3, Linear shift-invariant discrete systems

A discrete system H is an (implementation of an) algorithm that
maps a discrete input signal x(n) into a discrete output sigal y(n)
called its response. The actual realization of this system may
have many different forms; it may be a set of TTL gates, a micro-
processor with suitably programmed ROM, or a software package in

a general purpose computer. For the description that follows the
nature of the implementation is not of importance, but the nature
of the algorithm is. We will confine ourselves for tiue wowent to

linear shift-invariant systems to be defined now.

Let x(n), x1(n) and x2(n) be discrete time signals that are applied

tc a discrete system H, and let this system respond to these signals
by producing the output signals y(n), y1(n) and y2(n), respectively.
This will be denoted by:

x (n) <>y (n)
x, (n) =5y, (n)

x,(n) =5 y,(n)

The system H is linear if and only if for every Xy and X, and every

a1 and a2 we have that

a1x1(n) + a2x2(n) :N a1y1(n) n a2y2(n) (3.1)

From the special case x1(n) = x2(n) 2 0 it follows that for all
linear systems

x(n) = 0 - y(n) = 0 (3.2)

which means that a linear system cannot generate an output signal
without being excited.

The system H is shift (or time) ~ invariant if for every x(n) and n

x(n-n_) == y(n-n_) (3.3)

which means that the system is invariant under a shift of the time
axis,

As an example three simple digital systems are shown in fig. 3.1
consisting only of a multiplier, and it can be seen that depending
on the particular input signals of the multiplier the system can or
cannot be linear, and shift invariant.



x(n)

> —> y(n) = x(n) . cos n g
(g)%k. 271)

T cos (ng)

linear, but not shift invariant

x(n)

> y(n) = x°(n)

non linear, shift invariant

x(n) R > y(n) = a . x(n)

linear, shift invariant

Pig., 3.1.

In this section we will deal only with linear shift-invariant systems.
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Flements
The systems that will be encountered can all be constructed from
the following three elements.
gl adder.
x4(n)
___?‘
x,(n) + = y(n) = x,(n) + x,(n)
EE——

b) (constant) multiplier.

x(n)

y(n) = a . x(n)

c) unit delay.

x(n)

s T b yn) = =x(n-1)

Difference equations

A system consisting of these elements can always be described by a
set of difference equations. As an example consider the system in
fig. 3.2. By inspection we can write:

v(n)
y(n)

Strictly speaking a difference equation should contain entities of
the form & x(n), Ay(n), etc. where A x(n) = x(n) - x(n-1),

Ay(n) = ¥(n) - ¥(n=1). It is not difficult to bring eq. (3.4) in
such a form (do it!) but for our purpose it is not necessary, and it
is common practice to call equations of the form (3.4) difference
equations as well.

a.x(n) + b.x(n-1) + y(n)
(3.4)

¢ . v(n-1)
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x(n) . x(n-1)

v(n)

> {— > -+ > T ———9[:>»—1——ji£b)

Fig, 3.2

Eqns (3.4) enable us to determine the output signal yéng for a given
input signal x(n). Let us, for example, take x(n) = &6(n), and assume
v(n) = 0 for n < 0. Then we find:

y(n)

0 n<o
~—

v(0)
v(1)
V(2)

a——>y(1) =a.c

b+a.c—>y2)=(b+a.c)ec

(be + acz)c

be + a02 —> y(3)

]

¢ ac™ —— y(n) = be™1 4 ac® ny 2

v(n-1) = be"™?

This response to the impulse excitation has been given the name
impulse response and it is a very important characteristic of a
discrete system.

3.3, The impulse response

To see how important the impulse response is, consider again the
system in fig. 3.2. With some trouble we have found the response
for the case x(n) = 6(n). But what to do if it is excited by a
different input signal. Do we have to start all over again ?

Let us denote the impulse response by h(n). Then clearly from
the fact that we know the system to be linear we know that
excitation with x(0) . 8(n) must result in the response
y(n) = x(0) . h(n).

Moreover, since the system is shift invariant the response to
6(n-k) must be y(n) = h(n-k), whatever value k may have,
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Now recall eq. (1.7) which states that each x(n) can be written
as a weighted sum of shifted unit impulses. Then because of the
linearity and shift invariance it follows that

8(n) S h(n)

8 (n-k) S h(n-k)

x(x) &(n-k) —=—> x(x) h(n-k)

© " o0

S x(x) 8(n-x) —— 3 x(k) hin-k)

k==-00 k=-m

x(n) == y(n) = x(n) = h(n) (3.5)
which means that the response to an arbitrary input signal x(n) is
the convolution of this signal with the impulse response of the

system.

To obtain some experience with this type of computation determine
for the system in fig. 3.3 the impulse response, and the response

x(n) ;.
- T - 90

4)9

la) <1

Pig. 3.3.
to x(n) = A cos n 6.

Apart from the fact that it enables us to compute the response

of the system to arbitrary input signals, the impulse response
provides us with some additional information that will be discussed
now.

3.4, Causality

An important aspect of all physically realizable systems is
causality.

Definition. A system is causal if and only if the response at
any particular time n is not dependent on input signal values
occurring at times later than n.

With this definition it is not difficult to imagine why causality
is so important. It will take some time to figure out a realistic
system that can respond on input signal values that still have to
be applied to it. (They do exist, however; think of a magnetic
recording system where the magnetic head is already "sensing" the
magnetic field produced by parts of the tape that are close to it
but not yet have reached the head.)
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Proposition 1. A linear shift-invariant discrete system is
causal if and only if its impulse response is zero for n < O.

Proof. Causality was defined as the property that y(n) is only
deternined by x(k) with k <n.

Now let h(n) # O for some n_ < 0. Then with the specific input
signal x(n) = x(0) 8(n) we find y(n) = x(0) . h(n) and in
particular y(no) = x(0) . h(n°)¥ 0 which means that at no-< 0

the output is determined by x(0), which is a value that at time n,

has not yet been applied to the system and thus the system is
not causal,

On the other hand let h(n) = 0 n < 0, then for any input signal
x(n) the response is

S h(k) x(nk)

k=-00

y(n)

(o8]
E:: h(k) x(n-k)
k=0

]

and clearly y(n) is only determined by the present and past
values of x.

The notion of causality is closely related to that of realizability.
A non-causal system cannot be realized for real-time signal
processing. It should be kept in mind, however, that in case of
off-line processing causality is not really a problem. In that

case even a time reversal can be accomplished which surely turns

a causal system into a non-causal one.

3.5. Stability

A second important point of which the impulse response can provide
the information is the stability.

Definition. A linear shift invariant discrete system is stable if
and only if for every bounded input the response is bounded too:

v x(n); |x(n)] < m, —Eo y(n) 5 |y()| <

Proposition 2. A linear shift invariant discrete system is stable
if and only if there exists a number M, such that

& [n(n)l < My (3.6)

n=-o
Proof., First assume that 2::‘h(n)] does not converge. Then take
n
1 h(-n) >0

x(n) = sign (h(-n)) =
-1 h(-n) <0
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This gives:
o0 o) \
y(0) = ¥ =) n(x) = T [n(x)]
k=~-00 k=-00
which by assumption is not bounded, thus proving the "only if" part.
Next assume (3.6) to be satisfied. Then from
) e 9)
y(n) = ) x(n-k) h(k)
k==00
it follows that:
0
ly() < T x| |no)]
K==w
and for every x(n) with lx(n)l < M,
o0
[y)f <my S [ne)] < w0
k ==
which completes the proof.
Stability is not only important to assure that the output will be
bounded, but also guarantees that the output will vanish if the
input is set to zero from some time on, which means that transients

will always have a decaying character.

This can more formally be expressed in

Proposition 3. If in a stable linear system {x(n)l < Mx and for

nS>n x(n) = 0 then lim y(n) = 0.
o
n=—>Co

Proof. Consider
0
y(n+N) = T__ (k) x(n +N-k)
k=~00

= 2%% h(k) x(no+N—k)
k=N

Then

|7(ngW)| < M, S ()]
k=N

e}

and since H is stable we have that 2 ’h(k)\ converges to a
k==00

finite value from which it follows that
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lim }fi ‘h(k)\ =0

N—0 k=N

Therefore lim 5y(n +N)} = 0 which means that
o
N—>c0

lim y(n) = 0 .
n—roo

Some examples of causal and non-causal, stable and non-stable
impulse responses are given in table 3.1.

causal | stable h(n)
yes yes 2™ u(n)
yes no 2" u(n)
no yes o™ u(-n) + 27 u(n)
no no 2™ u(-n)
Table 3.1.

Transmission function

Since the impulse response h(n) is a discrete function we can take its
FTD 4o obtain the function H(6):

H(0) = T h(n) e~ . (5.7)

=-00

This function will be called the transmission function of the system,
since it provides an immediate measure of how a sinusoidal signal is
transmitted through the system. To see this let us compute the response
of the system to the signal

x(n) = A . cos (n6 + g¢) .
This response is given by:

y{n)

x(n) % h(n)

A Z%%: cos ((n-k) 6 + ¢) h(k)

k==

. (o0} .
=.% eJ(ne + ‘P) : e_Jkg h(k)
k=-00

. e 0] 3
A - o jke
+ _5 e J(n + €P)k§=—w e h(k)
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and a comparison with eq. (5.7) gives:

) = A ej(n@ + @) H(e) + % e-j(nG + @) H(—G)

y(n >

Since h(n) is assumed to be real valued it follows from table 1.1
that H(-6) = H(8) = |H(e)| &7 27€ H(®), mherefore

y(n) = A.‘H(G)] cos (n6 + ¢ + arg H(8)) (3.8)

and. we see that |H(8)| describes the attenuation at the relative
frequency © and arg(H(®)) the phase shift between the input and the
output signal in case of sinusoidal excitation.

For a more general type of excitation the transmission function
determines the output spectrum by the relation:

Y(6) = H(8) . X(0) (3.9)
which follows immediately from (5.5) and the properties of the FTD.

From (%.9) the two equations

fy(e)| = |u(e)| |x(0)]
arg Y(6) = arg X(e) + arg H(®)

can be derived, and we see that [ H(8)| describes by how much the
input spectrum is attenuated, whereas arg H(6) gives information
about the phase shift.

For a given system there are three ways to determine the transmission

function:

1) from the impulse response by means of eq. (3.7)

2) from excitation with a cosine using eq. (3.8)

3 from(the)differential equations applying properties of the FTD and
eq. (3.9).

This will be illustrated by means of the example of fig. 3.2.

ad 1

For the system in fig. 3.2 we have determined the impulse response
to be:

h(n) = (0 n £0
ac
b o1 +act n > 2

Therefore with eq. (3.7) we find:
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E%E n-1 ~-jné
_ -je (b+a c) ¢ e
H(6) = a.c e + 555
y -j20
=a.c 69 4 (b+ac) 8 - e < 1
-ce
- a e 30 b e-jzg
1 - c ed®

ad 2

Let x(n) = A cos n ©. Then x(n-1) = 4 cos (n-1) 6. We know that
for this excitation y(n) = B . A cos (n® + ¢) where B = |E(0)],
and ¢ = arg H(6).

Moreover, since; y(n) = ¢ v(n-1) we have

v(n) = % A cos((n+1) e + @) = % A cos (n6 + ¢ + e)

From eq. (3.4) it follows that:

E . Acos (& + ¢+ 0)-B.Acos (n6+ g) =

A (a cosne+ bcos (n-1) 8)

or
B [COS n 6 cos (@ + ©) - sin n 6 sin (@ + 9)]
-Bc (cos n 6 cos p - sin n 6 sin @]
=c . [a cosn 6 + bcosn6ceos 6+ Dbsinn O sin G]
Thus

cos n @ [B cos ¢ cos & - B sin ¢ 8in 6 -~ Bc cos 9 - a ¢ - b c cos é

= sin n © [B sin g cos © + B cos g 8in © = B ¢ sin ¢ + b ¢ sin G]
This latter equation can only be satisfied for all n if

Bcos g (cos @ -c) -Bsin g . s8in @ =ac + b c cos 8

B cos g sin © + B sin ¢ (cos @ - ¢) =-b c sin @

These two equations have the solution:

1

1 + 02 - 2 ¢c cos ©

[}

L]

B cos ¢ .(cos 8 -c)(ac+ bec cos 8)

Re[H(e

il

1 +c¢” -2 c cos ©

T (H (6

]

sin © . b ¢ s8in 6

BSing)

From these equations B = |H(8)| and ¢ = arg H(@) can be derived easily.
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We see that this computation is rather cumbersome even for such a
relatively simple network. This method for determining the
transmission function is therefore in general not very appropriate.
However, it should be kept in mind that this method does enable a
technigue for measuring H(@) i.e. exciting the network, of which

the precise siructure then needs not to be known, by x(n) = A cos n &
and measuring the output amplitude and phase.

ad 3
Applying the Fourier transform to eq. (3.4) gives:

a X(e) + b X(e) e~ 9

-3

v(e)

n

+ Y(8)

Y(e) = c V(e) e

from which it follows:
¥(8) (1 - ¢ 99 = (ac e 4+ b c e79%9) x(o)

Thus

a o 98 + Db o320

-6

e

Y(6) = x(6) . ¢ = x(e) . H(®)

-cC
Clearly, this is a very simple and efficient way to determine H(®)

analytically and can be applied to rather complex systems without
much difficulty.

The system function

The system function of a discrete system H is defined as the
z-transform of the impulse response:

H(z) = > n(n) 2 " (3.10)

This function is related to the transmission function by eq. (1.22):

H(e99) = H(6) (3.11)

which means that the transmission function is equal to the system
function evaluated on the unit circle of the z-plane.

Values of z where H(z) = 0 will be called gzeroes of the system
function, and values where H(z) = oo will be called poles.

As was already remarked before, we will only deal with rational
functions of z, and these functions are, except for a gain factor «,
fully determined by a specification of their poles

N M
{z = P;ﬁk=1 and zeroes gz = zkl et
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(3.12)

The coefficients a., and b. are directly related to the poles and zeroes
of the system function. '

In all cases these coefficients ay and bj will be real valued, which
implies that poles and zeroces are either real or they occur in complex

conjugate pairs.

It is possible by a partial fraction expansion of H(z) to rewrite
eq. (3.12) in the form:

N A
f(z) = 2_ k2 (3.13)
k=1 1 - Py 2

(where it is assumed that N = M). After a comparison with eq. (1.16)
we see that the corresponding impulse response is given by:

)8
h(n) = E;% Ay - pkn . uln) + A, 5(n). (3.14)

From eq. (3.14) it is possible to determine whether or not the syster
that has this impulse response will be stable. For this we nust
determine

0 (e8] N n
Y Inm| =2 {2 A p *ASM

n=-o n=0 k=1

IN
o Ay
=
>
=
o
=
=

N
>
+
M=
>
w
T
%
=

I

=3
(o]

+

>
v
o

=
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pempy

k=1 n=0

N ©
o] * 2 M| 25 [%]

N A
=[] S
ol " =1 ¥|Py
if ‘pk‘ <1fork=1,2, ..., N.

Thus the system will be stable if all poles have a magnitude less
Than one, which means that all poles lie inside the unit circle
z! =1,

If, on the other hand one of the poles lies on or outside the
unit circle, then for this pole

lim lpk\n # 0

n—z @

o0
which implies that ) _ \h(n)\ — .
n=0

Therefore we can conclude that a necessary and sufficient condition
for stability of a discrete system is that the poles of the system
function all lie inside the unit circle of the z-plane.




