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DIGITAL SIGNAL PROCESSING

1. Digital signals

.

Introduction

Formally a digital signal is defined as a function of a discrete
parameter, and of which the function values are taken from a

finite set of values. It can therefore be denoted by x(n) where

n is a variable assuming integer values., Although such a

definition is mathematically both correct and sufficient, the
engineer mostly likes to have an interpretation of the term

signal that gives him more feeling with practice. In most analogue
signals the independent variable is denoted by t and is implicitly
assumed to stand for time unless otherwise stated. Also for digital
signals it is often customary to insert some notion of time into

the formalism by denoting the signal values by x(nT) where T is

a quantity (with dimension seconds) that stands for sampling

period, which is the time between the "occurrence" of two succeeding
signal values {often then denoted by "samples"). Although the
interpretation of a digital signal as a sequence of samples
occurring at regular periods of time is quite convenient in practice,
we will use throughout the notation x(n), y(n) etc. rather than

x(nT) or y(nT), and keep track of the corresponding sampling period T
by separately mentioning it where necessary.

Having elaborated on the first characteristics of a digital signal,
i.e. its time-discrete nature, something must be said also about

the finite set of possible function values., The use of digital

signals has emerged from the possibilities of using digital computers
for processing of signals. Such a computer operates on numbers,

mostly encoded in a binary format, which means that every number is
represented by a string of O's and 1's. The length of such a string is
fixed and finite. Nowadays, resulting from the advents of solid state
technology, very small special purpose hardware devices (possibly even
on a simple integrated circuit) have been developed to do the

job. In these machines the length of the strings of 0's and 1's that
represent the numbers is very limited. This length, often designated

as wordlength, is typically 8, 12 or 16 bits, and thercfore only

8
2, 212 or 216 different values can then be assumed by the number

that is represented by such a string of O's and 1's. This finite
wordlength often is a complicating factor in the analysis of digital
systems, and usually what one does is first neglecting this guantized
character of the digital signals and analyzing the system zzasuming
the signals to be discrete in time but not quantized in amplitude.
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Most theory treated in textbooks is therefore devoted actually

to discrete-time signals rather than to digital signals. Although

this may give some confusion in the use of the terms digital
signals and digital systems we will follow this convention, and
actually discuss discrete time signals
and systems, that is, treating digital signals as if they may
have any amplitude value, and not bothering about their actual
representation as "words" consisting of strings of Ots and 1t's.

In a later stage of analysis one nevertheless has to cope with
the, finite wordlength of the signals in some way or another.

Some of the effects caused by this finite wordlength are discussed

in appendix A.

Representation in the time domain

A pictorial representation of a digital signal is given in fig. 1.1.
Where convenient we will use a double indication on the "time"-axis,

i.e. indicate the order number n and the corresponding sampling
instant nT.
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FPig. 1.1.

Unless otherwise stated it will always be assumed that the digital

signal is defined for n ¢ (-0, ® ). A digital signal is said to
be of finite duration if for some integers N1 and N2.

x(n) = 0 n < N,
n_)N2
(Note that the signal is defined for all n,)
The unit impulse function §(n) is defined by:
§(n) = 1 n=20
0 n#0

It is depicted in fig. 1.2, and clearly is of finite duration.

(1.1)
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The unit step function of fig. 1.3 is defined by

u(n) = (0 n <0
(1.2)
1 n ;,O

and is not of finite duration.
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Fig- 1-50
A discrete sinusoidal signal has the form
x(n) = A sin (n6 + g¢) . (4> 0) (1.3)
A is the amplitude and ¢ an arbitrary phase. 6 is the relative
frequency and will play an important role in the analysis of
digital systems.

A digital signal is said to be periodic of some period length N
if N is the smallest integer for which

x(n+N) = x(n) Y n. (1.4)

The first observation to be made is that if x(n) is periodic and not
identically zero, then it cannot be of finite duration.

Now let us try to determine whether or not a sinusoidal signal is
periodic. From (1.3) and (1.4) we have that

A sin((n+N) 6+9) = A sin (né + ¢)
which can only be satisfied for all n if
N 6 =k.,2n

or

k
6 =5 . 2n (1.5)

where k is an arbitrary integex.
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Therefore we can make the following observations

1) Not every sinusoidal digital signal is periodic.
It is periodic only if its relative frequency is a rational
fraction of 2m.
2) If the signal is periodic, and 9 is thus given by (1.5) then the
period may be extremely long even for not too small values of
the relative frequency. Also a small change of the frequency may
drastically change the period. As an example consider two signals
with relative frequencies
1 7
91 =75 - 27, 92 = 15
respectively(see fig. 1.4). Their periods are 6 and 45 respectively.
3) If a sinusoidal signal is periodic, then all of its sample values
may be less than the amplitude. Consider, for example the signal
1

x(n) = 10 . sin (n . % 2M

. 27

which is periodic with period length N = 6 and has amplitude 10.
It only assumes the values O and # 5¢3 (see fig. 1.4).

If, on the other hand, the signal is non-periodic, then it is
always possible to find a sample x(n) that has a value that is
arbitrarily close to the amplitude A.
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Fig., 1.4.
4) Consider two sinusoidal signals with relative frequency
8, = 6, 92 =25 - 0 , where 0 < 6 <1

and the same amplitude, thus

x1(n) A.sinn 6, = A.sin n 8

xz(n) = A,sin (n (2n - ©)) = -A sin n 8
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Except for the sign these two signals are equal from sample
to sample:

x1(n) = -x2(n) V n.
Similarly consider a signal with rel.freq. 8, = 2T+ 6
xa(n) = A sin (n (2n + ©)) = A sinn @

Also x,(n) is identical to x1(n). We see that signals with
differént relative frequency can nevertheless be identical

and are therefore indistinguishable. In fact we have shown that
with every 6 outside the interval [O,n] there corresponds a &!
inside this interval such that the corresponding sinusoids are
indistinguishable. Therefore without loss of generality we may
assume that the relative frequency is always in the interval

0 <6 < (1.6)
A digital signal can be shifted in time (delayed or advanced) by
changing the index number.

x(n-k) is x(n) delayed over k samples
x(n+k) is x(n) advanced by k samples.
As an example consider a shifted version of the unit impulse.
See fig. 1.5. It will be clear that if we multiply an arbitrary signal

x(n) with this function we obtain a signal that is zero everywhere
except at n = k:

y(n)

x(n) . &8(n-k) = x(kx) 8(n-k)
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Doing so for all possible shifts k the original signal can be

restored by summing the products so obtained. Thus:

x(n) = Efi:- x(k) 6(n-k)

k==

Of course if x(n) is of finite duration the infinite sum in (1.7)
may be replaced by a finite sum, extending only over the interval

where x(n) # 0.

Eq. (1.7) is a special form of a convolution.

Generally the convolution of two sequences x(n) and y(n) is

defined as:
w(n) % y(x) =%~ x(x) y(n-k)
k=-00

and it is a simple exercise to prove that (commutativity)
o0

x(n) ® y(n) = y(n) ® x(n) = 2 y(k) x(n-k)
k==
Another property of convolution is that it is associative:

(x(n) * y(n)) * z(n) = x(n) % (y(n) ® 2(n))

= x(n) # y(n) = z(n).

Representation in the freguency domain

(1.7)

(1.€

(1.9)

(1.10)

A frequency domain description, resulting from Fourier transformation
is very convenient for analyzing linear systems of all nature, and
is therefore quite popular. The conventional Fourier transformation
for continuous (time) signals (FTC) will be assumed to be well known.

From the previous paragraphs it can be concluded that a number of
fundamental differences exist between discrete-time (or digital)

and continuous time (or analogue) signals. Notably are:

1) a discrete time signal is not defined at instants between two

samples.

2) Only (relative) frequencies on a finite interval 0 £ 6 < n need

to be considered.

To obtain a frequency domain, or spectral description we will use

the Pourier transform for discrete (time) signals (FTD) which takes

account of these peculiar properties of discrete signals.

Let x(n) be a discrete time signal. Its Fourier transform, also

designated as spectrum, is defined by:

00

x(8) = 5 x(n) e”I"°

=-00

(1.



- 1.7 -

The inverse transform is given by:

x(n) = %; J' x(8) 9° ao (1.12)

This transform has already been introduced in the semester I course
on Signal Analysis (section 9.2) and therefore we will
be very brief on it here.

A number of the most important properties are given in table 1.1
(page 1.8).

From (1.11) it follows that the spectrum of a digital signal is

periodic in 6 with period 2=. This reflects the fact that sinusoidal
signals with relative frequencies that are 21 apart are indistinguishable.
(The interval is 2n rather than n since

39, ¢79°

cos 6 = >

and thus if 0 ¢ 6 < n complex functions e? with -= < ¢ < n have
to be considered.)

In eq. (1.12) the integration interval is (-m, 1), but any other
interval of length 2n could have been taken. Such an interval will
be denoted as a fundamental interval of the spectrum.

Note. In general the fundamental interval will coincide with one
period of the spectrum. However, we will encounter signals of which
the spectrum will have a period less than 2n i.e. 2n/k. In that case
the fundamental interval will contain k periods of the spectrum. The
integration in the inverse transformation must always be performed
over a fundamental interval, however.

A number of examples of discrete signals and their spectra are given
in fig. 1.6 where only the fundamental interval (-n, n) of the
spectrum is shown (this convention will be adopted throughout).

It may be instructive to try to derive some of these Fourier
transform pairs.



Table 1.1

Properties of the FTD

time domain

: x(n)

real

x(n)

even

odd

: x(n)

operation
time shift

convolution

product

"frequency
shift"

"modulation™

]

x"(n)

x(-n)

-x(-n)

time domain

- 1.8 -

frequency domain

nsymmetrical: X(8) = X*(-6)

o)
real : X(8) = x(0) +2 2_ x(n) cos né
n=1

®
imaginary: X(8) = 23 3 _ x(n) sin né
n=1

frequency domain

x(n-k) x(e) & *°

x(n) = y(n) x(e) . Y(e)

x(n). y(n) x(e) x ¥(0) = 3= [ x(§) ¥(e-§)ak.
Jné

x(n) e ° X(e - 90)

x(n) . cos n 6, % [?(G - Go) + X(e + Go)]

x(n) . sinn 6 %3 [k(e - 9,) - X(e + eo)}
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The z-transform

For completeness, and because we will need some of its properties
later on, we will repeat here the definition of the z-transform.
For a more comprehensive treatment see the course notes on

Signal Analysis, section 9.

‘The z-transform of a discrete-time signal x(n) is defined Dby:

R(z) = 5 x(n) 27" (1.13)

where z is a complex number.

The inverse transform is given by:

§ X(z) 2271 g (1.14,
C

1
x(n) = 21

where C is any closed contour in the region of convergence that
encloses z = O.

Fortunately we will never actually use eq. (1.14), it is merely
stated for sake of completeness. In practice we will only
encounter z-transforms of rational functions in z, i.e. that are
of the form

> T{z
X(Z> - N{z

where T(z) and N(z) are polynomials in z. For these functions the
inverse can be determined without actually needing to perform the
contour integration in (1.14). To see this we first determine the
z—transform of a number of different signals.

Let
x1(n) = a".u(n) (1.15)

where u(n) is the unit step function defined in (1.2).
Then from (1.13) it follows:

X1(z) =y  a%un) z = Y (az )n
n=-o00 n=0
= L = for |a 2-1‘ <1 (1.16)
1-a =

or\zl > la\

The second example is:

xz(n) = En cos n g . u(n) (1.17)
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This gives:

>
N
—
N
~
]

1/2 1/2
ig 17 -3
1- Qe Y 5 1-pe © %2

=1

_ 1 -¢cos f1z — for |z| > Ie'
1- 2Pcos g2  + € 2

Similarly, the z-transform of

¢e™ sinn ¢ . u(n)

XB(n)
is:
0si -1
510 ¢ 2 for |z| > |€]

1 -2pcos ¢ 2-1 + 62 z_2

R (2)

Now if we have a function of the form

1 - 31— -1 ( ;Dl) -1
~ ) Z 3.1 + ao ) Z
X(z) = a, . =7 = =7 =2
1 - b1 2 + b2 z 1 - b1 z + b2 2

and from inspection of (1.18) and (1.20) it then follows that

a, + a b /2
x(n) = | age™ cos n g+ (Sl ) 0" sin m q>\ u(n)

o

b
arccos (

1
P 2vg;

]

where e

)

e o] o0 . .

(1.18)

(1.19)

(1.20)

(1.21)
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A1l rational functions that we will encounter can be written in
the form

. I o, J . + &g, 2"
%(2) = 3 Ly —ol U —

i=1 1 - B; @ 311 =%, 2+ by

and thus the inverse can easily be determined using the relations

(1.15) - (1.20).
As ‘was already noted in the course on Signal Analysis,

for those sequences for which the z-transform converges for
|z] = 1 we have the identity:

%(e3®) = x(e) (1.22)

which means that the Fourier transform equals the z-transform
when evaluated on the unit circle,
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