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What is texture?  
Everyday texture terms - rough, silky, bumpy - refer to touch. They are most easily understood 
in relation to a topographical surface with high and low points, and a scale compatible with a 
finger or other.  

A texture that is rough to touch has: 

 

• a large difference between high and low points, as compared to the size 
of a fingertip, and 

• a space between highs and lows approximately the same size as a 
fingertip.  

Rough textures can of course occur at any spatial scale, not just what we could 
touch. The illustration above would be considered rough whether it represents 1 
cm or 100 km in horizontal dimension. To probe it with anything except our 
scale-informed eyes, however, we would have to adapt the “fingertip” used to 
the appropriate scale. 

Silky or smooth has 

  

• little difference between high and low points, and 
• the differences would be spaced very close together relative to fingertip 

size. 

Image texture works in the same way, except the highs and lows are brightness values (also 
called grey levels, GL, or digital numbers, DN) instead of elevation changes. Instead of probing a 



fingertip over the surface, a "window" - a square box defining the size of the probe - is used. 
And, of course, the scale (pixel size) is not necessarily that of a fingertip, but may be defined 
however is convenient for the image data available.  

Textures in images quantify:  

• Grey Level differences (contrast) 
• Defined size of area where change occurs (neighbourhood, defined by a window size) 
• Directionality, or lack of it (omnidirectional) 

Information about this tutorial  

This document concerns the most commonly used texture measures, those derived from the 
Grey Level Co-occurrence Matrix (GLCM). The essence is understanding the calculations and 
how to do them. The GLCM and “texture measures” derived from it are descriptive statistics, 
though rather complicated ones. Their values, and the use of those values to answer research 
or application questions, depend on the data for which they are calculated. Just like an average 
as a raw number is of no particular use unless the user understands the dataset from which it is 
derived, so the texture measures are of little use unless the user understands the way they can 
be used and the characteristics of the dataset from which they are derived.  

Understanding the calculations involves  

• Defining a Grey Level Co-occurrence Matrix (GLCM) 
• Creating a GLCM 
• Using it to calculate texture measures (in the exercises). 
• Understanding how calculations are used to build up a texture image 

There are exercises to perform. When done, click on the answer link to see the details of the 
calculations.  

Also, extended sections in italics within the exercise section contain information that is 
supplementary and is not necessary the first time through. You may skip these and return to 
them later.  

Material in blue italics is also supplementary, and addresses common misconceptions and 
questions related to material in that section. Some are labelled FAQ. 

Additional information related to practical use of texture is provided after the calculations 
section. Click here to go directly to it.  

 

BACKGROUND INFORMATION ABOUT TEXTURE  



Who originated this idea?  

Most of the GLCM texture calculations used in remote sensing were systematized in a series of 
papers by Robert Haralick and co-authors in the 1970s. He built on the work of several 
researchers concerned with mathematical pattern (spatial) analysis. There is a series of 
"standard" textures called Brodatz Textures that texture algorithms are tested on, to see if the 
algorithms can tell these textures apart. They include such things as leather, grass, woven cloth, 
felt, and the like. Anys and He (1995) systematized the terminology, and proposed a way to 
choose the best textures to use in an image.  

Haralick et al. (1973) proposed 14 different measures. They include the ones detailed here, and 
also variance calculated on the sum of adjacent pixels; variance on the difference between 
adjacent pixels; entropy on the sum and on the difference; correlation involving entropies, and 
the maximum correlation coefficient. These have not been generally adopted. Haralick also 
suggested calculating each of the 14 measures for the four directions, then taking the mean and 
range of each measure and using those values in classification. Again, this has not been widely 
adopted. Indeed, directionality has not been widely used, even when it is available on software. 
Instead, the option is almost always adopted of a single, "invariant" spatial direction that is the 
average of the four directions. This is perhaps because of widespread lack of understanding of 
what Haralick’s texture measures can do. It would seem likely that many ground covers would 
exhibit a textural directionality that would make this a useful tool in identifying classes: 
orchards spring to mind. This tutorial is intended to make the idea of GLCM texture more 
accessible, while software makes the calculations painless. With experience, this difficulty 
might disappear, or at least be better constrained. Nevertheless, the directionality will only be 
addressed here in the calculations section where horizontal and vertical GLCMs will both be 
shown.  

Personal interest   I became aware of the general utility of including some measure of spatial 
pattern in a general spectral classification scheme, while classifying grassland ecological units in 
the early 1990s as part of my doctoral research. The topic was not texture in itself, rather 
seeking for information derivable from the image itself that would increase classification 
accuracy in grasslands – a notoriously “textureful” class. Pragmatically, I used the software 
available at the time, and I did demonstrate that the spatial information improved the 
classification accuracy to a statistically significant extent. However, my advisors, supervisory 
and examining committee, and audience members at conferences kept asking “why?” It took 
me several years to realize that they were not quizzing the new student or colleague to see if I 
knew the answer, but rather none of them knew themselves how it worked, and hoped that I 
would explain it! Thus this tutorial was born, after I had been teaching remote sensing at an 
advanced level for a few years. It is intended to set out what I had to learn the hard way, as well 
as to help future students and researchers apply texture intelligently.  

It remains true today, just as in the 1990s, that adding some texture measure – any measure! - 
to a classification usually improves the accuracy. This is because texture measures spatial 
relationships, whereas spectral data measures, basically, chemical properties of the ground 

http://www.ux.uis.no/%7Etranden/brodatz.html
http://haralick.org/journals/TexturalFeatures.pdf


objects. These are very different object properties, so spectral and spatial are very likely to be 
independent data and so complement one another. This remains true as remote sensing moves 
into higher spatial resolution imagery, where we can access a signal at much higher detail, but 
also create much more noise as well, compounding the difficulty in telling them apart. Spatial 
helps! 

A complete review of texture today would have to include in-depth analysis of things like 
landscape metrics (patch analysis), wavelets, semivariograms, fractal analysis, and many other 
ideas. Texture is important in many areas besides remote sensing, such as computer graphics. 
Given the huge amount of new research in many areas, sometimes the wheel gets reinvented, 
and given different names. This makes talking about GLCM in a remote sensing context 
somewhat complicated. If you are reading this as an expert in another area, please be aware 
that this tutorial is intended for remote sensing students and practitioners, and uses their 
vocabulary and assumes knowledge common to remote sensing. If you find yourself getting 
confused by terms such as “wavelength band” or “PCA component”, please consult a reputable 
online source or remote sensing textbook for definitions.   

Despite these complications, in terms of software accessibility, ease of use, and even intuitive 
grasp of the texture measures, GLCM remains a primary go-to tool, mainly because it is able to 
measure roughness, coarseness and directionality in one calculation. I have recently shown 
(Hall-Beyer 2017) that the choice of measures can be simplified by using certain rules of thumb. 
I hope it will encourage image analysts to not ignore spatial information out of fear of misuse.  

Some useful references: this list is not exhaustive! As texture is a fairly basic concept, older 
references are often still useful. There are many articles applying texture to particular ground 
classes or with particular images. Those included below will give an idea of how texture is used; 
more examples can be had fairly easily with searches using “GLCM” or “co-occurrence” or 
“texture” in the keywords. Additional comments are provided below under some references. 
There is extensive literature on the application of texture in synthetic aperture radar (SAR) 
images, and in applications fields such as sea ice, cloud analysis and forestry. There is an 
increasing literature comparing GLCM texture measures to other spatial approaches in terms of 
classification accuracy resulting from their use. 
 
Akono,  A.; Tonyé, E.;  Nyoungui, A. N.; Rudant, J.-P.  2003.  Nouvelle méthodologie d'évaluation 
des paramètres de texture d'ordre trois. Int. J. remote Sensing vol. 24 no. 9 pp. 1957-1967. This 
looks at texture involving the co-occurrence of three pixels instead of two. It is interesting, but to 
my knowledge has not been picked up as practical. GLCM is complicated enough to interpret, 
and adding additional dimensions has not proved useful. I would compare this to the relative 
utility of standard deviation vs. kurtosis in statistics.  

Anys, H. & D-C. He 1995. Evaluation of textural and multipolarization radar features for crop 
classification. IEEE Trans. on Geosci. And Rem. Sens. Vol. 33 no. 5 pp  

http://www.tandfonline.com/doi/abs/10.1080/01431161.2016.1278314


Clausi, D. A. 2002. An analysis of co-occurrence texture statistics as a function of grey-level 
quantization. Canadian Journal of remote sensing vol. 28 no. 1 pp. 45-62. Important for 
quantization levels: as a result of this article one software added the option for 5-bit 
quantization (bit depth); most use only 4-bit. 

Coburn, C. A. and A. C. B.  Roberts. 2004.  A multiscale texture analysis procedure for improved 
forest stand classification. International Journal of Remote Sensing. vol. 25 no. 20 pp. 4287-
4308. 

Ferro, C. J. S. and T. A. Warner 2002. Scale and texture in digital image classification. Photog. 
Eng. and Rem. Sens. vol. 68 no. 1, pp. 51-63.  

Gotlieb, Calvin C. and Herbert E. Kreyszig. 1990.  Texture Descriptors based on co-occurrence 
matrices.  Computer Vision, Graphics, and Image Processing, Volume 51, No. 1, pp. 70-86. Tests 
discriminatory power in computer vision setting using Brodatz textures.  

 Hall-Beyer, M. 2017. Practical guidelines for choosing GLCM textures to use in landscape 
classification tasks over a range of moderate spatial scales. International Journal of Remote 
Sensing, 38”1312-1338.  
 
Hann, D. B.; Smith, A. M. S.; Powell, A. K. 2003. Classification of off-diagonal points in a co-
occurrence matrix. Int. Journal of Remote Sensing. vol. 24 no. 9 pp. 1949-1956. 

Haralick, R.M. 1979. Statistical and Structural Approaches to Texture. Proceedings of the 
IEEE,vol.  67 pp.786-804.  This is the basic reference that should generally be cited when 
working with GLCM texture.  

Haralick, R.M., K. Shanmugam and I. Dinstein. 1973. Textural Features for Image Classification. 
IEEE Transactions on Systems, Man and Cybernetics. SMC vol. 3 no. 6 pp.610-620.  The original 
publication, although it is in a hard to access volume. 

He, D.-C. and L. Wang. 1990 Texture Unit, Texture Spectrum and Texture Analysis. IEEE Trans. 
On Geoscience and Remote Sensing, vol  28 no. 4 pp. 509-512. A novel non-GLCM approach to 
texture that will be helpful in understanding the basic concepts of what texture is.  

 He, D.-C., L. Wang and J. Guibert. 1988. Texture Discrimination based on an optimal utilization 
of texture features. Pattern recognition vol. 21 no. 2 pp. 141-146.   

Jensen, J.R. 2015. Introductory Digital Image Processing: A Remote Sensing Perspective. 4th ed. 
Upper Saddle River, NJ: Prentice-Hall. A standard textbook with excellent examples. 

Kourgli, A. and A. Belhadj-Aissa. 1997.  Approche structurale de génération d'images de texture. 
International Journal of Remote Sensing vol. 18 no 17, pp. 3611-3627. Even if you don’t read 
French this possesses an excellent bibliography up to 1997. 

http://www.tandfonline.com/doi/abs/10.1080/01431161.2016.1278314
http://www.tandfonline.com/doi/abs/10.1080/01431161.2016.1278314


Pearlstine, L., K. M. Portier and S. e. Smith. 2005. Textural discrimination of an invasive plant, 
Schinus terebinthifolius, from low altitude aerial digital imagery. Photogrammetric Engineering 
and Remote Sensing. 7vol. 1 no. 3 pp. 289-298. An approach using high spatial resolution 
imagery. 

van de Sanden,  J. J. and D. H. Hoekman. 2005. Review of relationships between grey-tone co-
occurrence, semivariance and autocorrelation based image texture analysis approaches. 
Canadian Journal of Remote Sensing  vol. 38 no.  3 pp 207-213. A comparative article and 
review up to 2005. 

Wulder, M. and B. Boots. 2001 Local Spatial Autocorrelation Characteristics of Landsat TM 
Imagery of a Managed Forest Area. Cdn. J of Remote Sensing, vol. 27 no. 1 pp. 67-75  

 

Other approaches to texture:  

The GLCM explained here is not the only texture measure that has been proposed. However, it 
is the most commonly implemented one. See Jensen (1996) for the idea of a "texture 
spectrum" (He & Wang 1990). This is an interesting approach to characterizing image classes, 
but it has the disadvantage of requiring a very large number of pixels within each class to be 
useful as a classification tool.   
 
Much work is now being done to characterize texture using semivariograms (spatial 
autocorrelation using Moran's I or Geary's C statistics), fractal dimension, wavelet analysis, 
lacunarity, and others. There is an extensive literature on each that is not covered here. Van der 
Sanden and Hoekman (2005)  have demonstrated that GLCM CON is identical to semivariance, 
and GLCM COR provides almost identical information as provided by autocorrelation 
methods.  Pearlstine et al. (2005) suggest other textures, such as statistics (mean, median, std 
deviation) of density of edges following edge-enhancing filtering of various kinds.  
 
A good deal of other texture research is on the intersection of landscape metrics with texture, 
and relates the concepts to a particular ground phenomenon. Landscape metrics are generally 
developed for use in vector-based systems, using irregular patches, defined for a certain ground 
cover, as the basis for defining texture.  Texture uses the arbitrarily-defined square pixel as the 
base. The research field of GEOBIA (geographically-oriented object analysis) can bring these 
two together, in two ways. One investigates the use of texture images to aid in drawing 
meaningful patch boundaries using raster-based data inputs. The other uses textures as ways of 
distinguishing these objects from one another and characterising them. The latter is more 
developed as of this writing (2017), as it can use texture images derived from other software 
within the object-oriented classification. The possibility of deriving textures from within pre-
defined objects is not yet well developed, and this is where it may overlap with landscape 
(patch) metrics.   



   
    



 

The Grey Level Co-occurrence Matrix, GLCM (also rarely called the Grey Tone Spatial 
Dependency Matrix) 

 
Definition: The GLCM is a tabulation of how often different combinations of 
pixel brightness values (grey levels) occur in an image.  

 
   

 GLCM Calculations 

The test image:  

Here is a simple "test image" for working out examples. The values are image grey levels (GLs). 
It will be used throughout this tutorial. As is the case with remote sensing images, the lower the 
GL (digital number) the darker the image appears. This uses 2-bit data (22 or 4 possible values, 
namely 0, 1, 2 and 3). This will be discussed more later; for now we will keep it simple.  
   

The image as it appears: 

        
        
        
        

 
   

The GL (digital numbers) associated with each pixel: 
0 0 1 1 
0 0 1 1 
0 2 2 2 
2 2 3 3 

Definition: Order:  

The GLCM described here is used for a series of "second order" texture calculations.  

Second order means they consider the relationship between groups of two 
pixels in the original image. Notice that this is not the same thing as “second 
order equations” which would mean equations with some variables squared.  



First order texture measures are statistics calculated from the original image 
values, like variance, and do not consider pixel relationships.  

Third and higher order textures (considering the relationships among three or 
more pixels) are theoretically possible but not implemented due to calculation 
time and interpretation difficulty.  

Framework for the GLCM: 

Spatial relationship between two pixels:  

GLCM texture considers the relation between two pixels at a time, called the reference and 
the neighbour pixel. In the illustration below, the neighbour pixel is chosen to be the one to the 
east (right) of each reference pixel. This can also be expressed as a (1,0) relation: 1 pixel in the x 
direction, 0 pixels in the y direction. Each pixel within the window becomes the reference pixel 
in turn, starting in the upper left corner and proceeding to the lower right. Pixels along the right 
edge have no right hand neighbour, so they are not used for this count.  The illustration below 
shows one such relationship: the pixel value shown in red are reference pixels and the pixels 
shown in blue are neighbour pixels in a (1,0) relationship to their reference pixel. This shows 
examples only; all pixels can serve as reference and neighbour pixels. If you are about to object 
that there is a problem with the left and right edges, you are right: we will show how this is 
accounted for later in the document.  

0 0 1 1 
0 0 1 1 
0 2 2 2 
2 2 3 3 

To see images of the effect of different spatial relationships in addition to the (1,0) shown here, 
click here.  

Separation between two pixels:  

All the examples in this tutorial use 1 pixel offset (a reference pixel and its immediate 
neighbour). If the window is large enough, using a larger offset is perfectly possible. There is no 
difference in the counting method. The sum of all the entries in the GLCM (i.e. the number of 
pixel combinations) will just be smaller for a given window size.  
   

  



Now we will look at how the GLCM matrix is actually constructed, by counting and tabulating 
the number of pixel pairs that show a combination of all possible GL value pairs. Let’s take the 
first pair of reference and neighbour pixels as shown above, in red (reference) and blue 
(neighbour). Since the reference pixel has the GL value of 0, and the neighbour pixel the value 
of 1, we count this as one entry in a table of frequencies. 

0 0 1 1 
0 0 1 1 
0 2 2 2 
2 2 3 3 

   

    
    
    
    
    

 
neighbour pixel value ->  

ref pixel value: 

0 1 2 3 

0     

1     

2     

3     
 

   

To completely fill in the table, each pixel in the original image will take its turn as reference 
pixel, and a check box will be produced for every reference pixel. Don’t worry, computer 
software will actually do the counting for you: what is important here is to understand how it is 
done (and why). 

  



To generalize from this example: The table below shows the combinations of the grey levels 
that are possible for the test image, and their position in the matrix. We already saw in the 
example that a reference pixel with value 0 next to a neighbour pixel in the (1,0) relationship 
would lead to an entry in the (0,1) box:  
   

neighbour pixel value ->  

ref pixel value: 

0 1 2 3 

0 0,0 0,1 0,2 0,3 

1 1,0 1,1 1,2 1,3 

2 2,0 2,1 2,2 2,3 

3 3,0 3,1 3,2 3,3 
 
How to read the matrix framework:  

The top left cell will be filled with the number of times the combination 0,0 occurs, i.e. how 
many times within the image area a pixel with grey level 0 (neighbour pixel) falls to the right of 
another pixel with grey level 0 (reference pixel). Each cell is read in this pattern with 
appropriate changes in numbers. 

A different co-occurrence matrix exists for each spatial relationship. The one produced above 
was for the (1,0) relationship: a pixel and its neighbour to the right (east).  Other possible 
relationships are above (0,1), next to the west (-1,0), diagonal (1,1) or (-1,-1). More information: 
click here.  
  



Example: Actually making the count for the test image we are using: Fill in the 
matrix framework for the east (1,0) spatial relationship: 
 

Original image:   

0 0 1 1 
0 0 1 1 
0 2 2 2 
2 2 3 3 

 
 The filled in east (1,0) spatial relationship GLCM. The entries in each cell 
are the sum of the counts (check boxes) as described above. The entries in 
colour refer to the three examples in the three matrices below. 
 

 

0 0 1 1  
0 0 1 1  
0 2 2 2  
2 2 3 3  

0   0 1 1 
0 0 1 1 
0 2 2 2 
2 2 3 3 

 

0 0 1 1 
0 0 1 1 
0 2 2 2 
2 2 3 3 

 

 
 
    

neighbour pixel value ->  
ref pixel value: 

0 1 2 3 

0 2 2 1 0 

1 0 2 0 0 

2 0 0 3 1 

3 0 0 0 1 

 
 
How to read the east matrix:  

Twice in the test image the reference pixel has the value of 0 and its eastern 
neighbour is also 0. Twice the reference pixel is 0 and its eastern neighbour is 1. 
Three times the reference pixel is 2 and its neighbour is also 2. And so on.  

Make sure you understand the difference between the original image and its 
pixel values, and the entries in the GLCM, which are counts of frequencies of 
the neighbouring pairs of image pixel values. The fact that we have low count 
numbers, and are using 2-bit image data, means that it might be less clear what 



“0” means at first glance: trust me, it would be worse if we didn’t do this (I’ve 
tried!).  

From here on in, we will not be using original pixel values very much, relying on 
the computer to do that counting work for us in a real situation. So make sure 
now you know that the GLCM is a table of frequencies, not an image, and you 
will do fine!  

 
 

Properties of the GLC Matrix: 
Now that we know how to construct the GLCM we can list some generalizations about it that 
will help us to go to the next step. 

1. It is square:    

The reference pixels have the same range of possible values as the neighbour 
pixels, so the values along the top are identical to the values along the side. 
 

2. It has the same number of rows and columns as the quantization level of the image:  
   

The test image is 2-bit has four (22) grey level values (0,1,2 and 3). Eight bit data 
has 256 possible values (28), so would yield a 256 x 256 square matrix, with 
65,536 cells. 16 bit data would give a matrix of size 65536 x 65536 = 429,496,720 
cells!  

FAQ: Isn't that too much to handle, even for a computer? 

Yes - even for 8-bit data. Most operational programs rescale the 
image values into 4 bit (16 x 16 matrix with 256 cells) or 5 bit 
(32x32 matrix with 1024 cells). The rescaling algorithms vary from 
one software to another, and are usually proprietary, meaning 
they do not say precisely how they do it.  
 
Until about 2007, almost all image data was 8-bit. Now image 
data is often in 16-bit or some other value. The same problem 
exists, and the same solution! 

There is another reason for compressing the data into 4 or 5 bit. If 
all 256 x 256 (or more) cells were used, there would be many cells 
filled with 0's (because that combination of grey levels simply does 
not occur on the image). The GLCM approximates the joint 
probability distribution of two pixels. Having many 0's in cells 
makes this a very bad approximation. If the number of grey levels 



is reduced, the number of 0's is reduced, and the statistical validity 
is greatly improved. Because users often have no choice (unless 
writing their own algorithms), the question of the effects of 
quantization level is often overlooked. In practice, some statistics 
calculated from the GLCM don't help classification very much 
when a large number of grey levels are used. Other statistics don't 
degrade as much. See Clausi 2002 for a discussion. 
  

3. We want the GLCM to be symmetrical around the diagonal:  

A symmetrical matrix means that the same values occur in cells on opposite sides of the 
diagonal. For example, the value in cell 3,2 would be the same as the value in cell 2,3. The 
matrix we calculated above is not symmetrical. However, texture calculations are best 
performed on a symmetrical matrix.  

The matrix above counted each reference pixel with the neighbour to its right (east). If counting 
is done this way, using one direction only, then the number of times the combination 2,3 occurs 
is not the same as the number of times the combination 3,2 occurs (for example 3 may be to 
the right of 2 three times, but to the left of 2 only once). However, symmetry will be achieved if 
each pixel pair is counted twice: once "forwards" and once "backwards" (interchanging 
reference and neighbour pixels for the second count).  
   

Example: A reference pixel of 3 and its neighbour of 2 would contribute one 
count to the matrix element 3,2 and one count to the matrix element 2,3. 

Symmetry also means that when considering an eastern (1,0) relation, a western (-1,0) relation 
is also counted. This could now be called a "horizontal" matrix.  
 
Making a matrix symmetrical in this way also neatly gets us around the problem of the window 
edge pixels: remember the ones on the left could never be a neighbour pixel in an east 
relationship, and the ones on the right could never be a reference pixel in an east relationship. 
But in a horizontal relationship, making the symmetrical matrix, each pixel gets to be a 
reference and neighbour pixel, no matter where it is in the window.  
   
How to make the matrix symmetrical - an easier way than double counting:  

Any matrix can be made symmetrical by adding it to its transpose. The transpose is created by 
interchanging the rows and columns of the original matrix.  
     

The transpose of the eastern (1,0) matrix above could be called a "western" (-
1,0) matrix. It is: 



2 0 0 0 

2 2 0 0 

1 0 3 0 

0 0 1 1 

Add the original matrix to its transpose (by adding each element in the 2 
matrices) for this "horizontal" result. It is symmetrical. 

4 2 1 0 

2 4 0 0 

1 0 6 1 

0 0 1 2 
 
   
Note that we have left off the column and row labels for these GLCMs. We will continue to do 
this. 
   

If you are sceptical, perform the eastern and western counts separately, and 
verify that the GLCM produced that way is the same as this matrix. 

 
Expressing the GLCM as a probability:  

Is it more likely to find a horizontal combination of, say, 2,2 in the original image, or is 2,3 more 
likely? Looking at the horizontal GLCM shows that the combination 2,2 occurs 6 times out of 
the 24 horizontal combinations of pixels in the image (12 eastern + 12 western). In other words, 
6 is the entry in the horizontal GLCM in the third column (reference pixel value 2) and third row 
(neighbour pixel value 2). The simplest definition of the probability of a given outcome is  

"the number of times this outcome occurs, divided by the total number of 
possible outcomes." 

Using this definition, we can calculate: the combination (2,2) occurs in 6 cells out of 24, for a 
probability of 6/24 = 1/4 or 0.250. The probability of (2,3) is 1/24 or .042.  
   

Here is the equation to transform the GLCM into a close approximation of a probability table: It 
is only an approximation because a true probability would require continuous values, and we 
are dealing here with discrete frequency values, which can only be integers. So, this process is 
called normalizing the matrix. Normalization involves dividing by the sum of values. It differs 
from probability only in a formal sense. 



Normalization equation:                      

where:  

• i is the row number and j is the column number. 

Note: I and j keep track of cells by their horizontal and vertical 
coordinates. The range of summation, (i,,j=0) to (N-1) means 
simply that each cell in the GLCM should be considered. It is 
shorthand for a double summation, once from i=0 to N-1 and once 
from j=0 to N-1. Usually, a count starts with "1" so summation 
from 1 to N would be expected. However, by numbering the upper 
left corner cell as i=0 and j=0, rather than as i=1 and j=1, the i 
value remains the same as the actual grey level of the reference 
cell, and the j value remains the same as the grey level of the 
neighbour cell. This is not important for many equations, but it 
comes in very handy when expressing mean, variance and 
correlation in terms of the GLCM (explained below). 

• V is the value in the cell i,j of the image window 
• Pij is the probability value recorded for the cell i,j,. Remember this notation, it will occur 

often later on!! 
• N is the number of rows or columns 

 
Applying this equation to the symmetrical GLCM above yields:  
   

Normalized (horizontal) GLCM  
   

.166 
(4/24) 

.083 
(2/24) 

.042 
(1/24) 

0 
(0/24) 

.083 .166 0 0 

.042 0 .250 .042 

0 0 .042 .083 



Summary of steps in creating a symmetrical normalized GLCM:  
   

1. Create a framework matrix taking into account the bit depth 
2. Decide on the spatial relation between the reference and neighbour pixel 
3. Count the occurrences and fill in the framework matrix 
4. Add the matrix to its transpose to make it symmetrical 
5. Normalize the matrix to conceptually turn it into probabilities. 

Some things to notice about the normalized symmetrical GLCM (called simply the GLCM from 
here on)  

• The diagonal elements all represent pixel pairs with no grey level difference (0-0, 1-1, 2-2, 
3-3 etc.). If there are high probabilities in these elements, then the image does not show 
much contrast: most pixels are identical to their neighbours. 
 

Framework GLCM showing the values of reference and neighbour pixels 
Violet shown cells where the two values are the same 

neighbour pixel value ->  

ref pixel value: 

0 1 2 3 

0 0,0 0,1 0,2 0,3 

1 1,0 1,1 1,2 1,3 

2 2,0 2,1 2,2 2,3 

3 3,0 3,1 3,2 3,3 

 

When counts on the diagonal are summed, the result is the probability of any pixel's being 
the same grey level as its neighbour. 

• Look at lines parallel to the diagonal. Cells one cell away from the diagonal represent pixel 
pairs with a difference of only one grey level (0-1, 1-2, 2-3 etc.). Similarly, values in cells two 
away from the diagonal show how many pixels have 2 grey level differences, and so forth. 
The farther away from the diagonal, the greater the difference between pixel grey levels. 

Framework GLCM showing the values of reference and neighbour pixels 

Violet: no difference; Green, difference of 1; Yellow: difference of 2; Black: difference of 3 

neighbour pixel value ->  0 1 2 3 



ref pixel value: 

0 0,0 0,1 0,2 0,3 

1 1,0 1,1 1,2 1,3 

2 2,0 2,1 2,2 2,3 

3 3,0 3,1 3,2 3,3 

 

Sum up the counts of entries in these parallel diagonals and the result is the probability of 
any pixel's being 1 or 2 or 3 etc. different from its neighbour. 

 



1. Exercise: use the test image and a south spatial relationship (reference pixel and the 
neighbour below it) to test understanding. Fill in the blanks. 
                                                                    Test image  

0 0 1 1 

0 0 1 1 

0 2 2 2 

2 2 3 3 

                                                                    Framework matrix:  

        

        

        

        

                                                                    Count (south) matrix  

        

        

        

        

                                                                                           +  
   

Transpose (north) matrix 
        

        

        

        

                                                                                            =  
   

Symmetrical (vertical) 
matrix 

        



        

        

        

       divided by the sum of the elements = 

 

Normalized symmetrical 
vertical GLCM 

        

        

        

        

Answer: click here 

  



Sometimes texture measures use a GLDV (grey- level difference vector) instead of a GLCM. The 
GLDV is the sum of the diagonals of the GLCM.  
   

Example: using the horizontal GLCM, the GLDV is either the middle or, when 
normalized, the right hand row: 

Horizontal GLCM: 

4 2 1 0 

2 4 0 0 

1 0 6 1 

0 0 1 2 
 

 

difference of: occurs this number of times normalized, equals 

0 16 .666 

1 6 .250 

2 2 .083 

3 0 0 

 
   
  In words and visual concepts, this means that we have an image that is dominated by pixels 
that are similar or identical to their neighbours. There are only a few abrupt changes in tone 
from one to the other. Here is the original image again: see if you can relate the statement 
above to the spatial arrangement of grey levels in the image. After all, if descriptive statistics 
are going to be useful they have to describe something we can also visually grasp.  
 
The next step will be, therefore, to reduce the table above to a single number that will 
summarize and quantify the qualitative perception of “smoothness” in this image. We will find 
that there are several ways to do this, resulting in several different descriptive statistics.  
 

        
        
        
        

 
 

2. Exercise:  Calculate the GLDV (not the GLCM) for the vertical relationship. This 
will require you to go through all the steps shown for exercise 1, this time using 



the vertical relationship: if you need to refer back to that, it might help. Click 
here to link to the answer for exercise 1. It is only in the final step that you sum 
up the diagonals to create the GLDV. 

A difference of occurs this number of times normalized 

      

      

      

      

Answer: click here  
   
   
   
   
   
   
   
   

  



THE TEXTURE MEASURE CALCULATIONS  
 

Texture measures are the various single values used to summarize the normalized symmetrical 
GLCM in helpful ways. These are the things most often referenced in the literature: “Contrast”; 
“Dissimilarity”; “Entropy” etc. There are several of them because each summarizes in a 
different way, allowing choice to fit the problem at hand. This section shows how these are 
calculated.  

 Most texture measure calculations are weighted averages of the normalized GLCM cell 
contents.  

A weighted average multiplies each value to be used by a factor (a weight) 
before summing and dividing by the number of values. The weight is intended to 
express the relative importance of the value.  

Example: the most common weighted average that students encounter is the 
term grade. Exams usually have a higher weight than quizzes. The weights are 
the % of course grade assigned to each mark. 
 

Creating a texture image 

WHY create a texture image? So far we have addressed the question of the GLCM using all the 
pixels in a small test image. This is to make the hand counts and calculations easy to follow. But 
the true usefulness of descriptive statistics comes out when dealing with a large image, and 
using a computer to generate the numbers.  

In remote sensing and allied fields such as medical imaging, we usually don’t want a 
single measure for a whole image. Instead, we want to see how the pixel-to-pixel 
relationships might be different in different parts of the image. For example, we might 
visually describe a deciduous forest as “bumpy”, and grassland as “smooth”, and rock as 
“jagged”. Suppose we designed a texture measure to translate each of these words into 
a number. Let’s say we come up with a statistic that is high over grassland areas, low 
over rocks, and intermediate over forests. We could then use texture as input into an 
automated classification algorithm. To do this, though, we have to limit the texture 
measure calculation to a GLCM derived from a small areas on the image. We then look 
at a different small area and record its texture measure, and so on to cover the whole 
image. This way, the measure will be different in different places and tell us 
quantitatively how the pixel relationships differ in different places. This is the reason for 
calculating the “texture image”.  

FAQ: Why would you NOT create a texture image? Answer: Some software that is 
oriented towards statistical procedures does not calculate the image automatically. It is 
quite possible to input matrices either prepared by hand, or chosen from separated parts 



of an image, and compare the output texture measures. A texture image is not always 
necessary, just make sure you know what output you need and want for your research or 
work situation. 

 

How the texture image is calculated:  

Defining the neighbourhood area 

First, we need to define the small area to use for filling in the GLCM and doing the 
texture measure calculation. In a general sense, we can call this the “neighbourhood” 
for the calculation. Usually we use the term “window” which is a particular kind of 
neighbourhood. It is square, and it has an odd number of pixels on a side.   

How the window size (in pixels) is chosen is a whole other topic. See that section in this 
tutorial! 

Writing the output:  

The result of a texture calculation is a single number representing the entire window. 
This number is put in the place of the centre pixel of the window. 

Building up the whole texture image:  

Once the first calculation is completed and the result written into that pixel in a new 
raster layer, the window is moved one pixel to the right and the process is repeated of 
calculating a new GLCM and a new texture measure. This continues across the first row, 
then the window is moved down one row and the process is repeated. This continues 
until the entire image has been covered. In this way an entire new image layer (raster) is 
built up of texture values. More information  

Summary of steps in the image 

1. Decide on window size 
2. Place window in first position over top left of the image. 
3. For the pixels within this window in this position, count the pixels, transform and 

normalize the GLCM 
4. Calculate the texture measure of your choice (see below) 
5. Move the window over one pixel, and repeat steps 3 and 4. 
6. Continue covering all possible window positions until the texture image is 

complete. 



FAQ: How long does this take?  There is not too much problem with today’s 
computers, however it still is a computationally intensive procedure. Do not be 
alarmed if creating a texture image takes a few minute. Depending on your 
computer and software, it might be faster or slower. This computational intensity is a 
reason why many years passed between Haralick’s 1973 mathematical consideration 
of texture and its common employment in automated image analysis. 

Other things to think about 
 
Edge of image problems Each cell in a window must sit over an image pixel 
containing a GL value. This means that the centre pixel of the window cannot be 
an edge pixel of the image. If a window has dimension N x N, a strip (N-1)/2 
pixels wide around the image will remain unoccupied.  
 
FAQ: So what does a computer program do with edges? Answer: The usual way 
of handling this is to fill in these edge pixels with the nearest texture calculation, 
thus having a repeated uniform border. Remote sensing images have thousands 
of pixels and rows. Texture uses windows that are usually no larger than about 
51x51 pixels. Therefore the edges occupy a very small part of the resulting 
texture image, and can be disregarded. This edge problem only is of concern 
when the size of the window is similar to the size of the whole image. This can 
occur in texture applications to things like industrial quality control. In these 
cases, individual solutions must be sought to fit the problem at hand. 

Example: For a 5x5 window, the outer 2 rows and columns of the image receive 
the texture values calculated in row 3 (top edge), column 3 (left edge), row L-2 
(bottom edge) and column P-2 (right edge) where P,L are the dimensions in 
pixels (columns) and lines (rows) of the original image. For the illustrated image 
below, L=P=10, so values are calculated through rows 3 through 8 and columns 3 
through 8.  



 

Groups of texture measures  
   

This tutorial groups the texture measures according to the purpose of the weights in the 
equations.  

Another common way to classify textures is according to their degree, meaning the 
highest exponent used. Most measures - and all used here - are first or second degree. 
This tutorial does not make degree the main classification criterion for entirely practical 
purposes. The intent here is to relate the texture measures to their ability to 
approximate a visual distinction between textures.  

Remember that all GLCM measures are “second order” meaning that they calculate the 
measure from the GLCM (pairs of pixels). “First order” measures would calculate something (for 
example standard deviation) from the original pixel values themselves within a window, not 
from the GLCM values. It is easy to get these confused when reading the literature, and indeed it 



is not too clear in some software help files. 
   

Example: If a squared term is used in the equation, the measure is second degree. If a cubed 
term is used, it is third degree. This is similar to non-GLCM descriptive statistics, where mean is 
first order, variance is second order, and so on. 

 
THE GROUPS USED HERE 

1. Contrast group  

Measures related to contrast use weights related to the distance from the GLCM diagonal.  

Principle: To emphasize a large amount of contrast, create weights so that the calculation 
results in a larger figure when there is great contrast between adjacent pixels. Values on the 
GLCM diagonal show no contrast, and contrast increases away from the diagonal. So, create a 
weight that increases as distance from the diagonal increases.  
   

1. A. Contrast (this is also called "sum of squares variance" and occasionally “inertia”):  

Contrast equation  

Explanation: 

When i and j are equal, the cell is on the diagonal and (i-j)=0. These values 
represent pixels entirely similar to their neighbour, so they are given a weight of 
0 (no contrast).  
If i and j differ by 1, there is a small contrast, and the weight is 1.  
If i and j differ by 2, contrast is increasing and the weight is 4.  
The weights continue to increase exponentially as (i-j) increases.  
   
 
 
 
 
 
 
 
 



Calculation example: for the horizontal GLCM  

Contrast 
weights: X horizontal GLCM = Multiplication result 

0 1  4  9  0.166 0.083 0.042 0  0 0.083 .168 0 

1 0  1  4  0.083 0.166 0 0  0.083 0 0 0 

4 1  0  1  0.042 0 .249 0.042  .168 0 0 .042 

9 4  1  0  0 0 0.042 0.083  0 0 .042 0 

Sum of all elements in the multiplication result table = 0.586. Below is the actual 
computation is it wold be entered in a spreadsheet or carried out by hand.   

.166*(0-0)2 + .083*(0-1)2 + .042*(0-2)2 + 0*(0-3)2 +  

.083*(1-0)2 + .166*(1-1)2 + 0*(1-2)2 + 0*(1-3)2 +  

.042*(2-0)2 + 0*(2-1)2 + .250*(2-2)2 + .042*(2-3)2 +  
0*(3-0)2 + 0*(3-1)2 + .042*(3-2)2 + .083*(3-3)2 

= .166(0) + .083(1) + .042(4) + .083(1) + .166(0) + .042(4) + .25(0) + 
.042(1) + .042(1) + .083(0) 

= .083 + .168 + .083 + .168 + .042 + .042 

= .586 

 
   

Important practical matter: This example shows right away that Contrast can be 
<1. Therefore the computer output must be recorded in an image channel 
(raster) equipped to handle real numbers, usually 32-bit Real (32R). If put into 
an 8-bit or 16 bit integer channel, the value would be recorded as 0.  
 

FAQ: How does this relate to the bit depth? Answer: This has nothing to 
do with the reduction of bit depth described above, which relates to the 
original bit depth of the received imagery. 32R is fine for the purpose 
here. If for some reason an integer channel is desired for the texture 
measure output (for example to meet software-specific input 
requirements for multi-band classification), automatic scaling algorithms 
are available in most software. Be careful what you do so as not to lose 
information! 

 

 



3. Self test: What is the degree of this measure? What does a Contrast of 0 
mean?  Answer 

4. Exercise: Calculate the Contrast for the vertical GLCM and compare it with the 
Contrast for the horizontal GLCM  Answer 

 
     
   1. B. Dissimilarity (Contrast Group) 

Instead of weights increasing exponentially (0, 1, 4, 9, etc.) as one moves away 
from the diagonal as Contrast did, the dissimilarity weights increase linearly 
(0,1,2,3 etc.). 

Dissimilarity equation           
   

This is a first degree measure. Why? 

   

 
Dissimilarity weights: 
 
 

0 1 2 3 
1 0 1 2 
2 1 0 1 
3 2 1 0 

 
 

Exercise 5: Try out the Dissimilarity calculation for the 
horizontal image and compare the value with horizontal 
Contrast. Also, compare horizontal with vertical 
Dissimilarity. Is the pattern the same as for horizontal vs 
vertical Contrast? Answer 

 

 

 



1. C. Homogeneity (Inverse Difference Moment) (Contrast group) 
   

Dissimilarity and Contrast result in larger numbers for more windows showing 
more contrast. If weights decrease away from the diagonal, the calculated 
texture measure will be larger for windows with little contrast. Homogeneity 
weights values by the inverse of the Contrast weight, with weights decreasing 
exponentially away from the diagonal: 

 

Homogeneity equation         
   
Homogeneity weights:   

1 ½  ¼  1/9 
½  1 ½  ¼  
¼ ½ 1 ½  
1/9  ¼  ½  1 

 

 

6. Exercise: Calculate the Homogeneity value for the horizontal GLCM and 
compare it with the Dissimilarity value. Answer 
 

7. Self test: The weight used for the Contrast texture measure is (i-j)2. The weight 
for Homogeneity is 1/[1+(i-j)2]. 

o What would happen if the Contrast weight were [1+(i-j)2]? This might seem 
logical when we describe the Homogeneity weights as being the inverse of the 
Contrast weights. 

o Would this be a bad thing? 
o What degree is this measure? 

Answer 

 
 
 



8. Exercise: Do-it-yourself Similarity texture:  

Homogeneity is the most commonly used measure that increases with less 
contrast in the window. However, it would be easy to use the above model to 
construct a first degree "similarity" measure. Write the equation and perform 
the calculation for the horizontal GLCM.  

Why do you think “similarity” is not a commonly programmed measure (there is 
no single good answer to this, by the way! It’s just to help you think it through.). 
Answer 

 
   
  



2. Measures related to orderliness  
   

Orderliness means:  how regular (“orderly”) the pixel value differences are within the window.  

 
Example: the two images below have the same degree of horizontal contrast (every pixel is one 
less than its eastern neighbour). But the degree of order is quite different. 
   

Orderly image  Disorderly 
image 

1 2 3 4  3 4 2 3 

1 2 3 4  1 2 3 4 

1 2 3 4  2 3 4 5 

1 2 3 4  4 5 6 7 

In the more orderly image on the left, each pair of values occurs many times: 2 is 
next to 1 four times, 3 is next to 2 four times, etc. For the less orderly image, 
combinations occur less often: 2 is next to 1 only once, 3 next to 2 three times, 
and so on. Using 3-bit data on the disorderly image does not affect the texture 
measure: it simply makes the visual difference more apparent. 
 
 
For a visual appreciation of this, here are the grey levels shown for each of these 
images: 

Orderly image  Disorderly 
image 

          

         

         

         
 
 

Principle behind orderliness measures:  

Orderliness measures, like contrast measures, use a weighted average of the 
GLCM values. The weight is constructed related to how many times a given pair 
occurs, so  



A weight that increases with commonness will yield a texture 
measure that increases with orderliness.  

 
A weight that decreases with 
commonness yields a texture 
measure that increases with 
disorder 

Weights:  

Since the Pij values in the GLCM are already a measure of commonness of 
occurrence, it makes sense to use them in some form as weights for themselves. 
Thus the weights are derived from each GLCM itself and cannot be shown in a 
table.  

 
2. A. Angular Second Moment (ASM), Energy and MAX  

ASM and Energy use each Pij as a weight for itself. High values of ASM or Energy 
occur when the window is very orderly. 

ASM equation               
   

The square root of the ASM is sometimes used as a texture measure, and is called Energy.  

Energy equation              

 
 
The terms ASM and Energy 

The name for ASM comes from Physics, and reflects the similar form of Physics 
equations used to calculate the angular second moment, a measure of rotational 
acceleration. If you are interested, look up "moment of inertia" in a Physics 
textbook. The meaning of "energy" is explained below. 
 
 

 



9. Exercise: Perform the ASM calculation for the horizontal GLCM.  Answer 

 
 
10. Self test: The maximum value of 1 for either ASM or Energy occurs when all 
pixels in the window are identical.  This is as orderly as an image can get – but 
doesn’t tell us much! Such an image would look more like a fog that we can’t see 
anything through. Quickly draw the GLCM for this situation and perform the ASM 
calculation. Answer 
Maximum Probability (MAX)  

A simple statistic is simply a statement of the largest Pij value found 
within the GLCM. High MAX values occur if one combination of pixels 
dominates the pixel pairs in the window. MAX is not commonly 
implemented in image processing software 

 

  2. B. Entropy  

Since ln(0) is undefined, assume that 0 * ln(0) = 0:  

 

Entropy equation                

Entropy is usually classified as a first degree measure, but should properly be a "zeroth" degree!  

Logarithms: a brief refresher tutorial (ln or log)  

• ln is the "natural logarithm" and uses a base close to 2.718; log, with a 
base of 10, is more familiar. The properties of the two are the same. 

o example: log(10) = 1. Read this as "the log of 10 equals 1." This 
means 101 = 10; log(100) = 2. This means 102 = 100. 

o Generalizing, if log(x) = n, then 10n = x. 
o Similarly, if ln(x) = n, then 2.718n = x 

• ln(1) = 0.  
• ln of values between 0 and 1 are negative. 

o ln becomes increasingly negative as the reference value decreases 
further below 0 

o example 



ln(0.99) -0.010 

ln(0.10) -2.302 

ln(0.001) -6.908 

   

   
 
log or ln of 0 and of negative numbers are not defined.  
Technically, the limit of ln(x) as x approaches 0 is negative infinity. 
But a calculator will balk at encountering a calculation involving 
ln(0). This is why it is necessary to state the assumption that 
0*ln(0) = 0 in the Entropy equation. If manually calculating ln of a 
pixel value in a software’s image arithmetic (or similar) function, 
make sure that this is the default (see help file for your software) 
or enter it as appropriate. The default might also yield a “no data” 
value on input pixels with a value of 0. See if this will cause you 
problems – 0 pixels are often edges outside the image area 
anyway. 

It is easy to confuse original 0 values on the image (border areas, for example, or 
codes) with 0 values in the GLCM (a reference and neighbour pixel combination 
simply has a count of 0). Thus for the GLCM, an entry of 0 is quite possible, even 
common. The Entropy equation refers to the GLCM entries, not the 0 pixel values. 
The GLCM cannot have negative entries, so this additional specification of what 
to do with ln(0) is quite adequate.  
  

What using the ln means for the GLCM Entropy equation:  

• Pij is always between 0 and 1, because it is a probability and a probability can never be 
higher than 1 nor less than 0. 

• Therefore ln(Pij ) will always be 0 or negative. 
• The smaller the value of Pij (i.e. the less common is the occurrence of that pixel 

combination), the larger is the absolute value of ln(Pij ) 
• the (-1) multiplier in the entropy equation makes each term positive. 
• Therefore, the smaller the Pij value, the greater the weight, and the greater the value of 

-[Pij *ln(Pij )].  
• This can be confusing, as can anything where negatives are used, but even if you choose 

not to work this out in detail for yourself, be assured that the overall effect is to make 
larger Entropy values indicate greater disorder, and appear brighter on the entropy 
texture image! 



FAQ: I got an Entropy output of 3.89, and I don’t think that is possible using this 
equation. Is there an error in my software? Answer: Where the equation by its nature 
limits the possible texture measure values, sometimes a software output can be 
startling, as it falls outside of that range. This is most often simply due to a final output 
auto-scaling that is included in the algorithm, generally in the interests of visualization. 
Often, there is no indication of scaling in software help files or other documentation. For 
many years, there were so few software packages that calculated this. It never seems to 
have occurred to developers that someone might want to compare values of this data-
dependent descriptive statistic across platforms. Given this, avoid problems by only 
compare actual texture measure values calculated using the same software and inputs. 
The texture image is normally used to compare texture differences in different parts of 
the image anyway. However when adapting this procedure to disciplines outside of 
image processing, it can become hairy! 

 
  The term "entropy"  

Entropy is a notoriously difficult term to understand; the concept comes from 
thermodynamics. It refers to the quantity of energy that is permanently lost to 
heat ("chaos") every time a reaction or a physical transformation occurs. Entropy 
cannot be recovered to do useful work.  Because of this, the term is used in non 
technical speech to mean irremediable chaos or disorder.  
 
Also, as with ASM, the equation used to calculate physical entropy is very similar 
to the one used for the texture measure called Entropy.  

Energy is, in this context, the opposite of entropy. Energy can be used to do 
useful work. In that sense it represents orderliness. This is why "Energy" is used 
for the texture that increases with increasing order in the image. 

The entropy equation can also be used in Information Science to indicate the 
amount of information in a system. I am not well enough informed to say much 
more than that. However, again qualitatively, remember that the perfectly 
orderly image- with all pixel values identical, no matter what their grey level 
value is – resembles a dense fog, visually. Only one piece of information is there – 
there is no variability. Visually, it is variability that gives us access to the image 
information that we might want. So greater and more complex variability is in 
fact likely to yield more useful information – and a higher entropy value indicates 
more complex variability. Depending on our research question, this might be 
information or it might be noise: more work is necessary to find out which! If you 
want to isolate more complex areas from less complex areas, entropy is right 
down your alley.  

This seems to run counter to the physics-based idea that “entropy is energy you 
can’t employ for useful work”, but in this case that is not quite the way we would 



want to express it. Don’t worry, the equation will give the information the image 
analyst needs, whether the term makes intuitive sense or not! 

 
11. Exercise: Calculate the Entropy value of the horizontal GLCM. Answer 

 
   

3. Descriptive Statistics of the GLCM texture measures  
  The third group of texture measures uses equations similar to those for common descriptive 
statistics, such as mean or standard deviation (or variance). However, all are calculated using 
the entries in the GLCM, not the original pixel values. Details below. The important thing is to 
be clear when using software that you are calculating the GLCM, not the first-order statistic.  
Many programs contain algorithms to calculate the first-order statistic as well. Also, be clear 
when writing a report that your terminology is always clear so that the reader will understand 
that you are using the GLCM statistic. 

3. A. GLCM Mean  

How GLCM mean differs from the mean of the pixel values in the window:  

The GLCM Mean is not simply the average of all the original pixel values in the 
image window. It is expressed in terms of the GLCM. The pixel value is weighted 
not by its frequency of occurrence by itself (as in a "regular" or familiar mean 
equation) but by its frequency of its occurrence in combination with a certain 
neighbour pixel value. 

 
GLCM Mean Equation

  
   

The left hand equation calculates the mean based on the reference pixels, µi. It is 
also possible to calculate the mean using the neighbour pixels, µj, as in the right 
hand equation.  For the symmetrical GLCM, where each pixel in the window is 
counted once as a reference and once as a neighbour, the two values are 
identical. The two equations are included for mathematical and theoretical 
clarity, just in case a symmetrical GLCM is not being used.  



 
Calculation and notation details:  

• The summation is from 0 to (N-1), not from 1 to N. Since the first cell in the upper left of 
the GLCM is numbered (0,0), not (1,1), the i value (0) of this cell is the same as the value 
of the reference pixel (0). Similarly, the second cell down from the top has an i value of 
1, and a reference pixel value of 1. If this is not clear, go back and look at the framework 
GLCM. 

• The Pij value is the probability value from the GLCM, i.e. how many times that reference 
value occurs in a specific combination with a neighbour pixel. It is not a measure of how 
many times the reference pixel occurs, period, which would be the "regular" first-order 
mean for the original window. First-order mean is a tool for smoothing an image to 
remove random noise, and also of systematically degrading the spatial resolution.  

• Multiplying i by Pij effectively divides the entry i by the sum of entries in the GLCM, 
which is the number of combinations in the original window. This is the same as is done 
when calculating a mean in the "usual" way. If this is not clear, review how Pij is 
calculated in the first place. 

• The GLCM Mean for the horizontal GLCM is different from that for the vertical GLCM 
because the combinations of pixels are different in the two cases. If you are using a 
“non-directional” texture measurement, then the software will simply calculate both 
and average them together. The horizontal or vertical are referred to her to make the 
procedures more understandable.  

12. Exercise: Calculate the GLCM Mean for the horizontal test image then for the 
vertical test image.  Answer 

 
 
3. B. Variance (Standard Deviation) (Descriptive statistics group) 

Variance equation   

Standard deviation equation   
 

Calculation details:  

Variance in texture performs the same task as does the common descriptive 
statistic called variance. It relies on the mean, and the dispersion around the 



mean, of cell values within the GLCM. However, GLCM variance uses the GLCM, 
therefore it deals specifically with the combinations of reference and neighbour 
pixel, so it is not the same as the simple variance of grey levels in the original 
image. 

Variance calculated using i or j gives the same result, since the GLCM is 
symmetrical. 

There is no particular advantage to using Standard Deviation over Variance, 
other than a different range of values. 

 
Properties of Variance  

Variance is a measure of the dispersion of the values around the mean. It is 
similar to contrast or dissimilarity. It answers the question "What is the 
dispersion of the difference between the reference and the neighbour pixels in 
this window?" 
 
It is not intuitively visually obvious what this might mean. Neither is it obvious 
from looking at an image how GLCM Variance will behave. It seems to have quite 
different values for different textures, however, and so can fulfill the function of 
telling classes with different textures apart. There is no way of knowing in 
advance whether the classes of interest in a particular case will be distinguished 
from one another by GLCM Variance, so trial and error may be in order. For a 
somewhat more in-depth discussion of the role of GLCM Variance (and the other 
Descriptive Statistical textures in general) see M. Hall-Beyer 2017, Practical 
guidelines for choosing GLCM textures to use in landscape classification tasks 
over a range of moderate spatial scales, IJRS vol. 38. 

   
13. Exercise:  Calculate the Variance texture for both the horizontal and vertical 
GLCM of the test image to see if they are the same.  
What is the variance calculated using the original image values rather than using 
the GLCM? 
Answer 
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3. C. Correlation (Descriptive statistics group) 

The Correlation texture measures the linear dependency of grey levels on those of 
neighbouring pixels.  

Correlation equation       

For the symmetrical matrix, the denominator above reduces to the variance (sigma squared).  

Understanding how to use this equation depends on understanding the Mean 
equation and Variance equation expressed in terms of the GLCM. 
 

What does correlation mean?  

Correlation between pixels means that there is a predictable and linear 
relationship between the two neighbouring pixels within the window, expressed 
by the regression equation. 

Example: Suppose there is a very high correlation between the reference and 
neighbour pixel, expressed by n=2r+2, where n is the value of the neighbour and 
r of the reference. Therefore, if r=1, n is very likely to equal 4; if r=4, n=10, etc. 

A high Correlation texture means high predictability of pixel relationships. This gives rise to 
some interesting properties of Correlation:  

• Single patches of a particular ground cover usually have a higher correlation value within 
them than between adjacent objects. 

• Pixels are usually more highly correlated with pixels nearby than with more distant pixels 
(Spatial Autocorrelation). 

o So, smaller window sizes will usually have a higher Correlation value than larger 
windows. 

• If Correlation is calculated for successively larger window sizes, the size at which the 
Correlation value declines may be taken as a rough indication of the size of definable 
objects within an image. This works only if all objects in the image are about the same 



size. Often different classes (for example ground covers) on an image will have different 
patch (object) sizes – for example grasslands and lakes.  

o People familiar with semivariograms will see a resemblance to the information 
provided by them and by  GLCM Correlation. 

• Correlation is quite a different calculation from the other texture measures described 
above. As a result, it is independent of them (gives different information) and can often 
be used profitably in combination with another texture measure 

• See more discussion in Hall-Beyer 2017 Practical guidelines for choosing GLCM textures 
to use in landscape classification tasks over a range of moderate spatial scales. 
Correlation behaves in an unpredictable way in much the same was that GLCM Variance 
does.  

 

14. Exercise: Calculate the Correlation measure for the horizontal test image. Do the 
GLCM Mean and Variance exercises first and use their results. Click on the name of each 
to link to its answer.  

Hint: Correlation must always be between -1 and +1 before scaling. It will be a 
decimal value. Any result outside of these bounds shows an error. It is easy to 
make calculation errors. If you are familiar with setting up formulae on a 
spreadsheet, this would be a good way to do the calculation. On a spreadsheet, 
you can at least be certain that there have been no arithmetic errors, even 
though it is still easy to make an error in entering the formula. 

Answer 

   

Some very important practical considerations 

Texture is a descriptive statistic, without hard values that can be transferred from one situation 
to another. In other words, there is no way of saying “forests always have Contrast values 
between .5 and .7”. It is primarily useful in comparing one part of an image to another part. If 
more than one image is to be included (perhaps by mosaicking), all the usual radiometric 
corrections should be carried out before mosaicking, and the texture run afterwards. All the 
usual caveats of multiple image analysis must be taken into consideration: the images analysed 
must be equivalent radiometrically, in regards to sun angle, and phenologically with regards to 
cyclically variable ground phenomena. Check out the change analysis literature for details.  

It is also important to realize that the analyst must make quite a few decisions before starting 
the texture analysis, if it is to be most efficient at answering the question at hand and avoid 
misinterpretation. Some of these, and pointers for best practice, are listed below.  

 

http://www.tandfonline.com/doi/abs/10.1080/01431161.2016.1278314
http://www.tandfonline.com/doi/abs/10.1080/01431161.2016.1278314


Textures may be calculated using only one channel of data at a time.  

• Many different texture measures can be calculated for each channel 
• Channel information can be consolidated using an index (for example NDVI), principal 

components (PCA) or other method before running a texture measure. 
• The same texture measures can be calculated for more than one channel 
• Any three texture measures can be viewed simultaneously using rgb projection; 

numerical analysis generally does not limit one to using only three channels 
• It is possible to take the principal components of many texture images, but the result is 

very difficult to interpret. See Hall-Beyer 2017. 

  
Texture images are image channels (rasters) with a value for each pixel.  

• Texture images can be used alone or with other data to define signatures for supervised 
or unsupervised classification. 

• Texture images (channels) can be included in classifications. 
• Texture output should be put into a 32R channel, at least at first. It may then be scaled 

into an 8-bit channel. 
• The actual numerical value of a texture measure is unimportant for most purposes. 

More important is whether it is relatively high or relatively low compared to the other 
areas of the image, and its relationship to the same texture measure values elsewhere 
on the image. 

 
Textures are calculated within a window, a small region of the image.  

The test image used in this tutorial considers the entire image to be the area 
contributing to the texture. For larger images, a window is chosen to define this 
area. This window is, in practice, square and with odd numbered side lengths. In 
theory, a window can be any dimension, but again, practical calculation 
problems occur for even sizes and non square shapes of windows. 

• The relative size of the window and the objects in the image will determine the 
usefulness of the texture measure for classification. 

• It is expected that different objects will have different characteristic texture measures. 
To capture this, the window must be smaller than the object, but big enough to cover 
the characteristic variability of the object 

o Example: The texture of a forest is determined by light and shadow among tree 
crowns. A window covering one tree will not measure the texture of the forest. A 
window covering the entire forest and the fields next to it will not measure the 
texture of the forest either. 

• Windows used for texture, like those used with filters, always have an "edge effect" 
where the window overlaps the border between distinct objects on the image. 



To see the edge effect of window size, compare these images. They are all 
entropy calculations, and use the same parameters, except to vary window size.  
 

Entropy, 5x5 window Entropy, 7x7 window Entropy, 19x19 window 

   

 
The “edges” appear white or pale. This is because a window partly over one natural 
texture and partly over another – along the edge between them – will very likely be less 
ordered than a window entirely inside a patch of similar texture. Less ordered windows 
write a higher entropy result to the texture image, and when viewed on a screen higher 
values are lighter in tone.  

 
Click to return to the section on information about window edges.  
  

Co-occurrence of two pixels: some basic ideas  

Spatial relation: The relation between reference and neighbour may be in any one of 8 
directions (N, S, E, W, or the four diagonals). Only half of these are actually used, since W is the 
opposite of E and there are simpler ways to account for W than counting it separately. 
"Spatially invariant" relations may be chosen by counting in four directions (N, NE, E, SE) and 
then summing the counts.  
   

Why only two pixels? It is in theory possible to choose three or more pixels in a given relation 
(for example, a reference pixel, its neighbour to the right and also its neighbour to the NE). 
However, this becomes extremely unwieldy for calculations and is not an operational 
procedure. Besides, experience has shown that the simpler texture measures are generally 
more useful than are more complex ones in terms of improving classification accuracy. A 
calculation involving three pixels would be "third order" and so forth.  
   
   

 

 



There is a very large number of possible texture measure calculations within software GLCM 
algorithms: how to choose  

 Note for the person not working with remotely sensed images: This section applies only 
to large images where texture is run using one of the standard image processing software 
algorithms. It is possible to calculate texture for any given input matrix of numbers using 
statistical software. It is possible to do the same using a spreadsheet for one’s own purposes. 
However these methods will input one matrix and give one number as output for each measure. 
They do not “move” the window, and do not build up a texture image that can be used in 
conjunction with spectral channels. If your purposes are strictly to understand the calculations, 
or for some reason only need one measure for one matrix, then this section is not needed. If you 
only have access to such one-input software, you will need to make your own app to ingest the 
series of matrices and output the series of results in the correct spatial configuration.  

Texture measurement requires the choice of  

• window size, 
• direction of offset, 
• offset distance, 
• which channel to run, 
• which measure to use. 

 
FAQ: Why is this a problem? Answer: It would be conceptually reasonable to have, for 
example, 7 window sizes, 5 directions, 3 distances, 6 channels and 10 measures, for a 
total of 6,300 measures for a single TM image! This is clearly impractical – and even then 
would not represent all possibilities. Besides, many of these channels would be highly 
correlated with one another, thus biasing and procedure they were used with. Thus we 
are left with either taking defaults, random choice, or some kind of heuristics to decide 
which to use. Hall-Beyer (2017) explores a limited but representative number of these 
choices among which measures for differing window sizes and channels, and 
demonstrates a heuristic that is derived from understanding of the GLCM procedure. To 
see how this is done, refer to that article.  

However, there are some rules of thumb, which can at least be an improvement over pure 
random or default choice. 

• Visual examination of the image channels can help eliminate some of them. Can you see 
different textures better in some channels than in others? For example, for vegetation, 
the nir and red channels would be most useful, or some combination of them such as a 
vegetation index. This is because there is a functional relationship between vegetation 
identification and the red and nir channels. Principal components can also reduce 
channel numbers. If this rule is used in the example above, it will reduce 6 Landsat 



channels or 4 r,g,b,nir image channels, to one. That would reduce the possibilities in the 
exmple above to 1050. 

• Visual examination will also show any directionality that is likely to be important on the 
image. If there is none, "spatially invariant" (average of all directions) is the best choice. 
By eliminating 4 directions, possibilities are reduced to 210. 

• A distance between pixels is almost always 1 pixel. By eliminating 2 distances, we are 
down to 70. 

• Many of the texture measures are correlated with one another. There are really only at 
most 4 or 5 truly independent textures (see correlation). By reducing to 4 measures we 
are down to 28 possibilities. How to do this? Calculate and look at correlation statistics, 
choosing one of a highly correlated group, or calculate and perform PCA on them and 
use only the first 3 or 4 components, or check out Hall-Beyer (2017) for a rule of thumb 
and its justification.  It might also be useful to choose one from each group (contrast, 
order and descriptive statistics) mentioned above, or either the edge or patch interior 
texture groups in Hall-Beyer (2017). 

• With this number, techniques of feature selection can be used (comparison of mean and 
minimum Bhattacharyya Distance, for example). 

Example: Clausi (2002) worked on classification using texture of SAR (radar) sea ice 
imagery. He analyzed correlation among textures to determine the best subset of 
texture measures. He found that Contrast, Correlation and Entropy used together 
outperformed any one of them alone, and also outperformed using these and a 
number of others all together. If only one can be used, he recommends choosing 
among Contrast, Dissimilarity, Inverse Difference Moment Normalized (what we 
have called Homogeneity) or Inverse Difference normalized (what we have called 
Similarity). Clausi also summarized the texture measures found to be useful in a 
number of SAR sea-ice studies. He found Entropy always used, and Contrast and 
Correlation a close second (Clausi 2002 Table 2, p. 47). 

Hall-Beyer (2017) systematically examined associations of different texture 
measures over three Landsat images and three window sizes, to find commonalities 
that might serve as rules of thumb in selecting texture measures for classification 
problems. Texture measures were separated into groups more suited to finding 
edges and those more suited to distinguishing the textures on the inside of patches 
of a given ground cover. The distilled recommendations found can be summarized as 
“choose Mean and, where a class patch is likely to contain edge-like features within 
it, Con. Cor is an alternative for Mean in these situations, Dis may similarly be used 
in place of Con. For more detailed texture study, add Ent.”. 

 

Click here if you want to go to the texture calculations section.  
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Correlation of texture measurements with one another  
Because of the way the texture equations are constructed, many of them are correlated with 
one another.  

Example: Contrast uses a weight of (i-j)2 and Dissimilarity uses a weight of (i-j). 
Otherwise there is no difference between them. The range of values will be 
different, but the two measures contain essentially the same information. Since 
correlation coefficients are a measure of linear correlation, and these two 
texture measures will be related exponentially, r2 will not be 1.0. Nonetheless it 
is very high. 

Most of the texture measures within a given group are strongly correlated. GLCM Variance, 
being a measure of variability, is commonly closely correlated to the measures within the 
contrast group. The following values all assume the same window size. The correlation 
coefficient will vary somewhat from image to image, but the general trend is clear. In the image 
shown below,  

• Homogeneity is correlated with Contrast,  r2 = -0.80 
• Homogeneity is correlated with Dissimilarity, r2 = -0.95 
• GLCM Variance is correlated with Contrast,  r2= 0.89 
• GLCM Variance is correlated with Dissimilarity,  r2= 0.91 
• GLCM Variance is correlated with Homogeneity,  r2= -0.83 
• Entropy is correlated with ASM,  r2= -0.87 

GLCM Mean and Correlation are more independent. For the image below,  

• GLCM Mean shows  r2< 0.1 with any of the other texture measures 
demonstrated in this tutorial. 

• Correlation shows  r2<0.5 with any other measure. 

 
Practically, then, for classification purposes choose one of the contrast measures, one of the 
orderliness measures, and two or three at most of the descriptive statistics measures. Which 
one will depend on the textures of the classes desired. Consult a good image processing 
textbook for more information on feature selection.  
 

  



Examples of various texture calculations, on an image.  

 

Description of the image  
The image used is excerpted from Path 41, Row 25 of Landsat 7 ETM+, dated 4 
September 1999, shown with north at the top. This is an area in the Rocky Mountain 
Foothills near Waterton Lakes National Park, Alberta. The western edge of the image 
contains steep slopes and deep valleys. To the east is both grassland and annual crops, 
mostly grains. The eastern area is dissected by numerous small streams or 
"coulees."  This image provides a variety of textures and edges. Standard false-colour 
representation is used to highlight differences within vegetated areas and between soil 
and vegetated areas, as these are the main ground cover distinctions of general interest. 

Two areas (subregions) have been circled in all images to make comparisons easy.  



Entire image in red band (ETM+ band 3) alone. This band will be used for all following 

texture images.  

 

Image at maximum spatial resolution (1:1) around each subregion (red circled) area: 

 
 

 



SERIES OF IMAGES OF COMMONLY USED GLCM TEXTURE MEASURES 
 
Detailed views of northern subregion (top) and southern subregion (bottom), 
showing pixel value relationships between adjacent pixels. Visual comparison 
with the idea of “contrast” in mind would be useful to understanding 

 
 
 

 
  



The textures below were run using a 7x7 window on the red band. All used the invariant 
direction, which is an average of all four spatial arrangements. Pixel offset of 1 (i.e. pixels and 
their adjacent neighbour constitute the pairs for the GLCM count).  
 

CONTRAST GROUP 
 
CONTRAST 

 
 

DISSIMILARITY 

 
 



GLDV MEAN, which is identical in calculation to GLCM DISSIMILARITY: GLDV MEAN on left, 
GLCM DIS on right (and above). This shows that simply accepting all texture measures in a 
software program is not efficient! Make sure the ones selected are not redundant and do what 
you want.  

  

 

HOMOGENEITY 

 

 
        

END OF CONTRAST GROUP 

  



ORDERLINESS GROUP 

ASM: 

 
 
 

ENTROPY 

 

  



Comparison of Entropy calculated using the GLDV (left) and GLCM (right). Once again, these are 
identical, as with the DIS calculations above. 

  

 

END OF ORDERLINESS GROUP 

  



DESCRIPTIVE STATISTICS GROUP 

 

GLCM MEAN 

 
    
 

GLCM STANDARD DEVIATION (VARIANCE) 

 
 
 



GLCM CORRELATON 

 

 

END OF DESCRIPTIVE STATISTICS GROUP 
 

  



COMPARISON OF DIFFERENT SPATIAL RELATIONSHIPS 

 The following are all entropy calculations using a 7x7 window: 

Spatial (0,1) and (0,-1):  this is a "vertical" relationship, both "north" and "south". The area just 
north of the rightmost circle shows distinctive traces of a vertical alignment. Notice that a 
directional texture measure will show direction visibly where such a directionality of pixel 
contrast occurs on the image: it does not force a directional outcome where there is no such 
alignment on the original image.  

 

 

Spatial (1,1) and (-1,-1): a NE-SW diagonal relationship 

 
 

  



ANSWERS TO EXERCISES 

 

1. Exercise: use the test image and a south spatial relationship (reference pixel and the 
neighbour below it) to test understanding. Fill in the blanks.  
                                                                    Test image grey levels:  

0 0 1 1 

0 0 1 1 

0 2 2 2 

2 2 3 3 

 
   

                                                            Framework matrix:  

0,0 0,1 0,2 0,3 

1,0 1,1 1,2 1,3 

2,0 2,1 2,2 2,3 

3,0 3,1 3,2 3,3 

 
   

                                    

Count 
(south) 
matrix 

+ Transpose 
(north) = Symmetrical 

(vertical) 

3 0 2 0  3 0 0 0  6 0 2 0 

0 2 2 0  0 2 0 0  0 4 2 0 

0 0 1 2  2 2 1 0  2 2 2 2 

0 0 0 0  0 0 2 0  0 0 2 0 

 



 

Symmetrical (vertical) matrix divided by the sum of the elements (24) =  

                                                                Normalized symmetrical vertical GLCM  

.249 0 .083 0 

0 .166 .083 0 

.083 .083 .083 .083 

0 0 .083 0 

 
   
Click here to return to exercise 1 place in main document   
  



2. Exercise:  

Calculate the GLDV for the vertical relationship.  
   

A difference of occurs this many times normalized  
(divided by sum of column 2) 

0 12 .500 

1 8 .333 

2 4 .166 

3 0 0 

 
   
   
Click here to return to exercise 2 place in main document   
  



3. Self test:  

a. What is the degree of this measure?  

Ans. Second degree 

 
   
b. What does a Contrast of 0 mean?  

Ans. In such an image there is no difference between any reference pixel and its neighbour. All 
non-zero values in the GLCM are along the GLCM matrix diagonal. This GLCM refers to a 
horizontal spatial relation. Therefore the Contrast of 0 for this GLCM does not mean pixels are 
necessarily the same as those above, below or diagonal to them. Visually, this means that the 
image consists of "stripes" of equal GL values running E-W. It says nothing about how wide the 
stripes are.  

Similarly, a Contrast of 0 in a vertical spatial relationship would mean the image has stripes 
running N-S. Contrast of 0 in all directions would mean an entirely uniform image.  
  

Click here to return to self-test 3 place in main document    



4. Exercise: Calculate the Contrast for the vertical GLCM and compare it with the Contrast for 
the horizontal GLCM  

Calculation: Vertical Contrast  
 

Contrast 
weights X vertical GLCM     = multiplication result 

0 1  4  9  0.249 0 0.083 0  0 0 .332 0 

1 0  1  4  0 .166 .083 0  0 0 .083 0 

4 1  0  1  0.083 0.083 0.083 0.083  0.332 .083 0 .083 

9 4  1  0  0 0 .083 0  0 0 .083 0 

Sum of all elements in the multiplication result table = 0.996  

 The result is actually = 1 if rounding is not carried out at every step to the same decimal places 
as above. You may get a value of 1 if calculated on a spreadsheet, depending on the decimal 
place settings.  
   

Here are the detailed, step by step calculations. The weight matrix is the result of the 
calculations inside parentheses:  

 .249*(0-0)2 + .0*(0-1)2  + .083*(0-2)2 + 0*(0-3)2  +  
 .0*(1-0)2  + .166*(1-1)2  + .083*(1-2)2  +   0*(1-3)2 +  
 .083*(2-0)2 + .083*(2-1)2 + .083*(2-2)2 + .083*(2-3)2 +  
 0*(3-0)2 + 0*(3-1)2 + .083*(3-2)2 + 0*(3-3)2  

 = .250(0) + .083(4) + .166(0) + .083(1) + .083(4) + .083(1) + .083(0) + .083(1) + .083(1)  

 =  .332 + .083 + .332 + .083 + .083 + .083  

 = .996 

Horizontal Contrast = .586 (link to calculation); vertical contrast = .996. Contrast is higher in the 
N-S direction than for the E-W direction.  
 
Click here to return to exercise 4 place in main document    



5. Exercise: Try out the Dissimilarity calculation for the horizontal image and compare the value 
with Contrast for the same matrix:  
   

Calculation: Vertical Dissimilarity:  
 

Dissimilarity  weights X Vertical GLCM                = multiplication result 
0 1 2 3  .280 0 0.083 0  0 0 .166 0 

1 0 1 2  0 0.166 0.083 0  0 0 0.083 0 

2 1 0 1  0.083 0.083 0.083  0.083  0.166 0.083 0 .083 

3 2 1 0  0   0 0.083 0  0 0 .083 0 

 
sum of all elements in the multiplication result matrix = .664  

Vertical Dissimilarity is 0.664; vertical Contrast is 0.996 (link to vertical Contrast exercise 
answer). Contrast gives a higher number than does Dissimilarity, which is as expected since 
Contrast weights are larger for every pixel more than 1 off the diagonal.  This indicates that 
the actual number resulting from the calculation is only important in relation to the same 
texture measure number in other windows elsewhere on the image.    

Also, compare horizontal with vertical Dissimilarity. Is the pattern the same as for horizontal vs 
vertical Contrast?  

Calculation: Horizontal Dissimilarity:  
                        Dissimilarity  weights      X   Horizontal GLCM    =        multiplication result  

0 1 2 3  0.166  0.083 0.042 0  0 .083 .084 0 

1 0 1 2  0.083 0.166 0 0  .083 0 0 0 

2 1 0 1  0.042   0 0.249  0.042  .084 0 0 .042 

3 2 1 0  0   0 0.042 0.083  0 0 .042 0 

sum of all elements in the multiplication result matrix = .418  

Vertical matrix Dissimilarity is 0.664, horizontal is 0.418. The Dissimilarity is greater in a N-S 
direction than in an E-W direction. Both Contrast and Dissimilarity show greater contrast in N-
S than in E-W. This is as expected since both measure the same thing in different ways.  

 
 Click here to return to exercise 5 place in main document  



 6. Exercise: Calculate the homogeneity value for the horizontal GLCM and compare it with the 
Dissimilarity value.   Homogeneity = .807   Dissimilarity = .418  

Homogeneity calculation:  

homogeneity weights:   X  horizontal GLCM  =        multiplication results  

1 .5 .2 .1  .166 .083 .042 0  0.166 0.042 0.008 0 

0 1 .5 .2  .083 .166 0 0  0.042 0.166 0 0 

0 .5 1 .5  .042 0 .25 .042  0.008 0 0.250 0.021 

0 .2 .5 1  0 0 .042 .083  0 0 0.021 0.083 

sum of multiplication results matrix  = .807  
In non-matrix form:  

.166/1 + .083/2 + .042/5 + 0/10 +  

.083/2 + .166/1 + 0/2 + 0/5 +  

.042/5 + 0/2 + .250/1 + .042/2 +  
0/10 + 0/5 + .042/2 + .083/1  

= .166 +.042 + .0084 + 0 +  
.042 + .166 + 0 + 0 +  
.0084 + 0 + .250 + .021 +  
0 + 0 + .021 + .083  

= .807  
   

Click here to return to exercise 6 place in main document    



7. Self-test: The weight used in contrast is (i-j)2. The weight in homogeneity is 1/[1+(i-j)2].  
  a. What would happen if the contrast weight were [1+(i-j)2]?  

  Ans. There would be a slightly larger value, as the diagonal pixels would be weighted as 1. 
 
  b. Would this be a bad thing?  
  Ans. It would still give you a weight increasing exponentially away from the diagonal. But it 
would count pixels with identical values as having a positive value of contrast which would 
seem counterproductive. The main reason the "1+" is in the Homogeneity denominator is to 
avoid having to divide by 0 for pixels on the diagonal (which would essentially give them infinite 
weight). 
 
  c. What degree is this measure?  
Second degree (it contains a squared term in the denominator). Whether the square is in the 
numerator or the denominator, it is considered second degree. 
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8. Exercise: Do-it-yourself Similarity texture:  
 Homogeneity is the most commonly used measure that increases with less contrast in the 
window. However, it would be easy to use the above model to construct a first degree 
"Similarity" measure.  

Similarity Equation:          
   
   

Calculation for the horizontal GLCM:  

         "Similarity" weights:   X    horizontal GLCM             =                multiplication results  

1.000 0.500 0.333 0.250  0.166 0.083 0.042 0  .166 .042 .014 0 

0.500 1.000 0.500  0.333  0.083  0.166 0 0  .042 .166 0 0 

0.333 0.500 1.000  0.500  0.042  0.25 0.042  .014 0 .25 .021 

0.250  0.333 0.500 1.000    0.042  0.083  0 0 .021 .083 
 
   
   

Sum of multiplication results matrix =  0.804  
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9. Exercise: Perform the ASM calculation for the horizontal GLCM:  
                                                           Pij2:  
   

0.027  0.007 0.002 0 

0.007 0.028 0  0 

0.002 0  0.0625  0.002 

0  0  0.002  0.007 

summed = .145  
   
   

Click here to return to exercise 9 place in main document  
   

  



10. Self test: The maximum value of 1 for either ASM or Energy occurs when all pixels in the 
image are identical. Quickly draw the GLCM for this situation and perform the ASM calculation.  
The GLCM below assumes that all pixels are identical and have a value of 2  

GLCM: 

0 0 0 0 

0 0 0 0 

0 0 24 0 

0 0 0 0 

Normalized, this gives:  

0 0 0 0 

0 0 0 0 

0 0 1.0 0 

0 0 0 0 

 
   

ASM: 1*1 = 1  
Note that this would be the same no matter what value you put in the original image, so long as 
all pixels were identical.  
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11. Exercise: Use a calculator with a ln key to calculate the Entropy value of the horizontal 
GLCM:  

Entropy =  

         ln(Pij):                                            X   horizontal GLCM    =  multiplication results  

-
1.7957 

 -
2.4889 

 -
3.1700 0  .166 .083 .042 0  0.2980 0.2065 0.1331 0 

-
2.4889 

-
1.7957 0 0  .083 .166 0 0  0.2065 0.2980 0 0 

-
3.1700 0 -

1.3862 
-
3.1700 

 .042 0 .25 .042  0.1331 0 0.3465 0.1331 

0 0 -
3.1700 

 -
2.4889 

 0 0 .042 .083  0 0 0.1331  0.2065 

sum of multiplication results matrix = 2.0951  
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12. Exercise: GLCM Mean for the horizontal test image is:  

0*( .166 + .083 + .042 + 0) +  
1*(.083 + .166 + 0 + 0) +  
2* (.042 + 0 + .250 + .042) +  
3* (0 + 0 + .042 + .083)  

= .249 + 2(.334) + 3(.125) = .249 + .668 + .375   = 1.292 

 
GLCM Mean for the vertical test image is:  

0*(.250 + .083) +  
1*(166 + .083) +  
2*(.083 + .083 + .083 + .083) +  
3*( .083) 
=1.162 

 
This was not asked, but the mean for the original pixel values in the window is 1.25. This would 
be a first-order "texture" measure, though it is difficult to see how it could be called texture in 
any practical sense.  
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13. Exercise:  
Calculate the GLCM Variance texture for both the horizontal and vertical GLCM of the test 
image to see if they are the same.  

GLCM Variance (horizontal) =  

.166(0-1.292)2 + .083(0-1.292)2 + .042(0-1.292)2 + 0 +  

.083(1-1.292)2 + .166((1-1.292)2 + 0 + 0 +  

.042(2-1.292)2 + 0 + .250(2-1.292)2 + .042(2-1.292)2 +  
0 + 0 + .042(3-1.292)2 + .083(3-1.292)2  

= 1.039067 

 
GLCM Variance (vertical) =  

.250(0 -1.162)2 + 0 + .083(0 -1.162)2 + 0 +  
0 + .166(1 -1.162)2 + .083(1 -1.162)2 + 0 +  
.083(2 -1.162)2 + .083(2 -1.162)2 + .083(2 -1.162)2 + .083(2 -1.162)2  
0 + 0 + .083(3 -1.162)2 + 0  

=.969705 

 
Variance calculated on the original image values rather than on the GLCM = 1.030776  
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14. Exercise: Calculate the Correlation measure for the horizontal test image. Do the GLCM 
GLCM Mean and GLCM Variance exercises first and use their results.  

Link here to the answers to exercise 12 (GLCM Mean) and exercise 13 (GLCM Variance)   

Hint: Correlation must always be between -1 and +1 before scaling. Any other result shows an 
error.  It is easy to make calculation errors. The most error-free way to do this calculation is to 
set up the formula on a spreadsheet. On a spreadsheet, you can at least be certain that there 
have been no arithmetic errors, even though it is still easy to make an error in entering the 
formula. 

GLCM  Correlation (horizontal GLCM):  
.166[(0-1.292)(0-1.292)]/[(1.039067)(1.039067)].5 +  
.083[(0-1.292)(1-1.292)]/[(1.039067)(1.039067)].5 +  
.042[(0-1.292)(2-1.292)]/[(1.039067)(1.039067)].5 +  
0 +  
.083[(1-1.292)(0-1.292)]/[(1.039067)(1.039067)].5 +  
.166[(1-1.292)(1-1.292)]/[(1.039067)(1.039067)].5+  
0+  
0 +  
.042[(2-1.292)(0-1.292)]/[(1.039067)(1.039067)].5+  
0 +  
.250[(2-1.292)(2-1.292)]/[(1.039067)(1.039067)].5 +  
.042[(2-1.292)(3-1.292)]/[(1.039067)(1.039067)].5 +  
0 +  
0 +  
.042[(3-1.292)(2-1.292)]/[(1.039067)(1.039067)].5 +  
.083[(3-1.292)(3-1.292)]/[(1.039067)(1.039067)].5  

=  

0.2770978/1.07966 +  
0.0313129/1.07966 +  
-0.038419/1.07966 +  
0.0313129/1.07966 +  
0.0141538/1.07966 +  
-0.038419/1.07966 +  
0.125316/1.07966 +  
0.0507891/1.07966 +  
0.0507891/1.07966 +  
0.2421329/1.07966  

= (continued on next page) 



0.2566528 +  
0.0290026 +  
-0.035584 +  
0.0290026 +  
0.0131095 +  
-0.035584 +  
0.1160698 +  
0.0470417 +  
0.0470417 +  
0.2242677 +  

= 0.69102 

For those who have referred to a previous version of this document, note that the calculations 
are correct, but that I had mistakenly inserted the variance value instead of the std dev value 
into the equation. The equation uses σ2, which is of course the same as the variance. I had 
previously squared the variance, which is of course incorrect. It has been corrected here. 

Several people asked why the equation included two separate terms for σ2, one in the i and one 
in the j direction. In this example the values are the same, so why not just collapse the equation 
from (σ2 * σ2 )0.5 to σ2 ? The uncollapsed form is easier to follow, and it is not the case that the i 
and j sigmas are always the same. We have used the normalized GLCM throughout this tutorial. 
However for directional purposes (east vs. west, not vertical vs. horizontal) one might want to 
have the GLCM non-symmetrical, in which case the sigma i and sigma j would be  different.  
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