : T E

e en)
Y(t) = E(t) + R T(t) b(n) = e(n)
Bp) = E(m B(Z) = E(Z)
If 6(t) = O then only a resistor: B(Z) = 0

Fig. 6.10.
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Now using

=1
Qo = TC (6.73)
we find
r~ QQ -P ~
B(p) = g + A(p) (6.74)
o TP

to which corresponds after bilinear transformation.

27! A (6.75)

B(Z)

and

b(n) a(n-1) (6.76)

Therefore a capacitor has to be replaced by a delay element
(see fig. 10Db).

Note that to obtain this result we had to take a different value
for Q than in the case of an inductor. We will come back to this
point shortly. As a further important element we consider a voltage
source with a series resistance R, shown in fig. 10c. For this
element we have:

T(t) = R T(t) + T(t) (6.77)
lHence we find
Bp) = E(p (6.78)

irrespective of the value of’K(p). The corresponding digital equivalent
is characterized by

B(Z) E(Z) (6.79)

or

b(n) e(n). (6.80)
This is indicated by the symbols of a source and a sink, where the
latter is an element that 'absorbs' any incident signal. (We could
also let the node open, but follow here the symbolism introduced
by Fettweis). The structure is given in fig. 10c.

Eq. (6.78) was derived under the assumption that the normalization
constant R for the voltage-wave formulation was equal to the value

of the series resistance of the voltage source. In fact we have now
fooled the situation three times. We are allowed to use only a
single value for  in the bilinear transform, and we had to take
the value of R equgl to QOL for the mapping of the inductor and equal
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to 1/ C for that of the capacitor, while it should be equal to
the va?ue of the series resistance of the voltage source in the
last example. In an arbitrary analog filter we will encounter all
different values for R, L and C, so how do we proceed in that
case ?

We then make use of so-called adaptors, which allow us to use
different values of R for the wave equations of each element. To
show how this works we consider the simple example of two elements
in parallel, depicted in fig. 6.1la. We can use a normalization
constant Rl for the voltage waves of the inductor and a value R

for that of the capacitor, but then the interconnection between the
two elements must be described by a somewhat more complicated

set of wave equations. By inspection of fig. 6.11b we see that we
have for this interconnection

~ o~
vl(t) = vz(t) (6.81)
T, (t) = JT;(t). (6.82)

The corresponding wave equations are now given by

B (t) = v.(t) + R, T,(t) 6.83)
a () = V(1) + R T, (6.
Vaed =rJ _ ~

b (t) = V(1) - Ry A0 (6.84)

for port number 1, and

R

.
|

™

+-4
My
red
»

+ -9
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t) = t R_ 7T 6.85

az( ) = vz( ) + 2 12(t) (6.85)
= -

bz(t) = vz(t) Rz ié(t) (6.86)

for port number 2. From (6.81) - (6.86) we then find after some

manipulations:
bl(t) = az(t) + a(az(t) - al(t)) (6.87)
B(t) = & (t a 3 6.88
P ) = 81( ) + a(az(t) - al(t)) (6.88)

where

R_-R
o = R1+R2 _ (6.89)

12

Therefore to this two-port interconnection there corresponds a
digital structure given by

]

bl(n) az(n) + a(az(n) - al(n)) (6.90)

bz(n) al(n) + a(az(n) - al(n)) (6.91)

which is depicted in fig. 6.12.

a,(n) %f #”bz(m)

by(n) eue 1 a,(n)
L.two-gofé “4“Pf°'_ J

fig. 6.12.

We can proceed in a similar manner for interconnections of more
than two elements. There are two different types of such inter-
connections, namely the series adaptor and the parallel adaptor,
see fig. 6.13.
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Fig. 6.13.
For the series adaptor we have
Y.t v, + Yty =o0
vl( ) + vz(t) ee. + vn( ) = (6.92)
= = :""
T&(t) ﬁk(t) . 1n(t) (6.93)
and for the parallel adaptor
el = og - =~
vl(t) vz(t) . vn(t) (6.94)
Tl(t) + &é(t) + ...+ Th(t) = 0. (6.95)

Each of these equations leads to a corresponding set of equations
between the wave variables and thus to a corresponding digital
adaptor structure.

For example, a three-port parallel adaptor is given by

b1 = (al-l) a1 + azaz + a3a3 (6.96)

b2 = alal + (az—l) az + a3a3 (6.97)

b3 = alal + azaz + (a3—1) a3 (6.98)
and a three port series adaptor by

b1 = (1-81) a1 - Blaz - 8133 (6.99)

b2 = -Bza1 + (l—Bz)az - 82a3 (6.100)

b3 = —Bsal - BBaZ + (1—83)a3 (6.101)
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= +G _+ = = + .
where uk 2Gk/(G1 G2 G3), Gk 1/Rk and Bk ZRk/(R1 R2+R3)
The procedure to obtain a complete wave digital filter from a
given analog prototype filter is now the following.

1) Split the filter into elements connected by series and
parallel adaptors.

2) Transform each of the elements to its digital equivalent
using the equivalences of fig. 6.10.

3) Transform each of the adaptors into digital adaptors given by

eq. (6.96) - (6.101) (or corresponding equations for adaptors
with more than three elements).

This procedure is indicated schematically in fig. 6.14 for a
simple filter, but can be applied to any type of RLC analog
prototype filter. It can be remarked that the delay elements
correspond with the inductors and capacitors, while the multi-
plications stem from the transformation of the adaptors.

The transmission function of the analog prototype filter was
given by the ratio of the Laplace transform of the voltage
across the output resistance R5 and the input voltage source e .
It is clear from the foregoing analysis that the transmission
function of the wave digital filter, which is the ratio of the
Z-transform of b. and e_, will be related to that of the analog
filter by means o? the bllinear transform. Hence, given the
specifications of the digital filter one first has to transform
these via this transform to specifications for the analog filter
just as was the case in section 6.3.4.
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