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. Digital filters

In the previous chapter we have discussed linear, shift invariant
discrete systems. The most important members of this class of systems
are the digital filters, and in this chapter we will discuss a number
of different schemes for digital filtering.

There are two major classifications that can be made for digital
filters

I.1 non recursive digital filters (NRDF)
1.2 recursive digital filters (RDF)

II.1 finite impulse response digital filters (FIR)
I1.2 infinite impulse response digital filters (IIR)

As will be shown, the first classification concentration on the struc-
ture of the filter, whereas the second scheme only deals with the
impulse response, which is a more global characteristic of the filter
and does not uniquely specify the structure. In the sequel the rela-
tion between the two clasification schemes will be discussed, and

some examples will be given.

Non recursive digital filters

In section 3.2 it was indicated that a linear shift invariant discrete
system, constructed of adders, delays and multipliers can be des-
cribed by one - or a set of - difference equations. An example of

such a set of differerceequations was given in eq(3.4). In that equa-
tion x(n) was the input and y(n) the output signal, and v(n) an in-
ternal variable of the system.

Such a set of difference equations will be called non recursive, if
none of the internal variables or the output depends on previous val-
ues of itself. This means that the set of difference equationscan be
put into the form:

K1
u1(n) = E 8, x(n-k)
k=0
K, 2,1
u.(n) = I_ a, x(n-k)+ 2 b u, (n-1)
2 x=0 ¥ 1-0 2+ 1
K L
m m,1 1
um(n) = ¥y amk x(n—k) + Y bil) u1(n—1) = = - =
k=O l:o
L
m,m-1 _ (m-1)
- - -+ b ml um_1(n-l)
1=0
I
m m

y(n)
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From (4.1) it follows that u, only depends on x, u, only on x and u,

1
etc, whereas y(n) may depend on all of the internal variables but
not on previous values of itself

As a simple example consider:

u(n)

n

a. x(n) + a, x(n-1)

1 2

(4.2)

y(n)

The corresponding structure is shown in fig.4.1
From (4 1) it can be seen that a non recursive structure does not
have any closed loops.

b, x(n) + ¢, u(n) + c, u(n-1)

1

Now we have the following proposition:

x(n)

y(n)

FPig.4.1

Proposition 4. A non recursive digital filter (with a finite
number of delays) has a finite impulse response.

This theorem thus states that any realizable non recursive filter
is an FIR filter. (We will see in section 4.2 that the converse is
not true !)

The proof is very simple. Insert in eq.(4.1) x(n) = s(n).

Then we find that
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u,(n) =0 n >N, =K,
ug‘(n) =0 n > N, = max (K2, N, + Ly o)
u;(n) =0 n > N_ = max (Km’ N Ly Nyt p—
e Npg Lm,m-1)
y(n) =h(n) =0 n>N_ . =max (I,N+I,, - - -
-—-y N+ Im)

and clearly Nm is a finite number, which completes the proof.

+1
In the example of eq (4.2) the impulse response has a length

( duration) of 3, which means that three values of the impulse res-
ponse are different from zero.

A special form of non recursive digital filter is the quite popular
transversal filter. This filter is described by one equation:

M
y(n) = Z:: ay x(n-i) (4.3)
i=0

For this filter the impulse response is:

h(n) = 0 n<0, n>M
(4.4)

and has length M+1.

Since a non recursive filter is a specific type of FIR filter we
will defer a further discussion of the properties to the correspon-
ding section 4.3.

. Recursive digital filters

Any filter in which at least one of the variables depends on previous
values of itself is called a recursive digital filter (RDF), and

thus every RDF must contain at least one closed loop. In eq.(3.4)

we have given an example of a recursive set of equations, and indeed
the corresponding structure contained a closed loop.
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For realizability it is required that each closed loop contains at
least one delay element since in a delay-free loop the adders or

multipliers must operate on values that are not yet

determined.

A recursive filter can have either a finite or an infinite impulse
response. To show this consider the two systems in fig.4.2.

(n 8
N = §(»)
&

\r o< a <!

FPig. 4.2.a.

x(n)

V4

o0<a< L

Fig, 4.2.Db.

=
<]
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The system in fig.4.2a is described by the simple relation:

y(n) = x(n-1) + a y(n-1)
and has the impulse response:
h1(n) = 0 nf0
a n>y0
See fig 4.53.
The second system is described by:
y(n) = x(n-1) - a4»x(n-5) + a y(n-1)

Inserting x(n) = 5(n) we find (see fig.4.3)

h2(n) = o n<o
2P 1¢n ¢4
>

=]
E\Y4

(4.5)

(4.6)

(4.7)

(4.8)
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The fact that hz(n) = 0 for n> 5 results because for n=4 the contri-

bution from the "forward path" (-a4 x(n-4))and the "feedback path"
(a.y (n)) cancelled exactlys This exact cancellation requires that
the arithmetical operations are performed with infinite precision

If an error was made in either of the two paths, and the cancellation
therefore was not exact, the residue would circulate in the feedback
path and the output would differ from zero also for n>4,

From this it can be remarked that recursive struc-

tures that realize a finite impulse response are Very sensitive
unless only multiplications with integer factors have to be per-
formed.

A point that we have ignored hitherto are the initial conditions. There
does not exist a digital filter that operates already since the be-
ginning of time, and consequently every digital filter has been start-
ed at some time. Until now we have always assumed that the contents

of the registers (delay elements) were zero until some value was put
into it by the normal signal flow. This assumption requires that in
the actual realization precautions are taken that assure that the
filter always starts with empty registers.

There is in this respect an important difference between recursive

and non recursive digital filters. If a non recursive filter with an
impulse response of length N is started with non zero contents in the
registers, then after at most N sampling periods the influence of
these initial conditions has disappeared and the filter behaves Just
as if it were started with zero registers. Therefore special pre-
cautions to reset the registers in general are not required in these
filters.
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In a recursive filter the situation is quite different,

If such a filter is started with any of the registers having a

non zero content, then this may result in an additional response
that can propagate in the feedback loop(s) of the filter. If the
filter is stable such a transient response will eventually decay
and converge to zero It should be noted, however, that even if
the filter has a finite impulse response, the transients may have
infinite duration As an example consider the transient response
resulting from a non zero value in the x(n-4) register of the sys-
tem in fig 4 2 b Assume the filter to be started at n=0 with:

x(-4) = 1
x(-3) = x(-2) = x(-1) =y(o) =0
and without input,(x(n)=0). Then from eq (4.7) it
follows:
y(n) = (0 n €0
n-5
-a n>/1.

When determining the response of a recursive d.f. it is therefore
very important to specify also the initial conditions The total
response will consist of the sum of the response to the input signal
assuming zero initial conditions and the transient response resul-
ting from the initial conditions assuming no input signal.

Finite impulse response filters

Any digital filter that has an impulse response of finite duration
is called a finite impulse response filter. Denoting the "length" of
the impulse response by N+1 we thus have (assuming causality)

h(n) = 0 n<0, n>N (4.9)

Therefore the system function of such a filter is given by:

N N
H(z) = 2 _ h(n) 277 (4.10)

n=0
which may be factored according to:
N
N
f(z) = n(0) TT (= - z,) /= (4.11)
n=

From eq.(4.11) it can be concluded that H(z) has all its poles
at z = 0.
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We have already shown that an important subclass of FIR filters
are the non recursive filters. And more precisely every finite
impulse response can be realized by a non recursive filter.
From eq.(4.10) two non recursive structures can be derived. The
first realization is a transversal filter, and is designated as
direct form structure (see fig.4.4)

x (n)

T T e T

h,,7 h7 by. Au
: Y > y /)

e I Tl

Pig., 4.4.

The second realization can be derived from eq.(4.10) by defining
the interval variables:

uo(n) = hy x(n)

u, (n) hN4§(n) +w _, (n-1). k=1,---,N.

y(n) = ug(n)

It is not difficult to show that the corresponding system function
satisfies (4.10) (Do it !)

The corresponding filter realization is called the transpose direct
form because it can be obtained from the direct form by reversing
the signal flow graph. It is shown in fig.4.5.

I(n.)

AA,7 Ay, , v

— T —~+ T rF--""- +H T H+
u, (n) u,(n) a,.,(n) 4y, (n) =Y

Fig.4.,

Both direct realizations utilize exactly N registers and therefore
they are called canonic realizations. Both realizations require N+1
multiplications and N additions to compute a new output sample,

and thus they are computationally equivalent.
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Now let us reconsider the impulse response of eq.(4.8). As
stated above this impulse response can be realized by a transversal
FIR filter, and the circuit of this filter is shown in fig.4.6.

() T T T

y(n)

Fig.4.6

As can be seen it requires 4 delay elements, and 3 multiplications
and % additions to compute an output sample. It realizes the same
impulse response, and consequently the same transmission function
as the structure of fig.4.2.6 which has 5 delay elements but this
latter structure only requires 2 multiplications and 2 additions
to compute an output sample.

The difference between the two structures is that the recursive
filter utilizes the peculiar properties that are present in the
form of the impulse response i.e. that consecutive samples are
closely related; in fact the impulse response is determined by
only 2 parameters: the coefficient a and its length N.

In many applications, and especially in data transmission, it is
desirable to use filters that have a linear phase which means a
constant group delay. In this way, signals in the passband of the
filter are reproduced exactly at the filter output except for a
delay corresponding to the slope of the phase. It can be shown
that a linear phase is obtained if h(n) satisfies the symmetry
relation:

h(n) = + h (K-n) n=0,1,2,~~= (4.12)

for some integer K.

Since for a causal system h(n) = 0 n<o, eq.(4.12) requires

h(n) = o n>Xk and thus a linear phase can only be obtained by

an FIR filter which is either symmetrical or anti-symmetrical
around the half of its length.

The linear phase property is quite important so that almost all
FIR filters that are used to date are symmetrical. We will come
back to this point in section 6 when discussing approximation pro-
cedures for FIR filters.
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4.4. Infinite impulse response filters

The impulse response of a stable filter will converge to zero
(see proposition 3). This means that any desired impulse response
h(n) can be approximated arbitrarily good by a FIR filter with
response hN(n) such that

hy(n) = h(n) O¢ng¢N (4.13)
0 n’ N

by taking N sufficiently large. But such a filter will require N+1
delay elements and N+1 multiplications. and N ad‘ditions to com-

pute an output sample.

For large N the complexity of such a solution may become prohi-

bitive.

Especially filters with high Q-factors (which means that they have

a narrow transition band and large stopband attenuation) have im-

pulse responseshhat require a large value of N to be sufficiently

approximated, and such filters can more economically be realized

by a recursive structure.

T+ will be clear that not every infinite impulse response can be
realized. A digital system constructed from delays, multipliers
and adders as explained in section 3 can realize system functions
of the form:

M -k
a,_ 2
~ =
Ty = Nzl o x=0 (4.14)
N(z) N -k
> P ®
k=0
Now for an arbitrary impulse response h(n) the corresponding
system function is
~ o n
B(z) = 2 _ h(n) =z (4.15)
n=o

Therefore the impulse response can only be realized if the infinite
sum in (4.15) can be brought into the form of (4.14). This requires
certain relations to exist between successive values of the im-
pulse response, just as was the case with the recursive realiza-
tion of the FIR discussed in section 4.2.

From the discussion in section 3.7 it follows that responses of
the form:

N n
Eﬁk p,  u(n) (4.16)

can be realized (where p,_ may be real or compley but if it is
complex, then a pj must exist such that Py =D, » A = A %),

1° 7k
The filter will be stable if ‘pk|<1 for all k.
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As for the FIR case the impulse response does not uniquely
specify the structure. We will now briefly discuss some possible
structures that may be used to implement IIR of the form (4.16).
We start in this case from the system function.

Noting that

H(z) = Y(2)/X(z2)
_a direct realization follows from eq. (4.14):

). 2 b, 2 = K(2). =
Y(z). 2 Db,z = z2). a, 2
(2)- 2 % k=0 *

-k

or N M
= b y(n-k) = X ay x(n-k)
k=0 k:o
thus
N b M a
yn) = - Z k. y(nk) + & K x(n-k)  (4.17)
k=1 b, k=0 b,

The corresponding structure is shown in fig.4.7.
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fig.4.7.
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I+ is called the direct form 1; and requires N+M delay elements
and N+M+1 multipliers and N+M adders to compute an output sample.
We see that this system consists of a cascade of two parts. The
first is a non recursive part which attributes the zeros of the
system function. The second a purely recursive part that forms the
poles. Since we are dealing with a cascade of linear systems we

may reverse the order of the two subsystems resulting in
system of fig.4.7a, where it is now assumed that M=N.

the
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fig.4.7a
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It will be clear that the two chains of registers contain exactly
the same information and can therefore be combined as shown in
fig.4.7b. This structure is referred to as the direct form IT

and is canonic as concerns the number of delays.

Both the direct form I and II have a
obtained by reversing the signal flow

transpose which is a structure

__r__R___

output becomes input and

vice versa, adders become nodes and vice versa). There exists a
theorem stating that a structure obtained by transposition of a
structure of a digital system has the same system function as the
original system.It may be instructive to try to derive the trans-
pose direct form I and II structures.

Two more structures for realizing recursive filters are of im-

portance. The firs
rewriting the system func

again N=M)

H(z) = 0.

t is the cascade realization and is derived by

N

k=1

;“t (z-p,)

k=1

TC(Z—Zk)

tion as indicated in eq. (3.12) (assuming

N (1-zkz—1)
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As stated before 2 and p, are either real or there exist 29 and Py

x
such that Zl=zk ’ p1=P1*. Taking together these complex conjugate

poles and zeros we obtain

-1 -1 -2
1=-2z. 2 1+a,.2z +a_z
~ 1k 2k
Wy = 10 | —2—=|. TT (4.18)
real 1-p, 2 complex ] b -1 b 2"
poles, conjugate = Dqy? - Y2k
zZeros poles,zeros

o
H(z) in this form can be realized by a cascade of first and second
order sections. (see fig.4.8).

~
A ~/

yem K2 s 0 e K

Each of these sections realizes one real or two complex conjugate
poles and one real or two complex conjugate zeros. They may be
realized in any of the direct forms previously discussed.

There is a certain amount of arbitrariness in the decomposition
according to eq.(4.18) and thus in the structure of fig.4.8.
First in the combination of the poles and zeros,

secondly in the ordering of the various sections. Whatever com-
bination and ordering is chosen, the resulting filter will realize
ﬁ(z), i.e. the linear behaviour of all such filters will be i-
dentical.

However, as concerns the effects

of the finite representation of the coefficients and the signals
different orderings and pole-zero combinations may result in en-
tirely different behaviour and it pays in general to look for an
optimum.

Still a different structure results from a partial fraction ex-
pansion of H(z) as in eq. (3.13) . Again combining complex con-
jugate pole pairs, such a decomposition results in

-~ a', a' +a' Z-‘I
Hz) =a + & —k— 2 oKk
real 1_pkz' complex 1-b -1 _ v 2

z
poles poles 1k 2k

-Z
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In this form H(z) can be realized by a parallel connection of first

and second order sections as shown in fig.4.9.

2(n) AN
17 > y(n)

>

~
Hl

L

Each of the sections H. realizes one real or two complex conjugat
poles. The zeros are o%tained by combining the output signals
of the various sections, thus by a compensation.

There is a countless number of other structures that has been pro-
posed for some reason or the other to realize recursive digital
filters, but they will not be discussed here.

Digital oscillators.

In section 1 it was mentioned that a digital sine oscillator
can be used for spectral analysis of digital systems. Such an
oscillator can be made with the structure of a 2nd order digital
filter by inserting appropriate coefficients.

To see this we can use the well-known goniometric formulas

2 cos (E%E). cos(ggg)

cos o + cos fB

1l

sin o + s8in B = 2 sin (ggg) -COS(EEE )
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Inserting a = (n+1) 6, B = (n-1)0 we get

cos (n+1)6 = 2 cos né. cos® - cos (n-1) ©

sin (n+1)6 2 sin n® cos6 - sin (n-1) e

Therefore if we want to obtain y(n) =A cos né we can get it from
a circuit that satisfies:

y(n+1) = 2 cosé. y(n) - y(n-1)
starting it with initial conditions
y(o) = 4
y(—1) = A cos &
The structure is shown in fig.4.10 and is equal to the recursive

Rart of a 2nd order section as discussed in section 4.4 of which
H(z) has denominator coefficients by = 2 cos 6, b, = ~1.

2
Ig(n)
+ > T

T

yd
\‘€,=26039

fig.4.10

The sine wave can be obtained by starting the system with other
initial conditions. (Which ?)
The frequency can be "tuned" by changing the coefficient b1:
b
@ = arc cos ( E})'

(A different way to derive this structure is to start from
eq.(1.18) with p = 1). '

Different structures can be obtained by using different goniometric
relations. A structure that delivers a cosine and sine simultaneously
results from:

cos(n+1)@ = cos nO. cos® - sin ne. sind

sin(n+1)6 = cos n6. sin6 + sin n6. cose

with the structure shown in fig.4.11.
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Sine oscillators can be used to deliver the carrier in modulators.
Frequently in modulation schemes both the cosine and the sine are
needed to obtain in-phase and gquadrature components. In that case
the structure of fig.4.11 can be used. It has the disadvantage
that 4 multipliers are required which makes it a rather complex
circuit.

cos n 6O
T D———» -+ —>
\

A= cos &

B.—. S(.he

N

S¢n n O
T }n>————>+ >

fig.4.11

Sometimes it is possible to choose the sampling frequency fs and the

carrier frequency fc such that

Z

fc/fs =

with some integers N and K. In that case the carrier

cos(nec) = cos(n.2n fc/fs) = cos(n.%.2n) is periodic with

period N (see section 1.).

It is then possible to store the N values (or less if certain
symmetry relations exist) in a memory, for example a ROM. For
moderate values of N this requires substantially less hardware
than the oscillators discussed above.



