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SUPERVISORY COMMITTEE:

DR. EDGAR GARDUÑO ÁNGELES
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Resumen

La segmentación de imágenes es básicamente el punto de partida para el desarrollo de nuevas

aplicaciones basadas en visión por computadora, tales como procesamiento de video, manejo

de veh́ıculos autónomos, detección de objetos, diagnóstico médico, animación, entre otros.

Además, la inteligencia artificial es crucial a medida que contribuye con las bases de algoritmos

más sofisticados mientras que datos masivos son aprovechados. Por otro lado, los métodos

variacionales y sus ráıces son considerados aún como una sólida alternativa que han sido

eficientemente probados desde que surgieron.

Los contornos activos (AC) se han convertido en una herramienta popular dentro de los

métodos variacionales. Básicamente, un conjunto de contornos activos móviles es utilizado

para comparar diferentes regiones de una imagen con el fin de alcanzar un balance de regular-

idad, lo que nos permite particionar regiones de manera semiautomática y generar distintas

escenas. Un funcional dado, relacionado al balance de intensidades, debe ser resuelto con el

fin de obtener la varianza mı́nima entre todas las regiones resultantes. Esta solución permite

a los AC ser modelados como un problema de optimización.

El trabajo de esta tesis se encarga de estudiar la base de los métodos variacionales para

abordar el problema de segmentación multiclase. Nuestro objetivo es proporcionar diferentes

versiones de un nuevo modelo de AC y abordar problemas prácticos en tareas de segmentación

como degradaciones, inhomogeneidades de la imagen e incluso proponer una alternativa para

los problemas relacionados con bases de datos limitadas, las cuales son útiles en la etapa de

entrenamiento para algoritmos de aprendizaje. El estudio propuesto también destaca la im-

portancia de las caracteŕısticas de textura como buenos descriptores en tareas de clasificación

o segmentación con aplicaciones potenciales en tecnoloǵıas de visión por computadora.

El trabajo actual también incluye un estudio de cómo superar las limitaciones que surgen

de la naturaleza de los AC al proponer nuevos modelos h́ıbridos. Por ejemplo, el conocimiento

previo sobre un objeto de interés como la forma y la ubicación, son a menudo requisitos para
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un proceso posterior de segmentación. Esto hace que la interacción del usuario juegue un

papel clave en la influencia para discernir entre los métodos semiautomáticos de los totalmente

automatizados. Estos últimos permiten a los ordenadores gestionar técnicas de segmentación

de extremo a extremo (del inglés end-to-end), muy solicitadas en la actualidad.

Finalmente, el modelo propuesto es evaluado para la segmentación de múltiples regiones

el cual revela cómo tratar con imágenes multicanal. Probamos nuestros métodos con datos

públicos, privados y sintéticos, mientras que las imágenes médicas contribuyen en gran medida

a los experimentos. Aśı mismo, proporcionamos la teoŕıa para que el llamado modelo de AC

multifase-vectorial se incluya tanto en las mejoras recientes de los métodos variacionales

como en el área de inteligencia artificial. Mostramos la capacidad del método propuesto para

combinarse con una alta confiabilidad a medida que los modelos h́ıbridos ganan fuerza con

el tiempo.



Abstract

Image segmentation is basically the starting point in the development of further vision-based

applications, i.e. video processing, autonomous driving, object detection, medical diagnosis,

photo animation, etc. Moreover, artificial intelligence is crucial as long as it contributes with

the basis of more sophisticated algorithms while big data is exploited. On the other hand,

variational methods and their roots are still considered as a solid alternative that have been

efficiently tested since they emerged.

Active contours (AC) became widely popular in segmentation among the variational meth-

ods. Basically, a set of active evolving curves is used to compare different regions trying to

reach a balance of regularity which leads to a semiautomatic region partitioning into different

scenes. Precisely, a given functional related to this balance must be solved in order to obtain

the minimum variance quantity among all the resulting regions. This solution allows AC to

be studied as an optimization problem.

The work in this thesis is concerned with variational methods to address the multiclass

segmentation problem. Our aim is both to provide different versions of a novel active con-

tour model, and to tackle practical segmentation issues such as degradations, image inho-

mogeneities or even short datasets available for training purposes. The proposed study also

highlights the importance of texture features as good descriptors in segmentation tasks with

potential applications in computer vision technologies.

The current work also includes a study of how to overcome the limitations emerged from

the nature of AC by proposing new hybrid models. For instance, prior-knowledge information

of the object of interest such as shape and location is often required for a subsequent process

of image segmentation. This makes the user interaction to play a key role in the influence

to distinguish semiautomatic from fully automated methods. The latter allows computers to

manage end-to-end segmentation techniques, highly requested nowadays.

Finally, the assessment of the proposed model for multiple region segmentation reveals
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how to deal with multichannel images. We tested our methods with public, private and

synthetic data, whereas medical images highly contribute in the experiments. We hereby

provide the theory for the so-called vector-valued multiphase AC model to be included in

both recent improvements of variational methods and artificial intelligence. Furthermore, we

show the ability of the proposed models to be combined with high reliability, whereas hybrid

models gain strength over time.
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Chapter 1

Introduction

We may regard the present state of the universe as the effect of its past and the cause of its

future. An intelligence which at a certain moment would know all forces that set nature in

motion, and all positions of all items of which nature is composed, if this intelligence were

also vast enough to submit these data to analysis, it would embrace in a single formula the

movements of the greatest bodies of the universe and those of the tiniest atom;

for such an intelligence nothing would be uncertain and,

the future just like the past would be present before its eyes.

- Pierre-Simon Laplace, 1814

’Laplace’s Demon’ (Essai philosophique sur les probabilités)

In the past decade, computer vision technologies have evolved dramatically. Nowadays,

several applications involve image processing such as face recognition, object identification,

video analysis, medical diagnosis, vision in robots and autonomous vehicles, etc. Many com-

puter vision tasks require an intelligent agent to accurately perform image segmentation and

then enable the corresponding analysis of interpretation. Nowadays, such understanding uses

powerful complex models based on artificial intelligence (AI) to figure out at unimaginable

levels what a single pixel represents exactly in our reality. This fact drives algorithms to

reach perfection in the assessment of certain tasks. Which lead us to wonder: How big is the

current gap between how AI interprets and how we humans do? Figure 1.1 illustrates how

AI and computer vision technologies overlap somehow.
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2 Chapter 1. Introduction

Figure 1.1: Relation between computer vision and artificial intelligence

1.1 Image segmentation

The problem of image segmentation (IS) dates back to the beginning of computer vision.

In brief, segmentation consists of partitioning a given image into a collection of regions, or

finding edges that delimit those regions for a subsequent characterization in meaningful scenes

[Petrou, 2010]. Since the image acquisition nature provides an infinite number of possible

scenes, several algorithms have been proposed in the literature to provide with an accurate

identification of an object of interest. Features such as pixel intensity, color, texture or edges

have been the most used characteristics to solve the segmentation challenge.

In fact, segmentation can be seen as a particular type of a pixel-wise classification problem,

that can be split into two separate yet equally important groups:

� Semantic segmentation — Classification of all the pixels of an image into meaning-

ful classes. Such classes are semantically interpretable and correspond to real-world

categories.

� Instance segmentation — It is able to identify each object instance in an image. The

main difference from semantic segmentation is that it can not categorize every pixel.

1.1.1 Approaches and techniques

In the design of IS algorithms, there are various techniques based on the image type to be

processed and analyzed. They can be classified mainly into three broader categories as below
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Figure 1.2: Segmentation task viewed as pixel-wise classification process to identify isolated
objects or multiple classes.

[Gonzalez and Woods, 2018]:

1. Structural — The structural segmentation approach mainly focuses on a particular

region to segment. This set of algorithms makes use of information such as density,

distributions, histograms, color distribution, etc. Structural methods perform firstly

the identification of the target area, which is linked to a specific segmentation problem.

2. Stochastic — In the stochastic segmentation approach, the primary information re-

quired is the pixel values rather than the structure of certain portion in the image.

Those methods included in this group are highly effective in the case of analyzing large

image datasets, where high uncertainty is faced in terms of the required region to be

segmented.

3. Hybrid — As the name suggests, hybrid segmentation methods integrate both structural

and stochastic approaches. Region-based and pixel-based information are required to

boost the strength and augments accuracy of the segmentation process jointly.

According to the aforementioned IS approaches, the type of analysis needed produces sev-

eral methods and the choice of the suitable algorithm depends on the nature of the problem.

For instance, noise is an undesired element that is present in most of the applications and its

study has became challenging since the origins of signal processing, hence some methods are

forced to improve their robustness to deal well with common degradations.

� Thresholding Methods — These methods focus on finding a suitable value (threshold)

commonly based on histograms. The resulting map provides with two or more disjoint

regions, each region is associated to those pixels located within a threshold range.
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� Edge-based Methods — Edge-based segmentation algorithms accomplish edge detection

based on locating discontinuities in intensity, colour, texture, brightness, saturation,

contrast, etc. To further improve the obtained results, a post-processing step is required

to connect all the edges that correspond better with the borders that delimit the objects

of interest.

� Region-based Methods — These methods consist of creating segments by dividing the

image into various regions of similar characteristics. Hence, two techniques can be

employed: Region growing or region splitting/merging.

� Clustering — Methods based on clusters can be considered as unsupervised algorithms

unlike classification algorithms, where features, classes, or groups are not well defined.

A clustering algorithm identifies groups in the data and assigns each data point to

certain group based on similarity and location in the corresponding feature space.

� Watershed Method — In watershed segmentation, the input image is regarded as a to-

pographic surface. The values in the surface are commonly represented by the intensity

pixel levels or their gradient magnitude. Some watershed methods can be included as

part of region-based methods due to their origins rely on mathematical morphology.

� PDE-based methods — Partial Differential Equation (PDE) models base their theory

on variational calculus. The most relevant technique for image segmentation is known

as active contours or snakes, that models the segmentation problem by using a PDE.

Some famous methods of PDE used for image segmentation are Snakes, Level-Set, and

the Mumford shah method.

� Neural Networks — Among the trainable techniques of machine learning, neural net-

works are supported and powered by modern deep learning technology. Basically, neural

networks are a set of mutually connected networks that adjust their own parameters

according to training and validation processes. The current increase in computer capa-

bilities such as speed, reliability, adaptability and storage, sets neural networks as one

of the most efficient and preferable methods for IS.

Moreover, IS methods may also follow the machine learning classification standpoint, this

leads certain algorithms to be labeled as supervised or unsupervised methods. The supervised

classification is based on the available data to describe a training set. The training set includes

the number of known samples for each class whereas intraclass homogeneity helps to better

discriminate among classes. On the other hand, unsupervised classification does not require



1.2. Active contours preliminaries 5

previous knowledge of the classes, but the algorithm computes automatically a batch of those

similar features within the same class.

1.2 Active contours preliminaries

Variational methods for image processing address the problem of IS by determining the so-

lution of an equation corresponding to the minimization of certain functional and finally

obtain a PDE [Kass et al., 1988]. Within this scope, active contours possess several advan-

tages like the easy extension to multiple dimensions. Moreover, the functional that controls

convergence can be adapted to different region segmentation criteria instead of the traditional

gradient-based benchmark.

Figure 1.3: Active contour evolving process.

An important contribution to this area includes region-based methods of active contours,

which were originally conceived to separate different regions by means of evolving contours

related to a specific functional. Several advantages can be quoted since active contours use

the theory of level sets by [Osher and Sethian, 1988], adapting the problem to a discrete model

so they handle complex topological changes automatically and they can be implemented by

efficient stable numerical schemes. Furthermore, active contours do not require a training

stage making this tool an unsupervised technique with numerous applications.

1.2.1 A review of medical imaging applications

Active contours (AC) were initially conceived to separate two regions. The work of [Chan

and Vese, 2001] represents the beginning of an era in the field of computer vision and pattern

recognition. In the literature, numerous AC methods have been proposed and have drawn

a lot of attention from many research areas being medical imaging one of the most studied

applications. The non-invasiveness of image acquisition allows methods based on digital

processing techniques to be widely used to diagnosis and ambulatory care purposes. For
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instance, Chunming Li et al. introduced a region-based AC model in order to overcome the

issues caused by inhomogeneities with applications to magnetic resonance imaging (MRI)

segmentation in [Li et al., 2011]. A recent study of [Badshah et al., 2020] reveals the benefits

of smoothing homogeneous regions by accentuating boundaries for an appropriate tumor

detection in MRI and mammogram images. A similar application developed by [Moreno et al.,

2014] proposed an efficient implementation of a binary partitioning function that accurately

segments disjoint brain regions in MRI. This became useful for an accurate brain lesions

detection as stated in [Nabizadeh and Kubat, 2017], where authors include an efficient texture

description achieving satisfactory performance at reasonable computational cost compared

to the state-of-the-art methods.

Computed tomography (CT) segmentation with AC models have also appeared on stage.

Among the most relevant studies for Lung segmentation, the proposed by [Rebouças Filho

et al., 2017] extends the traditional 2D AC technique to handle volumes and assist in the

diagnosis of pulmonary disease. By including texture features to the segmentation models

demonstrates a high improvement for measuring the cardiac movement in the works of [Barba-

J et al., 2017, Olveres et al., 2017].

On the other hand, ultrasound (US) segmentation is still a challenging task for any IS

model because of the low quality and contrast provided by US devices. Nonetheless, some

AC-based techniques have shown good results when they include a pre-processing stage to

deal with speckle noise. The use of local entropy suggested by [jing Zong et al., 2019] improves

automatic US segmentation. The method presented by [Keatmanee et al., 2019] includes a

refined initialization stage to aid in breast cancer diagnosis.

1.2.2 A review of industry applications

Alternative applications of CT image segmentation has been extended to the industry, such

is the work presented by [Liu et al., 2013b] where authors include a 3D model of AC that can

be widely applied in many areas of non-destructive testing and non-destructive evaluation

such as aviation, railway, manufacturing, military industry, satellite, etc. In the case of

satellite imagery, remote sensing is a relevant field of image processing, and IS has gained

a lot of attention since it has become the main required task for remote analysis. Among

the applications to this area, [Liu et al., 2013a] submitted a proposal of an AC algorithm

to extract geospatial objects with irregular shape, while [Han and Wu, 2017] used the cross

entropy measurement embedded in the classic AC model for river segmentation.
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Tracking is based on matching the object appearance between successive frames of a

video sequence, [Paragios and Deriche, 2000] suggested to use AC in their work because

shape information can be preserved along the data frames, their work achieved good results

for detecting and tracking multiple moving objects in data frames. The mathematical mor-

phology of AC allows adapting models to multiple dimensions, in [Yagi et al., 2000] authors

proposed road tracking with 3D shape reconstruction for smart vehicles. A similar technique

applied to biomedicine was developed by [Zimmer et al., 2002] to videomicroscopy for track-

ing migrating cells with applications to drug testing, while [Ouabida et al., 2017] performed

iris segmentation and tracking in eye motion video datasets.

1.2.3 Main drawbacks

Despite the huge range of applications existing in the literature, the certainty level of reaching

a local/global minimum and the speed of convergence is one of the main unknowns of AC.

The certainty varies according to the model and application which actually depends on how

close the initial contour is placed to the object of interest. Thus, a good initialization plays

a very important role in the final segmentation result and the number of iterations required.

Another important aspect to consider is the fact that user interaction is often required for

performing parameter tunning, this process helps guiding the correct evolution of curves and

regulate the movement. In this thesis, we present a successful reformulation to address the

main limitations of AC while providing an automated model for multiple class segmentation

that can handle texture cues.

1.3 Thesis outline

Chapter 2 presents a general description of variational methods and techniques in computer

vision, which has served as basis of the current work. In Chapter 3 we provide a review of the

traditional AC model and its different versions, which have been widely studied in the era

of image processing. The proposed model is addressed and extended in theory in Chapter 4

whereas the Chapter 5 provides the results reached in this work and future trends. Finally,

Chapter 6 concludes this work while we briefly discuss the ethics implications of the current

AI-based systems and scopes.





Chapter 2

An overview of calculus of

variations

Everything proceeds mathematically... if someone could have a sufficient insight into the

inner parts of things, and in addition had remembrance and intelligence enough to consider

all the circumstances and take them into account, he would be a prophet

and see the future in the present as in a mirror

- Gotfried Leibniz, 1680.

Analogous to the usual methods of classic calculus, calculus of variations deals with func-

tionals, see diagram in Figure 2.1. Briefly, a functional is defined as a function of another

function. Most real world problems can be formulated as optimization problems, i.e., mini-

mization or maximization of functionals. The assumption that all things in nature seek out a

lower energy state makes calculus of variations extensively applied in physics. For instance,

the problem of finding the minimum energy that a particle reaches under certain condition

can be solved with calculus of variations. In image processing, the goal of many applications

is to recover an ideal image from a certain corrupted observation, which is known as an in-

verse problem. Calculus of variations provides in this sense, many advantages for developing

image restoration, denoising, inpainting, segmentation, as the most relevant tasks that can be

addressed as the optimization problem of finding the best solution from all feasible solutions.

In this chapter, we will cover an overview of calculus of variations and optimization pro-

cesses following the description provided by [Spencer, 2016], the latter becomes of particular

interest to this thesis.

9
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Figure 2.1: Two approaches of calculus.

2.1 Inverse problems modeling

As mentioned at the beginning of Chapter 2, an inverse problem begins with data that is the

result of a process and the aim is to find the unknown input. Basically, inverse problems can

be split in two groups: well-posed and ill-posed. Below are presented three main conditions

to define well-posed inverse problems in the sense of Hadamara, [Petrov and Sizikov, 2005]:

1. A solution exists,

2. The solution is unique,

3. The solution depends continuously on the data (stability).

Problems that are not well-posed in the previous sense are considered ill-posed. In the uni-

verse of image processing, inverse problems are typically ill-posed due to issues with unique-

ness and stability. Such is the case of denoising, consider a noisy image z that contains

additive Gaussian noise η where the relation z = I + η is satisfied. The inverse problem of

finding I is called restoration and can be addressed by using variational methods in the sense

of minimizing certain functional. Hence, this problem becomes ill-posed due to the solution

is not unique.

2.2 Variation of a functional

The first variation of a functional can be used to find an unknown function that maximizes or

minimizes a functional. Classical solutions to minimization problems in calculus of variations

are given by boundary value problems involving certain types of differential equations. Let

J(u) : Ω→ < be a functional:

J(u) =

∫
Ω

L (x, u(x),∇u(x))dx , (2.1)
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where Ω denotes some normed linear space that provides a solution of the unknown function

u, ∇u(x) denotes the gradient of u and dx is the n−differential element defined as dx =

dx1, · · · , dxn. We are concerned with the problem of minimizing the functional with respect

to u:

min
u
J(u) . (2.2)

The most important and necessary condition to be satisfied by any minimizer of a varia-

tional integral is the vanishing of its first variation δJ(u):

δJ(u) =
d

dε
J(u+ εφ)

∣∣∣∣
ε=0

= 0 , (2.3)

where φ ∈ Ω is a test function and ε is a real parameter. That is, if u is a minimizer of J(u)

with respect to δu = φ, then Equation (2.3) must be satisfied for all φ with compact support

in Ω. Then we call δJ(u0) the first variation of J at u0 in the direction of φ, for some u0 ∈ Ω.

2.3 Minimization stage

Minimization problems can be analyzed by calculus of variations to characterize the equilib-

rium configurations of almost all continuous physical systems, ranging from elasticity, solid

and fluid mechanics, electro-magnetism, gravitation, quantum mechanics, string theory, and

many others [Olver, 2014]. Certain geometrical configurations, such as minimal surfaces, can

be conveniently reformulated as optimization problems. Moreover, numerical approximations

to the equilibrium solutions of such boundary value problems are based on a nonlinear finite

element approach that reduces the infinite-dimensional minimization problem to a finite-

dimensional problem.

2.3.1 The Gâteaux derivative

Let J be a function on an open subset U of a Banach space V , taking values in a second

Banach space Y . Then we say that J : U → Y is Gâteaux differentiable at u ∈ U in the

direction of φ ∈ Y , if the first directional derivative J ′(u;φ) exists for each test function

φ ∈ V . That is:
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δJ(x) = lim
ε→0

J(u+ εφ)− J(u)

ε
. (2.4)

In other words, the Gâteaux derivative of J(u) is just the derivative of J(u+ εφ) with respect

to ε as it tends toward zero.

2.3.1.1 Remarkable definitions

� Stationary points. Let J : U → < be a function with a solution space U ⊂ V . For

some ũ ∈ U , suppose J is Gâteaux differentiable for all test functions φ ∈ V . Then

ũ ∈ U is said to be a stationary point of J if δJ(ũ) = 0 for all φ ∈ V .

� Local minimizer. A real-valued functional J : U → < defined in a normed space V ,

is said to have a local minimizer at the point ũ, if there exists some ε > 0 such that:

J(ũ) ≤ J(u),∀u ∈ Bε(ũ)
⋂
U ,

with Bε(ũ) = {u ∈ V : ||u− ũ|| < ε}.

� Global minimizer. The global minimizers of a functional J(u) are obtained by ad-

justing the inequalities of local minimizer formulas.

A real-valued functional J : U → < is said to have a global minimizer at the point ũ,

if:

J(ũ) ≤ J(u),∀u ∈ U .

The equation δJ(u) = 0 is called the Euler-Lagrange equation of the original minimi-

sation problem in Equation (2.2). If J(u) is a convex functional, and U is a convex set,

then every local minimizer of J(u) is also a global minimizer.

2.3.2 The Divergence theorem

The divergence theorem is essential to obtain the Euler-Lagrange equations when minimizing

a specific functional. Let F be a continuous differentiable vector field in a domain V ⊂ <n.

Let Ω ⊂ V be a closed bounded region with boundary ∂Ω. The integral of the divergence of

F over Ω and the surface integral of F over the boundary ∂Ω are then related by:
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∫
Ω

(∇ · F )dx =

∫
∂Ω

(F · ~n)ds , (2.5)

∇ · F =
∂F

x1
+ · · ·+ ∂F

xn
, (2.6)

where dx = dx1, · · · , dxn and ds indicate the integration operation with respect to surface

area delimited by ∂Ω, and ~n is the normal unit for each point x ∈ ∂Ω.

2.3.2.1 First variation minimization

Let us consider the problem of finding the first variation of a functional:

J(u) =

∫
Ω
|∇u|dx , (2.7)

defined in the domain Ω ⊂ <2. Recall that εφ consists of the parameter ε → 0 for the

continuous differentiable test function φ in Ω, then we compute:

d

dε
J(u+ εφ)

∣∣∣∣
ε=0

=
d

dε

∫
Ω
|∇(u+ εφ)|dx

∣∣∣∣
ε=0

=

∫
Ω

∇(u+ εφ)

|∇(u+ εφ)|
· φdx

∣∣∣∣
ε=0

=

∫
Ω

∇u
|∇u|

· ∇φdx .

By using the relation based on the divergence theorem and integrating by parts:

∫
Ω

∇u
|∇u|

· ∇φdx =

∫
∂Ω
φ
∇u
|∇u|

· ~nds−
∫

Ω
∇ ·
(
∇u
|∇u|

)
φdx .

We require Equation (2.3) for all test functions φ. This allows us to derive the following

partial differential equation, known as Euler-Lagrange equation:

∇ ·
(
∇u
|∇u|

)
= 0 . (2.8)
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2.3.3 Euler-Lagrange equation for L2

When the functional is a simple integral, the Euler-Lagrange equation gives us a powerful

formula for fast calculation of the derivatives. The integral of Equation (2.1) is also known

as the Lagrangian in honor of the mathematician Lagrange. We usually assume that the

Lagrangian is a reasonable smooth function of all three of its arguments L (x, u, u′).

As stated in the previous sections, the minimizers of an objective function defined on a

finite dimensional space are initially characterized as critical points, where the gradient of the

objective function vanishes. An analogous construction emerged in the infinite-dimensional

context conducted by calculus of variations.

The derivative of the functional J that includes the Lagrangian can be written as follows:

h(ε) = J(u+ εφ) =

∫
Ω

L (x, u+ εφ, u′ + εφ′)dx , (2.9)

by assuming sufficient smoothness, it allows us to include the derivative inside the integral

and solved by using the chain rule:

h′(ε) =
d

dε
J(u+ εφ) =

∫
Ω

d

dε
L (x, u+ εφ, u′ + εφ′)dx ,

=

∫
Ω

[
φ
∂L

∂u
(x, u+ εφ, u′ + εφ′) + φ′

∂L

∂u′
(x, u+ εφ+ u′ + εφ′)

]
dx .

Therefore, by setting ε = 0:

δJ =

∫
Ω

[
φ
∂L

∂u
(x, u, u′) + φ′

∂L

∂u′
(x, u, u′)

]
dx .

Integration by parts is applied to the second term in the previous equation. This leads to:

δJ =

∫
Ω
φ
∂L

∂u
dx+

[
∂L

∂u′
φ′
∣∣∣∣b
a

−
∫

d

dx

(
∂L

∂u′

)
φdx

δJ =

∫
Ω

(
∂L

∂u
− d

dx

∂L

∂u′

)
φdx . (2.10)
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Equation (2.10) is the explicit formula for the variational derivative of the functional in

Equation (2.1) with the Lagrangian L (x, u, u′). Observe that the gradient δJ of a functional

is a function. 1

2.4 Gradient descent methods

Among the different methods for carrying out minimization of functionals, descent methods

appear on stage. Let F : Ω ⊂ <n → < be a continuously differentiable function. Descent

methods require an initialization u(0) ∈ <n to be followed by an iteration scheme:

u(k) = u(k−1) − α(k−1)s(k−1) , k = 1, 2, . . . , (2.11)

where s(k−1) is a search direction and α(k−1) > 0 is the step length. This procedure leads to

move closer to any apparent solution. The gradient descent is a particular case of the descent

method, where the search direction is opposite to the gradient of F , that is ∇F (u(k−1)). In

this sense, the function F decreases faster in this direction. Basically, the gradient scheme is

shown as follows:

u(k) = u(k−1) − α(k−1)∇F (u(k−1)) , k = 1, 2, . . . . (2.12)

The main characteristic of descent methods is that the iteration scheme reduces the value

of the function for each k:

F (u(k)) ≤ F (u(k−1)) . (2.13)

This condition is satisfied by selecting the step length α(k−1) appropriately. For instance, we

refer to time marching when the step length is fixed for some time step τ . Time marching is

restricted in the sense that the stability is heavily dependent on choosing a small τ , which

increases the number of iterations required to converge to a steady state solution, hence

∇F (u) = 0. The explicit time marching scheme is shown as follows:

u(k) = u(k−1) − τ∇F (u(k−1)) , k = 1, 2, . . . . (2.14)

1We refer the reader to find more information about “Calculus of variations” in the cited work as well as
in the course notes of [Svetitsky, 2005] and [Olver, 2014]
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Despite its drawbacks in computational performance, its reliability and ease of implemen-

tation has made time marching very popular. It is possible to reduce the stability restrictions

on τ by employing a semi-implicit scheme, i.e. the gradient is dependent on the current ap-

proximation of the solution: ∇F (u(k), u(k−1)). This means, an equation system has to be

solved iteratively to obtain u(k), which can possibly produce issues depending on the equa-

tion. See the graphic interpretation of the gradient descent in Figure 2.2.

Figure 2.2: Gradient descent for global minimum searching.

Note that the steepest descent is a special case of gradient descent where certain step

size is chosen to minimize the objective function value, see Algorithms 1 and 2. Roughly

speaking, gradient descent refers to any class of algorithms that calculate the gradient of an

objective function, then it moves down in the indicated direction. Moreover, algorithms are

not forced to analyze in the direction targeted by the gradient. Other techniques like the

Newton’s method or the additive operator splitting scheme (AOS) are also available for such

task.

Algorithm 1 Gradient descent algorithm

1: Initialization: u0 ∈ <n
2: for k = 0, 1, 2, . . . do
3: uk+1 ← uk + τksk
4: end for

Algorithm 2 Steepest descent algorithm

1: Initialization: u0 ∈ <n
2: for k = 0, 1, 2, . . . do
3: uk+1 ← uk − τk∇F (u(k))
4: end for
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2.4.1 Stepsize parameter

The stepsize parameter τ at iteration k (also known as learning rate in the context of ma-

chine learning), specifies how aggressively an iterative algorithm proceeds in the search of a

minimum. If the stepsize consists of small values, the convergence to a local/global mini-

mum turns slow. On the other hand, if the stepsize is a high value, the algorithm becomes

unstable, oscillating around the apparent minimum and possibly diverging. In the process

of reaching convergence, τ can be considered as iteration-dependent rate τk by employing

line search methods. The corresponding procedure often initializes τ0 at a high value to be

aggressive in the beginning and subsequently decreases according to gradient observations to

ensure stability.

2.4.1.1 Fixed stepsize

The simplest choice of stepsize corresponds to a constant τ > 0:

τk = τ ∀k ≥ 0 . (2.15)

Constant stepsize leads to stationary gradient schemes and not extra computation is required.

Convergence is ensured while τ is sufficiently small for smooth functions with a single mini-

mum.

2.4.1.2 Optimal line search

The optimal line search algorithm computes the stepsize at each iteration as follows:

τk = argmin
τ≤0

F (u(k) + τdk) , (2.16)

where dk has a positive projection in the direction of −∇F (u(k)). This method seeks to find

the values of τk over the half line in [0,∞). Optimal line search corresponds to a sequence

of optimal local decisions that yields maximum decrease of F at every iteration k, given the

current state u(k) and the descent direction dk.
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2.4.1.3 The Armijo rule

Also known as backtracking line search, the Armijo rule is presented as alternative solution

to optimal line search that reduces complexity in the computation of τ at every iteration.

The corresponding equation is defined as:

F (u(k) + τdk) = F (u(k)) + τ∇F (u(k))dk + γ(τ) . (2.17)

While τ is small, the term τ∇F (u(k))dk becomes dominant compared to γ(τ), hence the

Armijo rule attempts to select the suitable value of τ such that F (u(k) + τdk) ≤ F (u(k))

holds.
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Active contours

Clearly, variational methods based their theory on calculus of variations. Basically, vari-

ational methods have several advantages since the theory allows reliable implementations

through partial differential equations (PDE). They allow processing of remarkable visual fea-

tures distinguishable by humans like gradients, curves, corners or edges and they are also

effective to simulate various dynamic processes such as linear and non linear diffusion. In

the computational sense, the literature of PDE is huge and it drives deeper analysis in both

implementation and optimization processes. In general, the variational methods are closely

related to stochastic processes that are formulated analogously by the Bayesian theory.

Variational methods applied to image processing, handle a digital image (naturally defined

in a discrete domain) in the continuous domain in order to minimize a particular functional

which finally leads to a particular equation. The existing solution can be formulated as

follows:

ξ∗ = argmin
ξ∈S

F (ξ) , (3.1)

where ξ∗ is an optimizer of the functional F , defined in the corresponding space S. If F is

continuous and differentiable, the first variation leads to the Euler-Lagrange equation ∂F
∂ξ = 0.

The latter formula provides a necessary condition for ξ∗ to be an optimizer of F such that
∂F
∂ξ = 0

∣∣∣
ξ∗=0

. We might often find in the literature the following notation that describes a

functional:

F (ξ) = α

∫
Ω
=(ξ)dx+

∫
Ω
f(ξ)dx , (3.2)

19
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where f is a fitting function to state a correspondence between the objective function and

data. While = is a term that suggests regularity. Note that ξ is defined in a space of values

x.

3.1 The Mumford-Shah functional

The formulation of Mumford-Shah functional proposed in early 90’s by [Mumford and Shah,

1989] addresses the problem of energy minimization by computing an approximation of a

piecewise function of an image. Therefore, this model has been studied deeply in the field of

image processing for the tasks of restoration, denoising and segmentation.

Let Ω ∈ <n be open and bounded region and C a closed subset in Ω which consists of a

finite set of smooth curves. The connected components of Ω\C are denoted by Ωi such that

Ω = Ωi
⋃
C. The function u0 : Ω → < is the given bounded image-function. Precisely, the

Mumford-Shah formulation states that given a certain image u0, find a decomposition Ωi of

Ω and an optimal piecewise smooth approximation u of u0 such that u varies smoothly within

each Ωi. The minimizer of the energy functional would identify the approximate edges of u0.

The solution u is formed by regions Ωi with boundary C.

FMS(u,C) =

∫
Ω/C

(α|∇u|2 + β|u− u0|2)dxdy + length(C) . (3.3)

The problem can be further simplified by restricting the segmented image to piecewise-

constant functions inside each component Ωi. The reduced form leads to the so-called minimal

partition problem. A new functional is minimized to determine the boundary of the object

region:

FMS(u,C) =
∑
i

∫
Ωi

|u0 − ci|2dxdy + ν|C| . (3.4)

The previous energy functional in Equation (3.4) is minimized by setting ci = mean(u0) in

Ωi. Nevertheless, to improve the performance of minimization methods in image processing,

both local and global information of the image must be included in the functional equation.

This is a trendy technique managed by classic active contour methods.
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3.2 Snakes by Kass

Active contours also called Snakes, are dynamic curves that evolve according to the image

content in order to delineate and identify distinct objects. The evolving procedure is accom-

plished by constraints from a given image. In [Kass et al., 1988], authors developed initially

a method based on PDE to delineate and extract different objects in an image. Their model

allows user guidance by adding energy terms to the formula. This level of interaction eases

the searching of usable energy functions to reach local or global minima.

Let Ω be a bounded open subset of <2 with δΩ its boundary. Let u0 be a given image

with certain active parametric contour represented by C(s) : [0, 1]→ <2 in terms of x− and

y− axes, C(s) = (x(s), y(s)). The Kass formulation of active contours is written as:

FKass(C) =

∫ 1

0
(Einternal(C) + Eimage(C) + Econstraint(C))ds , (3.5)

where the total energy is split into three parts. The internal energy Einternal controls the

contour deformation. The external force includes Eimage to attract the contour towards the

object, and Econstraint guides evolution to behave in certain manner.

3.2.1 Geometric active contours

Generally, edge guided schemes use the assumption that region boundaries correspond to

high image transitions (visually highlighted edges) in addition to geometric constraints. The

study developed by [Kass et al., 1988] has been a strong precursor of edge detection by curve

evolution. A special case of snakes arises when setting the energy constraint to zero while

using derivatives of the contour as description of the internal forces.

FGMAC(C) = α

∫ 1

0
|C ′|2ds+ β

∫ 1

0
|C ′′|2ds− λ

∫ 1

0
|∇u0(C)|2ds , (3.6)

where C ′ denotes the first derivative with respect to C(s) and C ′′ denotes the second deriva-

tive. The terms α and β are both user defined weights to control sensitivity. For large values

of α the change in distance is penalized among the points in the contour, whereas large values

of β penalize oscillations.
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3.2.2 Geodesic active contours

Geodesic AC were introduced by [Caselles et al., 1997]. A geodesic curve measures the

minimum distance path between given points. The energy functional of the model, which

has to be minimized, is expressed as follows:

FGDAC(C) =

∫ 1

0
g(|∇u0(C(s))|)ds , (3.7)

where g(∇u0) = 1/(1 + γ|∇z|2). The value g should be small near the object boundaries

defined by abrupt changes of intensity and controlled by γ.

3.3 Active contours without edges

Models that base their theory on snakes rely on some edge-function to stop the contour

evolution. This fact might cause downsides since objects to be detected have to show clear

boundaries defined by gradients. Moreover, the boundary gets vanished when is discretized,

it leads that the stopping function will never be zero on the boundary.

The active contour model without edges was first introduced by [Chan and Vese, 2001] and

does no rely on an edge stopping function, but instead relies on the Mumford-Shah technique,

where the initial image is approximately piecewise constant. Basically, a functional that

includes information about the energy of certain curve C is proposed, the optimal partition

is achieved when modeling the functional as a minimization problem. The solution provides

the convergence of C and thus encloses the object of interest. In other words, segmentation

is performed by balancing the content between the inner and outer regions produced by the

curve partition.

Let us consider two existing regions in an image u0(x, y) with distinct approximate con-

stant intensities ui and uo. Let C be the evolving curve in Ω, as the boundary of an open

subset ω such that ω ⊂ Ω and C = δω. Furthermore, the region inside C is defined as ω and

the region outside C is defined as ω̄. The fitting energy formula comprises two terms:

F1(C) + F2(C) =

∫
inside(C)

|u0(x, y)− c1|2dxdy +

∫
outside(C)

|u0(x, y)− c2|2dxdy , (3.8)

where c1 and c2 are the average pixel values of inside and outside the contour respectively.
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The fitting energy term is minimized when the contour C is exactly situated on the boundary

of the object. For instance, the difference between u0(x, y) inside the contour and c1 tends

to zero, and the difference between u0(x, y) outside the contour and c2 tends to zero as well.

This can be easily seen at Figure 3.1.

Figure 3.1: Sample image to demonstrate the balance of inner and outer regions according
to C.

We can say then, the boundary of the object enclosed by C is the minimizer of the fitting

energy term:

inf
c
{F1(C) + F2(C)} ≈ 0 . (3.9)

Moreover, the classic model suggests to include some regularization terms: the length of the

curve and the area of the resulting region.

FCV (C, c1, c2) = µ · length(C) + ν · area(inside(C))

+λ1

∫
inside(C)

|u0(x, y)− c1|2dxdy + λ2

∫
outside(C)

|u0(x, y)− c2|2dxdy ,
(3.10)

where µ ≥ 0 and ν ≥ 0 are constants to penalize the length and the area respectively.

The fixed parameters λ1 and λ2 penalize the average terms of the inner and outer regions,

respectively. Finally, the minimization of the given energy functional leads to the iterative

procedure of contour evolution.

3.4 Level set formulation

The main idea behind level set stated by [Osher and Sethian, 1988] is to reformulate AC

theory according to an evolutionary non-linear PDE. Such method simplifies computation
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in order to avoid complex curves, including shapes of time-varying topology. Unlike most

numerical approaches, the level set method is implemented in a fixed coordinate system.

Hence, the computer capabilities are fixed and does not change throughout the iterations.

In this sense, the level set formulation enables numerical computations involving complex

surfaces on a fixed grid without the need of parametrization.

Let C be the contour to be represented by a zero level set of a Lipschitz continuous

function φ : Ω→ <, so:

C = δω = {(x, y) ∈ Ω : φ(x, y) = 0} . (3.11)

The level set method performs partitions of regions in the image domain. The boundary of

those regions are defined as the zero level set of the underlying function φ. Specifically, the xy

plane is placed at the zero-level of φ. All points on the xy plane located inside the boundary

correspond to the points where φ > 0 whereas the points outside the boundary are those

where φ < 0. The latter statement is explicitly formulated as shown in Equation (3.12).

In addition, Figure 3.2 illustrates how this method can easily deal well with topological

transitions. In traditional numerical methods, region splitting and merging would require

the algorithm to identify those transitions. Moreover, contour parametrization will introduce

additional points as long as complexity increases.

inside(C) = ω = {(x, y) ∈ Ω : φ(x, y) > 0}

outside(C) = ω̄ = {(x, y) ∈ Ω : φ(x, y) < 0}
(3.12)

Figure 3.2: A plane in xy cuts the 3D surface to generate the curve φ

Consider the level set formulation with the Heaviside function H and δ0 as the one-

dimensional Dirac measure:
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H(z) =

1 if z ≥ 0

0 if z < 0
, δ0 =

d

dz
H(z) , (3.13)

since H is not differentiable in zero, it is a common practice to use regularized versions of H

and δ functions denoted by Hε and δε:

Hε(φ) =
1

2

(
1 +

2

π
arctan

(
φ

ε

))
, δε(φ) =

ε

π(ε2 + φ2)
, (3.14)

where Hε → 0 as fast as ε → 0. The Chan-Vese energy functional FCV given in Equation

(3.10) can be rewritten as follows:

FCV (φ, c1, c2) =µ

∫
Ω
δ0(φ(x, y))|∇φ(x, y)|dxdy

+ ν

∫
Ω
H(φ(x, y))dxdy

+ λ1

∫
Ω
|u0(x, y)− c1|2H(φ(x, y))dxdy

+ λ2

∫
Ω
|u0(x, y)− c2|2(1−H(φ(x, y)))dxdy .

(3.15)

The minimal partition problem allows us to denote c1 and c2 as functions of φ:

c1(φ) =

∫
Ω u0(x, y)H(φ(x, y))dxdy∫

ΩH(φ(x, y))dxdy
c2(φ) =

∫
Ω u0(x, y)(1−H(φ(x, y)))dxdy∫

Ω(1−H(φ(x, y)))dxdy
(3.16)

The formulas of Equation (3.16) are translated into the inner and outer averages respec-

tively. Finally, the minimization can be solved by alternating between updating φ and the

region average c1 and c2. In order to update φ, the values c1 and c2 are kept fixed, then

F is minimized with respect to φ. This allows us to deduct the associated Euler-Lagrange

equation for φ(t, x, y) for an artificial time t ≥ 0. Furthermore, since the initial contour is

φ(0, x, y) = φ0(x, y), we express the solution as follows:
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∂φ

∂t
= δε

{
µ · div

(
∇φ
|∇φ|

)
− ν − λ1(u0 − c1)2 + λ2(u0 − c2)2

}
= 0 in Ω ,

φ(0, x, y) = φ0(x, y) in Ω ,

δε(φ)

|∇φ|
δφ

δ~n
= 0 on δΩ .

(3.17)

Here, ~n denotes the exterior normal to the boundary δΩ, and δφ/δ~n denotes the normal

derivative of φ at the boundary. The term div( ∇φ|∇φ|) represents the divergence of the unit

normal to the level curve φ at every point. This contour is then evolved according to an

artificial time t with a second-order nonlinear PDE. It is worth noting that, from Equation

(3.17), the evolution of φ is performed due to two types of forces: the length is minimized

by the curvature motion, and two intensity-based forces minimize the deviation of intensity

from the mean in a segmented region.

The energy functional in Equation (3.15) is nonconvex and may have more than one local

minimums. However, since Hε and δε are non-zero everywhere, the Equation (3.17) acts on

all level sets of the function φ. Hereby, the segmentation proceeds regardless the choice of

the initial contour φ0.

3.4.1 Convex relation modeling

Avoiding the presence of local minima is still challenging for AC models. Particularly, this

problem emerges in the framework of piecewise-constant segmentation methods since it in-

volves minimization of functionals over a characteristic set of functions. An algorithm to

assist in the search of global minimum is introduced by [Chan et al., 2006] for the case of the

two-phase piecewise-constant segmentation problem with fixed intensity constants.

Let us rewrite the solution of the functional FCV in Equation (3.17) as in the next form:

∂φ

∂t
= δε(φ)

{
∇ · ∇φ
|∇φ|

− λr(x, y)

}
, (3.18)

where r(x, y) = (u0−c1)2−(u0−c2)2. The stationary solution of Equation (3.18) corresponds

to a particular energy equation after applying a gradient descent scheme:

∫
Ω
|∇φ|dxdy + λ

∫
Ω
r(x, y)φdxdy . (3.19)
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In general, this energy function does not have a minimizer as it is homogeneous of first

degree in φ. Minimization is additionally restricted to {0 ≤ φ ≤ 1, ∀(x, y) ∈ Ω}, so the

following theorem is introduced:

Theorem. For any given fixed c1, c2 ∈ <, a global minimizer for MS(·, c1, c2) can be

found by carrying out the following convex minimization:

min
0≤φ≤1

{∫
Ω
|∇φ|dxdy + λ

∫
Ω
r(x, y)φdxdy

}
, (3.20)

and then, setting Σ = {x : φ ≥ µ} for a.e. µ ∈ [0, 1].

The global minimizer can only be found when c1 and c2 are fixed. Typically, when the

fitting function incorporates parameters that have to be optimized, the joint problem becomes

non-convex, which may cause issues in the search of a global minimum.

3.5 Effects of parameter selection

The resulting PDE from Equation (3.17) is often implemented by finite differences or suc-

cessive over-relation (SOR) as the most used techniques. However, parameter tunning plays

a crucial role in order to quickly converge in a particular segmentation task. Parameters

required for the FCV functional are listed below:

Parameter Effect

φ0 Initialization of the contour

µ Length of the contour

ν Area inside the contour

λ1 Priority to evolve inside

λ2 Priority to evolve outside

� Initialization. One of the most important criteria required in the theory of AC is the

selection of the initial contour (location and shape), that even comprises its own field

of study. The zero level set starts evolving from the initial shape provided. The speed

of convergence depends on how closer is the initialization situated to the object of

interest. Figure 3.3 shows three different approaches of initialization. The dark gray

object represents the target to segment. This topic will be addressed again and we will

provide another alternatives in Chapter 4.

� Length and area. The term µ penalizes the contour length. Larger values of µ might
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Figure 3.3: Different initialization functions. Left: A concentric circle of certain radius.
Middle: A mosaic of circles. Right: A random shape.

cause the contours to have smooth boundaries, whereas smaller values allow more pre-

cise delineation such as borders or corners. See example in Figure 3.4, where two

sets of circles are enclosed by the AC depending on µ. The circles can be segmented

individually or assemble clusters.

Figure 3.4: Effect of varying µ. Figure extracted from [Getreuer, 2012].

The term ν penalizes the area inside the contour. It is common to set ν = 0 in the

literature, although by setting ν 6= 0 the area of the contour can be forced to either

shrink for ν > 0, or tend to expand for ν < 0. See Figure 3.5

� Weights λ. Also called average terms, often represented by λ1 and λ2 for the inner and

outer regions respectively in the single contour case studied previously. Most of times,

λ1 = λ2 = 1 which forces the algorithm to evolve without following a special rule. The

relation λ1 > λ2, assigns priority to the inner region (foreground) to deal better with

the variance of pixels than the outer region (background), which forces the contour to

shrink. On the other hand, adjusting λ1 < λ2 forces the contour to expand towards the

outer direction.
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Figure 3.5: Effect of varying ν. Figure extracted from [Getreuer, 2012].

3.6 Vector-valued active contour model

The notion of vector edges brought by [Sapiro and Ringach, 1996] is used here to define an

stopping edge-function. Consequently, the vector-valued active contour model can be applied

to multivalued images. Speaking generally, edges are localized in those regions where the gra-

dient of an image luminance is high. However, extra image attributes such as color, texture or

motion, might provide additional information to help in localizing image discontinuities. The

process of measuring various image attributes at a single image location leads to multivalued

representation methods.

Several approaches for detecting edges in multivalued images attempt to combine the

response of a single-valued edge detector applied separately to each of the image components

or layers and the way that each component responds is heuristic. Even tough the theory

of multivalued active contours suggests to analyze each component separately when dealing

with multi-channel image representation such as RGB, multispectral, textured images, etc.

In this section, the Chan-Vese classic method is extended to vector-valued images as shown

in [Chan et al., 2000]. The algorithm uses the level set method to determine the boundary

of the object of interest. Let ui0 be the i−th channel of an image on Ω, with i = 1, . . . , N

channels and C the evolving curve. Consider that each channel contains alternative versions

of the same image. Let ĉ+ = (c+
1 , c

+
2 , . . . , c

+
N ) and ĉ− = (c−1 , c

−
2 , . . . , c

−
N ) be two constant

vectors whose components correspond to each channel ui0 for the inner ĉ+ and outer ĉ−

region. The extension case follows the classic Equation (3.10) and can be expressed as seen
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bellow:

F vvCV (C, ĉ+, ĉ−) = µ · length(C) + ν · area(inside(C))

+
1

N

N∑
i=1

λ+
i

∫
inside(C)

|ui0(x, y)− c+
i |

2dxdy

+
1

N

N∑
i=1

λ−i

∫
outside(C)

|ui0(x, y)− c−i |
2dxdy ,

(3.21)

where λ+
i and λ−i are arrays of parameters that define priority of inner and outer regions

of the i−th layer respectively. As in the single-valued case, the vector-valued model looks

for the best energy balance averaged over all channels. In this way, the model can detect

discontinuities present in at least one channel. Rewriting the Equation (3.21) by following

the level set theory we have:

F vvCV (φ, ĉ+, ĉ−) = µ

∫
Ω
δ(φ(x, y))|∇φ(x, y)|dxdy + ν

∫
Ω
H(φ(x, y))dxdy

+
1

N

N∑
i=1

λ+
i

∫
Ω
|ui0(x, y)− c+

i |
2H(φ(x, y))dxdy

+
1

N

N∑
i=1

λ−i

∫
Ω
|ui0(x, y)− c−i |

2(1−H(φ(x, y)))dxdy .

(3.22)

Minimizing the energy with respect to the constants ĉ+
i , ĉ
−
i , it leads to:

c+
i (φ) =

∫
Ω u

i
0(x, y)H(φ(x, y))dxdy∫
ΩH(φ(x, y))dxdy

c−i (φ) =

∫
Ω u

i
0(x, y)(1−H(φ(x, y)))dxdy∫
Ω(1−H(φ(x, y)))dxdy

. (3.23)

Note that the contour φ is the same for all layers which leads to combined changes along

all images. It is worth pointing out that the Equations (3.22) and (3.23) are extended

versions of the classic model based on level set in Equations (3.15) and (3.16), respectively.

The minimization of F vvCV (φ, ĉ+, ĉ−) with respect to φ yields the following Euler-Lagrange

equation:
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∂φ

∂t
= δε

{
µ · div

(
∇φ
|∇φ|

)
− ν − 1

N

N∑
i=1

λ+
i (ui0 − c+

i )2 +
1

N

N∑
i=1

λ−i (ui0 − c−i )2

}
= 0 in Ω ,

φ(0, x, y) = φ0(x, y) in Ω ,

δε(φ)

|∇φ|
δφ

δ~n
= 0 on δΩ .

(3.24)

3.6.1 The occlusion problem case

We call disocclusion the process of recovery the occluded areas in an image [Masnou, 2002].

In digital image processing, it is common to face missing information produced by deforma-

tion like noise, compression or simply by the nature of the image acquisition process. The

latter issue highly depends on the system equipment technology since some objects can be

only captured in different modalities. Such is the case of multispectral analysis, where a mul-

tichannel image is generated by capturing the same target at different wavelength across the

electromagnetic spectrum. Color representation in the RGB space is another basic example

but widely used in real world. For instance, the Figure 3.6 shows the segmentation result

of an object with occluded areas along different channels. Figures 3.6a, 3.6b and 3.6c show

a triangle with a missing peak each. The vector-valued method performs segmentation over

the three channels with a single initial contour in Figure 3.6d and the final reconstructed

triangle in Figure 3.6e.

(a) (b) (c) (d) (e)

Figure 3.6: Segmentation example of occluded peaks in triangle
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3.7 Multiphase active contour model

The need of detecting as many objects as possible in a scene, implies to address a multiphase

approach in order to extend the traditional active contour model based on level set. Such

proposal is helpful to identify more than two distinct regions with multiple boundaries that

would be difficult to represent using a single level set. This extension is performed by incor-

porating additional level set functions φi that divide the domain Ω into a finite number of

partitions [Vese and Chan, 2002].

The multiphase formulation requires m = log2(n) level set functions to represent n phases

or classes, and segment up to n regions. For the 2−nd dimensional case, a set of pixels of Ω

strictly belongs to only one phase. A number of n = 2m phases are obtained and determined

by including the vector level set function Φ = {φ1, . . . , φm} and the vector Heaviside function

H(Φ) = {H(φ1), . . . ,H(φm)} in the classic energy functional. The generalized multiphase

functional is expressed as follows:

FMP
n (c̄,Φ) =

∑
1≤k≤n

∫
Ω

(u0 − ck)2ξkdxdy +
∑

1≤i≤m
µi

∫
Ω
|∇H(φi)| . (3.25)

In the case of multiphase version, k denotes each region and i is a label linked to the

level set used. An array of constants c̄ = (c1, ..., cn) expresses the region average. The

characteristic function ξk delimits the regions k. Parameter µi regularizes the surface shape

of φi, while the value ν is set to zero and is not included.

A comparison of the active contour-based methods described in this section is displayed in

Figure 3.7. The classic version of a single level set is shown in Figure 3.7a. The vector-valued

case which handles multiple images by using a single level set is shown in Figure 3.7b. The

multiphase model that produces various disjoint regions is shown in Figure 3.7c and Figure

3.7d for two and three level sets respectively.

3.7.1 The four color theorem meets the 4-phase level set case

The Four-Color Theorem is helpful to understand that the correct separation of adjacent

regions has to be characterized by visual intensity differences, similar to displaying contiguous

regions with distinct colours. Based on this theorem, it becomes easier to determine that four

colours (or phases) are required to separate the distinct cells from the foreground, background

and other surrounding regions.
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(a) (b)

(c) (d)

Figure 3.7: Comparison of different versions of active contours. A single level set in (a)
and the extension to multichannel images in (b). The 4-PLS case in (c) and the extended
multiphase version of three level sets in (d).

The assumption of m = 2 contours used, generates n = 4 regions. For instance, let us

consider a curve C as the union of two level sets {φ1 = 0} and {φ2 = 0}. Four regions divide

the domain by disjoint sets as: {φ1 > 0, φ2 > 0}, {φ1 < 0, φ2 > 0}, {φ1 > 0, φ2 < 0} and

{φ1 < 0, φ2 < 0} as shown in Figure 3.7c. We can rewrite the energy of Equation (3.25) in

terms of the number of classes as follows:

FMP
4 (c,Φ) =

∫
Ω

(u0 − c11)2H(φ1)H(φ2)dxdy +

∫
Ω

(u0 − c10)2H(φ1)(1−H(φ2))dxdy

+

∫
Ω

(u0 − c01)2(1−H(φ1))H(φ2)dxdy +

∫
Ω

(u0 − c00)2(1−H(φ1))(1−H(φ2))dxdy

+µ1

∫
Ω
|∇H(φ1)|+ µ2

∫
Ω
|∇H(φ2)| .

(3.26)

The energy functional in Equation (3.26) is a particular case of the multiphase model,

the so-called 4-phase level set model (4-PLS) where Φ = {φ1, φ2} and c = (c11, c10, c01, c00).

This energy functional can be minimized by the gradient descent method for Φ which leads

to two independent PDEs for φ1 and φ2, respectively.

In general, the level set theory eases variational methods to extend the 2D implementation
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into a 3D since the topological changes in the boundary of higher dimension structures, such

as splitting or merging, are dealt with automatically. Among the simplest approaches to face

3D segmentation challenge, is by using a 2D segmentation model applied to each slice of a

volume. Nonetheless, there are many downsides to this methodology, for example, different

slices require different parameters to reach the suitable segmentation. On the other hand,

to redefine the model with a bounded open subset of <3 and v0 as an input volume seems

to be more adequate. For the purpose of illustration, Figure 3.8 displays two possible initial

contours for 3D binary segmentation in 3.8a and 3D multiclass segmentation 3.8b.

(a) (b)

Figure 3.8: 3D initial spherical contours.



Chapter 4

Proposed active contour model

When man reasoneth, he does nothing else but conceive a sum total, from addition of

parcels; or conceive a remainder, from subtraction of one sum from another: which, if it be

done by words, is conceiving of the consequence of the names of all the parts,

to the name of the whole....

- Thomas Hobbes, 1651

Leviathan, V.

In previous chapters, we have mainly discussed the theory of variational methods where

active contours have emerged with potential applications to image processing. The approach

addressed in this section is an attempt to overcome the downsides produced by using a single

AC such as the limitation of only two classes (binary) segmentation or the occlusion problem

case. Moreover, the fact to restrict methods to only use pixel intensities might ignore the rest

of potentially helpful information. For instance, texture represents one of the most important

properties linked to images. Relevant image features such as homogeneity, contrast, depth,

periodicity, etc. are visually revealed and highlighted by texture-based approaches [Marr,

1982, Jain and Farrokhnia, 1991].

Among the first ideas about the importance of texture, [Gibson, 1950] established that

texture produces a psychological stimulus in the human perception, in the way that texture

provides enough information to assume a focal length value on the surface as well as local

orientation is specified. These intuitive measurements are the result of the vision process since

our perception is a compilation of the environment and the interaction with it. Perception

collects data to create an optical arrangement in relation to changes in texture density which

simulates the so-called optical flow.

35
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The current proposal suggests to extend the multiphase segmentation approach to adapt

any texture representation. Basically, a set of AC yields different image partitions and evolves

following the average texture content. This idea allows us to enclose a region with similar

texture characteristics within each curve, instead of using intensities that leads to contour

overflow, an usual effect caused when dealing with regions that are no clearly delimited by

edges.

4.1 Vector-valued multiphase active contour model

Let L be the multichannel representation of an image I, which consists of g = 1, . . . , N

layers. The proposed formulation states to guide and control multiple AC in the level set

representation Φ = {φ1, ..., φm} , for each layer according to a weighted sum of L:

F̂n(c̄k,Φ) =
∑

1≤k≤n

1

N

N∑
g=1

λk,g

∫
Ω

(Lg − ck,g)2ξkdxdy +
∑

1≤i≤m
µi

∫
Ω
|∇H(φi)| , (4.1)

where the term µi is introduced to provide flexibility for the i−th level set used. The value

λk,g is a 2D array of constants that assign priority to regulate the evolution of the AC in the

current layer g for the resulting region k. Similarly, an array of constants ck,g that expresses

the average content within the corresponding region and layer. The two-dimensional array

for λk,g and ck,g is shown below:

λk,g =


λ1,1 λ2,1 . . . λn,1

λ1,2 λ2,2 . . . λn,2
...

...
. . .

...

λ1,N λ2,N . . . λn,N

 , ck,g =


c1,1 c2,1 . . . cn,1

c1,2 c2,2 . . . cn,2
...

...
. . .

...

c1,N c2,N . . . cn,N

 , (4.2)

where k ∈ [1, n], g ∈ [1, N ] and i ∈ [1,m]. The example in Figure 4.1 shows the partition

obtained by using 2 contours and 3 layers with the λk,g values corresponding to each region.

Finally, we introduce the characteristic function ξk which yields disjointed regions in terms

of the Heaviside function as shown in Equation (4.3). This formula leads to different terms

according to all possible combinations by computing the product of the Heaviside function

of the corresponding level set. For instance, with two level sets, the resulting values enclosed

by φ1 > 0 and excluded by φ2 < 0 are described as H(φ1)(1−H(φ2)), which represents the

region exclusively delimited by φ1.



4.1. Vector-valued multiphase active contour model 37

Figure 4.1: Displaying the case of N = 3 layers and m = 2 contours which generates n = 4
regions. The size of λk,g in the illustration is 4× 3.

ξk =
∏

i:φi>0 in k

H(φi)
∏

i:φi<0 in k

(
1−H(φi)

)
. (4.3)

4.1.1 The 4-PLS vector case

A special case of the vector-valued multiphase AC arises when two contours are implemented:

the so-called 4-PLS vector. Let C be a resulting curve of the union {φ1 = 0} with {φ2 = 0},
a total of m = 2 level set produces n = 4 regions. By means of Equation (4.3), the characteris-

tic function generates four terms ξ = {H(φ1)H(φ2), H(φ1)(1−H(φ2)), (1−H(φ1))H(φ2), (1−
H(φ1))(1−H(φ2))}. Each term corresponds to a single region with a respective weight that

assigns priority in the curve evolution. The main functional contemplates four region terms

plus two curvature terms as the Equation (4.4) suggests.

F̂4(c̄k,Φ) =
1

N

N∑
g=1

λ1,g

∫
Ω

(Lg − c1,g)
2H(φ1)H(φ2)dxdy

+
1

N

N∑
g=1

λ2,g

∫
Ω

(Lg − c2,g)
2H(φ1)(1−H(φ2))dxdy

+
1

N

N∑
g=1

λ3,g

∫
Ω

(Lg − c3,g)
2(1−H(φ1))H(φ2)dxdy

+
1

N

N∑
g=1

λ4,g

∫
Ω

(Lg − c4,g)
2(1−H(φ1))(1−H(φ2))dxdy

+ µ1

∫
Ω
|∇H(φ1)|+ µ2

∫
Ω
|∇H(φ2)| .

(4.4)
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As stated throughout the Chapter 3, the procedure for solving the resulting functional

F4(c̄k,Φ) in Equation (4.4) involves minimizing with respect to {φ1, φ2}, separately. Two

PDEs are obtained for an artificial time t ≥ 0:

∂φ1

∂t
= δ(φ1)

{
µ1div

(
∇φ1

|∇φ1|

)
+

1

N

N∑
g=1

[ [
λ2,g(Lg − c2,g)

2 − λ4,g(Lg − c4,g)
2
] (

1−H(φ2)
)

−
[
λ1,g(Lg − c1,g)

2 − λ3,g(Lg − c3,g)
2
]
H(φ2)

]}
, (4.5)

∂φ2

∂t
= δ(φ2)

{
µ2div

(
∇φ2

|∇φ2|

)
+

1

N

N∑
g=1

[ [
λ3,g(Lg − c3,g)

2 − λ4,g(Lg − c4,g)
2
] (

1−H(φ1)
)

−
[
λ1,g(Lg − c1,g)

2 − λ2,g(Lg − c2,g)
2
]
H(φ1)

]}
, (4.6)

where c̄k = (c1,g, c2,g, c3,g, c4,g) corresponds to the average content in the regions delimited

by ξ. Note from Equations (4.5) and (4.6) that even when working with multiple layers,

additional contours are not required throughout the process.

4.2 Shape constraint as optional parameter

In practice, information about the target is often known a priori. By incorporating this

information into a model involves clear advantages in many aspects, e.g. robustness, accuracy,

speed, reliability, etc. This is translated into better results for challenging data that are

beyond the scope of conventional approaches. Shape-based segmentation methods use prior

knowledge for its own benefit. In the literature of shape-based methods, active shape models

(ASM) and active appearance model (AAM) [Cootes et al., 1995, Cootes et al., 2001] have

emerged as potentially trainable segmentation techniques.

The aim to include a shape constraint parameter in the main functional is to control each

element of φi that approximates the shape given by φsi . This can be done by performing the

difference between shapes as suggested in [Rousson and Paragios, 2002, Barba-J et al., 2017]
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Ff (Φ) =

∫
Ω

(Φ− Φs)2H(Φ)dxdy , (4.7)

where Φs = {φs1, ..., φsm} points out to the target shape and Φ = {φ1, ..., φm} is the estimated

shape. The solution of the given functional in the PDE form produces:

∂Φ

∂t
= −

[
2(Φ− Φs)H(Φ) + (Φ− Φs)2δ(Φ)

]
. (4.8)

Let us interpret now the result of minimization in Equation (4.8). The first term 2(Φ −
Φs)H(Φ) measures the difference between the projection of the considered shape and the

shape prior interface. The second force (Φ−Φs)2δ(Φ) aims at decreasing the area, therefore

we can ignore this component in order to obtain a scale-invariant measurement.

4.3 Considerations of implementation

The iterative process requires a time step related to the speed of convergence. Such process

might be stopped by the user by entering manually the number of possible iterations, as-

suming that at the end of the process, the desired segmentation is reached. An alternative

stopping criterion is to accomplish a stationary process in spite of the method to select a

stepsize. See the alternatives at the end of Chapter 2. The j−th iterative form is depicted

in the same sense of Equation (2.14) as follows:

φ(j+1) = φ(j) + ∆t(−∇Fn) . (4.9)

The explicit discretization is obtained for φ1 and φ2 from Equations (4.5) and (4.6) at

each j−th iteration:

φ
(j+1)
1 = φ

(j)
1 + ∆tδε(φ

(j)
1 )

{
µ1 · κ(j)

1 +
1

N

N∑
g=1

[ [
λ2,g(Lg − c(j)

2,g)
2 − λ4,g(Lg − c(j)

4,g)
2
]

−
[
λ1,g(Lg − c(j)

1,g)
2 − λ3,g(Lg − c(j)

3,g)
2
] ]}

, (4.10)
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φ
(j+1)
2 = φ

(j)
2 + ∆tδε(φ

(j)
2 )

{
µ2 · κ(j)

2 +
1

N

N∑
g=1

[ [
λ3,g(Lg − c(j)

3,g)
2 − λ4,g(Lg − c(j)

4,g)
2
]

−
[
λ1,g(Lg − c(j)

1,g)
2 − λ2,g(Lg − c(j)

2,g)
2
] ]}

, (4.11)

where δε is an approximation of the discrete Delta function. Values κ1 and κ2 suggest the

curvature level of φ1 and φ2, respectively. These values can be computed by a finite difference

scheme. The entire computation of the level set functions is terminated after an arbitrary

number of iterations or when an stopping criterion is satisfied. The way to check whether

the solution is stationary or not, is by means of a simple tolerance threshold:

∑
1≤i≤m

|φ(j)
i − φ

(j−1)
i | < TOL . (4.12)

The latest formula states that the difference between two consecutive iterations of each

active contour must be lower than certain value for considering the process terminated. The

computation is taken over a narrow band around the segmenting contour.

4.3.1 General computation of curvature κ and component ck,g

In numerical implementations, the use of meshes naturally defined by square pixels or voxels

is a very common approach. Finite differences are operations to discretize and approximate

derivatives by using a lattice {(xp, yq)|1 ≤ p ≤ P, 1 ≤ q ≤ Q}. The curvature consists

precisely of measuring the level of variation for each AC. We define the finite difference of a

function φ by:

D−x φp,q =
φp,q − φp−1,q

∆h
, D+

x φp,q =
φp+1,q − φp,q

∆h
, Do

xφp,q =
D−x φp,q +D+

x φp,q
2

D−y φp,q =
φp,q − φp,q−1

∆h
, D+

y φp,q =
φp,q+1 − φp,q

∆h
, Do

yφp,q =
D−y φp,q +D+

y φp,q

2

(4.13)

here, we call D−, D+ and Do as the backward, forward and central differences respectively,

∆h is often set to 1 representing the separation between two successive pixels. Hence, the cur-

vature κ, Equation (4.14), can be expressed through the scheme of differences from Equations

(4.13). Note that multiple AC lead to multiple curvatures, which are calculated independently
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to the rest of the contours and are given by the formula:

κ =
(D+

xD
−
x φp,q)(D

o
yφp,q)

2 − 1
2(D+

xD
+
y φp,q)(D

o
xφp,q)(D

o
yφp,q) + (D+

y D
−
y φp,q)(D

o
xφp,q)

2

(Do
xφp,q)

2 + (Do
yφp,q)

2
.

(4.14)

On the other hand, components ck,g play a key role since the balance of regularity between

the partitions on the image content are saved in them. Basically, ck,g measures the average

content within the specific region delimited by ξk from Equation (4.3). The term is often

regularized according to the size of the region given by:

ck,g =

∫
Ω Lgξkdxdy∫

Ω ξkdxdy
, (4.15)

where k ranges between 1 up to the total number of partitions n, and g varies from 1 up to

the total number of channels N in the image L. For the purpose of illustration, we give the

details of ck,g for the 4-PLS vector model by solving the equations:

c1,g =

∫
Ω LgH(φ1)H(φ2)dxdy∫

ΩH(φ1)H(φ2)dxdy
, c2,g =

∫
Ω LgH(φ1)(1−H(φ2))dxdy∫

Ω(H(φ1)(1−H(φ2))dxdy

c3,g =

∫
Ω Lg(1−H(φ1))H(φ2)dxdy∫

Ω(1−H(φ1))H(φ2)dxdy
, c4,g =

∫
Ω Lg(1−H(φ1))(1−H(φ2))dxdy∫

Ω(1−H(φ1))(1−H(φ2))dxdy

(4.16)

4.3.2 Main algorithm

Algorithm 3 reveals the iterative procedure of the 4-PLS vector model.

Algorithm 3 4-PLS vector algorithm

1: Initialization: φ
(0)
1 , φ

(0)
2

2: Parameter selection: λk,g, µ1, µ2, ∆t

3: for j = 0, 1, 2, . . . do

4: Compute: κ
(j)
1 , κ

(j)
2

5: Compute: c
(j)
k,g

6: Solve Equations: (4.10) and (4.11)
7: if Equation (4.12) == true, then
8: Break
9: end if

10: end for
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4.4 Steered Hermite coefficients as texture description

The main idea behind oriented filters is to analyze images by applying steered versions of

2D cartesian filters at different orientations. Steerable filters are implemented by a linear

combination of a set of basis filters [Freeman and Adelson, 1991]. This principle is handled

by the 2D Steered Hermite transform which allows adapting the analysis direction to the

local image content according to a maximum oriented energy criterion [van Dijk and Martens,

1997]. Following this statement, the steered Hermite coefficients (SHCs) Lθp−q,q are generated

as a consequence of linearly combining the cartesian Hermite coefficients (HCs) Lp−k,k.

Lθp−q,q(x0, y0) =

p∑
k=0

Lp−k,k(x0, y0)Rp−k,k(θ) , (4.17)

Rp−q,q(θ) =
√

(qp) cosp−q(θ) sinq(θ) , (4.18)

where Rp−q,q(θ) are known as the Cartesian angular functions that reveal the directional

selectivity of the filter. Values (p− q) and q denote the analysis order in x− and y− axes for

p = 0, ...,∞ and q = 0, ..., p.

Finally, the HCs can be obtained by convolving an image I(x, y) with the analysis filters

Dp−q,q(x, y). The analysis filters are the result of combining a Gaussian window and the

Hermite polynomials [Martens, 1990]. This combination depicts a localized description of

an image with filter properties of rotational symmetry and spatial separability Dp−q,q =

Dp−q(x)Dq(y) .

Lp−q,q(x0, y0) =

∫
x

∫
y
I (x, y)Dp−q,q (x0 − x, y0 − y) dxdy . (4.19)

In addition, the SHCs preserve compacted energy whereas the local coefficients are ori-

ented into the direction of maximum energy, see the example of Figure 4.2. This produces

a more compact representation along the first orders and allows multi-scale decomposi-

tion for analyzing images at different resolutions [Estudillo-Romero and Escalante-Ramirez,

2011, Silvan-Cardenas and Escalante-Ramirez, 2006].
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Figure 4.2: Illustration of the steered Hermite coefficients of a CT image in the first row and
MRI in the second row. Each column represents the corresponding coefficient Lθ0,0, Lθ1,0, Lθ2,0
and Lθ3,0.





Chapter 5

Applications to image segmentation

Be ashamed to die until you have won some victory for humanity.

- Horace Mann, 1859

Address at Antioch College

5.1 First approach on texture segmentation

The current section begins by presenting the early contributions in the development of the

segmentation model examined in the preceding chapter. The results shown here have been

partially submitted and published in [Carbajal-Degante et al., 2018] and extended in theory.

5.1.1 Initialization alternatives

As stated in previous sections, initialization has a significant role in contributing to the final

segmentation result. Generally speaking, the speed of convergence depends on how close

the initial curve is placed to the object of interest. Moreover, automated initialization is

of special concern when identification methods require fast and precise segmentation. In

this sense, an alternative approach to tackle the initialization issue is by using convolutional

neural networks (CNNs). Such operation takes advantage of the available data to build a

trainable model. Nevertheless, we will get into more details on this alternative when we will

discuss about CNNs in next section.

Our first approach to carry out the initialization is by creating a mosaic tile of circular

patterns according to a periodicity criterion. In the current implementation, the level set

45
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function takes positive values inside the curve and negative values outside, simulating a

distance map. We define our initialization to follow the formula φ(0) = sin(πxf) ·sin(πyf)+ψ

where ψ represents a shift which causes overlapping between contours and f is the oscillating

frequency in terms of pixels, see Figure 5.1 The x− and y− axes yield column and row vectors,

respectively.

(a) (b) (c)

Figure 5.1: Initial distance map for the level set φ
(0)
1 in (a) and φ

(0)
2 in (b). Image (c) shows

overlapped contours in the xy−plane.

5.1.2 Segmentation of synthetic images

We carried out a segmentation experiment of two synthetic images of three and four distinct

regions respectively, see Figure 5.2. Both images were gradually corrupted with Gaussian

noise of mean µn = 0 and variance σ2
n in the range of [0, 0.5). In order to compare the classic

multiphase model FMP
4 of Equation (3.26) and the texture-based model F̂4 of Equation (4.4),

we computed the correct segmentation rate (CSR) which is a relation between the number

of pixels that have been correctly segmented and the total number of pixels in the image for

each class. Plots in Figure 5.3 display the CSR while noise increases.

(a) (b) (c) (d)

Figure 5.2: Synthetic images without noise and segmentation results for three regions (a)-(b),
and four regions in (c)-(d).
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Both classic and texture-based methods were initially conceived to segment up to four

regions. Note that the algorithms performed a perfect segmentation of three regions in low

level or absent noise, see graphics in Figure 5.3(a). Results are also displayed for four regions

in Figure 5.3(b). Curves exhibit an evident CSR decrease as the level of noise increases.

Nevertheless, the texture-based method shows higher levels of robustness to noise than the

classic method in most cases.
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Figure 5.3: Segmentation results of synthetic images corrupted by Gaussian noise. σn ranges
in [0, 0.5). Graphic for three regions in (a) and four regions in (b).

5.1.3 Segmentation of mosaic of textures

Several texture-segmentation algorithms are assessed in a synthetic tile of textures to evaluate

their performance in ideal conditions. The model described as F̂4 in Equation (4.4) was

tested in a mosaic of four different textures chosen from the Brodatz database [Brodatz,

1966]. Figure 5.4 presents a visual comparison among the original mosaic, ground truth and

various segmentation results during the process. The final segmentation was achieved after

600 iterations and reached a CSR = 0.97.

5.1.4 Brain structure segmentation

The correct delineation of brain structures in magnetic resonance imaging (MRI) has been

extensively studied in recent years and still remains as a crucial problem in medicine [Dolz

et al., 2015, González-Villà et al., 2016]. The current experiment is merely for illustration

purposes to highlight the effect of varying µ from Equation (4.4). We performed segmentation

to detect three main tissue types in brain: gray matter (GM), white matter (WM) and

cerebrospinal fluid (CSF) [Kapur et al., 1996, Despotović et al., 2015, Li et al., 2011]. In
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(a) (b)

(c) It = 100 (d) It = 300 (e) It = 600

Figure 5.4: Segmentation of mosaic of textures (a), ground truth (b) and segmentation results
at different iterations from (c)-(e).

Figure 5.5, segmentation results reveal the effect of varying µ, the bigger is µ the smoother

the boundary.

(a) (b) µ = 0.05 (c) µ = 0.1 (d) µ = 0.5

Figure 5.5: Effect of varying µ. An MRI brain image in (a) and segmentation results with
different values of µ (b)-(d).



5.2. Hybrid segmentation approach 49

5.2 Hybrid segmentation approach

Deep learning is a specific subfield of machine learning which places great emphasis on learning

from massive data sets. The term deep is a reference to several successive operations that

lead to compact representations. For instance, convolutional neural networks (CNNs) have

been considered as one of the most powerful tools in the recent development of artificial

intelligence-based systems, and it has become relevant to the deep learning field [Chollet,

2017]. Nowadays, there is a wide range of CNNs architectures available in the literature. We

provide an overview of the use of CNNs to built new hybrid models in the following sections,

as originally discussed in [Carbajal-Degante et al., 2020].

5.2.1 The U-Net autoencoder

The U-Net is a CNN which consists of a contracting path and an expansive path. It is

an auto-encoder architecture originally designed to perform semantic image segmentation in

[Olaf Ronneberger and Brox, 2015]. Due its good performance, U-Net has been commonly

used as a starting point for the development of a wide variety of models. Seeking to further

improve its performance, several modifications have been proposed [Zhou et al., 2018, Garcia-

Uceda et al., 2019, Özgün Çiçek et al., 2016, Oktay et al., 2018]. This model is based on

three main processes, see Figure 5.6:

� The encoder: Throughout this process, feature maps are generated by means of applying

different convolutional filters. In each stage, the spatial dimension of the feature map

is halved while the number of channels is duplicated. This drives the model to analyze

context at different scales.

� The decoder: During this process, the feature map generated by the encoder goes

through convolution and upsampling operations. The latter is controlled by trans-

posed convolutions. Finally, the model can learn to recover the spatial information and

gradually generates the segmentation map that corresponds to the original image.

� Skip connections: These are used to connect the feature map from the encoder directly

to the corresponding decoder stage so that the information at every scale produces the

segmentation map, preventing the loss of spatial details.

Maximum likelihood provides a strategy to estimate the parameters of the model. This is
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Figure 5.6: Scheme of the U-Net architecture and the operations performed in the input image
to generate a segmentation map as output. Illustration extracted from [Olaf Ronneberger
and Brox, 2015].

equivalent to minimize the cross entropy between the model and the empirical distributions.

In the case of categorical distributions (multiclass segmentation), this corresponds to:

CCE = −
C∑ N∑

i

p̂data(yi|xi)[log pmodel(yi|xi)] , (5.1)

where pmodel(yi|xi) is the probability from the model distribution for a given pixel xi to

be assigned to the class yi. The value p̂data(yi|xi) is the probability from the empirical

distribution of xi corresponding to yi. The optimization process is done by means of the

iterative method of gradient descent.

A method to efficiently compute the modification in each parameter is the back-propagation

algorithm which is used by most artificial neural networks. The error in the last layers helps

to adjust the parameters in the previous layers. In this sense, information about adjustment

flows in the opposite direction which yields inference.

5.2.1.1 General limitations of CNNs

Mainly, the fundamental aspect that machine learning analyzes is the relation between opti-

mization and generalization. Optimization refers to the process of adjusting a model to obtain



5.2. Hybrid segmentation approach 51

the best performance possible on training data, whereas generalization refers to how well the

trained model performs on new data. The goal is to get good generalization, unfortunately

we can only adjust the model based on its training data.

Optimization and generalization are correlated at first iterations. The lower the loss on

training data, the lower the loss on test data. While this is happening, the model is said to be

underfit since the network has not yet learned all relevant patterns in the training process.

After a certain number of iterations, generalization stop improving while the model begins

to learn patterns that are misleading when it comes to new data. In this sense, we say the

model is starting to overfit.

To prevent a model from learning irrelevant patterns during training, the best solution is

to get more training data, which is a common problem found in real applications. Labeled

data is not always available and then to manually delineate all images needed represents a

tedious task. The process of increasing the data size still remains challenging and widely

discussed in the literature.

5.2.2 Intensity-based hybrid model

The main contributions of the hybrid-IB model are listed below:

� Perform a high precision automated segmentation that combines the efficiency of a

CNN and AC. Hybrid models provide a solution to mutually overcome the limitations

of each tool separately.

� Demonstrate that the proposed model helps the network to redefine the segmentation

result with a low amount of training data.

� Reduce the variability of convergence in the 4-PLS which is highly dependent on ini-

tialization.

First of all, the input image is analyzed via the U-Net after being trained with a dataset

that contains all possible classes to segment (up to 4). Afterwards, the output of the U-Net

yields a pre-segmentation result which provides the estimated shape and position of each

object of interest. These attributes are subsequently assigned to the initialization stage of

the 4-PLS model (FMP
4 of Equation (3.26)) as the zero level set. Parameters employed in

the second stage should be chosen by the user in order to control the evolution of each curve
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leading to a refined segmentation at the end of the process. The whole process is depicted in

Figure 5.7.

Figure 5.7: Intensity-based hybrid model

5.2.3 Texture-based hybrid model

The texture-based (TB) hybrid proposal is inspired in the Hybrid-IB model, which contains

the same two main modules directly connected with an extra texture module embedded, see

Figure 5.8. Let us assume that a certain image is given as input to the system. The first

module comprises the U-Net architecture with a ResNet (Residual Networks) as a backbone

to assist the texture-based multiphase AC model.

The U-Net yields a pre-segmentation result after being trained with the available data

with up to four classes. The corresponding pre-segmentation provides detailed information of

the apparent position and estimated shape for each class, this information is subsequently for-

warded to the input of the second module. It is worth pointing out that the pre-segmentation

accuracy fully depends on the training-data size, however only a coarse location estimation

is needed at this stage.

The 4-PLS Texture module handles two inputs: a pre-segmentation result to initialize

the the zero level set and the SHCs of the input image to exploit the wide texture description

retrieved. Parameters of the 4-PLS Texture allow to control the evolution of each curve

leading to a refined segmentation at the output of the entire system. In this sense, the

proposed hybrid model provides an automated segmentation mechanism end-to-end.
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Figure 5.8: Block diagram of the Hybrid-TB model.

5.3 Heart ventricles segmentation

Cardiovascular diseases (CVDs) are of great concern for everyone. According to the World

Heart Federation, CVDs are currently ranked first in morbidity and mortality within almost

two thirds of the world population. Statistics from the World Health Organization report

that in 2016 there were more than 15 million deaths due to these diseases and it is projected

to remain the single leading cause of death by 2030 [WHO, 2019].

The study of the heart and its diseases usually makes use of different imaging techniques.

Nuclear cardiology (NC), cardiac computed tomography (CT), cardiac magnetic resonance

imaging (MRI) and echocardiography (ECHO) have proven of enormous advantage for clini-

cians [Kumar et al., 2012, Petitjean and Dacher, 2011]. Qualitative and quantitative exami-

nation is routinely executed by experts, but also a precise quantification step is necessary by

the computer-based measurement systems.

This section addresses the problem of left (LV) and right ventricle (RV) segmentation,

since automatic segmentation remains one of the most important tasks in computed aided

cardiac diagnosis. Active contours have shown to be efficient for this task, however they

often require a good initialization, which drives the tool substantially dependent on a prior

knowledge or manual process. Here, we show the application of the aforementioned hybrid

models.
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5.3.1 Materials and experiments

Five different techniques were assessed throughout this experiment. The first method con-

sists of the U-Net module which was trained with all available data. Since overfitting is

caused by having a very limited dataset to learn from, data augmentation (DA) increases

the number of training data from the existing samples via random transformations that

yield believable-looking images. By including DA to classic U-Net leads to U-Net-DA with

a similar configuration as recommended in [Baumgartner et al., 2018]. Third, the version

called 4-PLS Texture-UI is a non trainable method based on texture that requires user

interaction (UI) to manually initialize contours while using parameters by default (set all to

1), this option arises from Equation (4.4). Finally, the current proposal combines U-Net-

DA and 4-PLS for intensity-based analysis which leads to (Hybrid-IB) and the extended

texture-based case (Hybrid-TB).

Two different datasets were used to compare the techniques mentioned previously:

1. CT images. The dataset used in this experiment consists of 228 images extracted

from different tomographic cardiac studies provided by a local hospital with a CT

Siemens dual source scanner (128 channels). These images have a resolution of 300×300

pixels with manual annotations of left and right ventricles done by a clinical specialist.

Throughout this experiment, the dataset was split into 80% and 20% for training and

testing purposes respectively. This leads to 45 randomly selected images for assessment.

Parameters used for this experiment are shown in Table 5.1.

2. MRI images. The dataset used for the experiment with magnetic resonance images was

taken from Sunnybrook Cardiac Data (SCD) [Radau et al., 2009] and publicly available

[SUN, 2019]. SCD was originally created for myocardium segmentation and extended

later to a cardiac LV segmentation challenge. It consists of 420 LV images labeled by

their experienced cardiologists. For the rigth ventricle case, a manual segmentation

was drawn by a local cardiologist expert. Finally, endocardium ground truth for both

LV and RV was used. A total of 119 images of 256×256 pixels were randomly selected

and divided into 80% for training and 20% for testing, leading to 24 randomly selected

images for assessment. Parameters used in this experiment are shown in Table 5.2.

The loss of categorical cross entropy was computed and the minimum validation error

along 100 epochs was selected to carry out the proposed experiments. We report the interval

before 50 epochs where the minimum was found for all cases. Figure 5.9 shows the loss curves
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Table 5.1: Parameters of CT experiments for each tool. Hybrid methods gather U-Net and
U-Net-DA parameters.

U-Net U-Net-DA [−v,+v] Hybrid IB Hybrid TB
Input size 256×256 Rotation 10 λ2 -3 λ2,g -3
Batch size 16 Width shift 0.1 λ3 0.5 λ3,g 0.5
Dropout rate 0.5 Height shift 0.1 µ1 8 µ1 1
Optimizer Adam Shear range 0.05 µ2 3 µ2 1
Total weights 31,046,339 Zoom range 0.15 dt 5 dt 2

Table 5.2: Parameters of MRI experiments for each tool. Hybrid methods gather U-Net and
U-Net-DA parameters.

U-Net U-Net-DA [−v,+v] Hybrid IB Hybrid TB
Input size 256×256 Rotation 10 λ2 1 λ2,g 1
Batch size 16 Width shift 0.1 λ3 -0.5 λ3,g -1
Dropout rate 0.5 Height shift 0.1 µ1 1 µ1 1
Optimizer Adam Shear range 0.05 µ2 1 µ2 2
Total weights 31,046,339 Zoom range 0.15 dt 5 dt 2

of U-Net and U-Net(DA) for training and validation sets for both CT and MRI experiments.

Note from Figure 5.9 that convergence is faster when DA is not used, although U-Net-DA

yields a better generalization due to the increase of training set that contributes to better

performance on new data.

5.3.2 Results and discussion

We carried out a validation process to compare results against manual annotations, see Table

5.3. We used the Dice coefficient which suggests more similar contour areas when values are

closer to 1. Likewise, Hausdorff distance calculates separation between boundaries. In this

sense, Hausdorff indicates more alike boundaries when values tend to 0.

Both Dice coefficient and Hausdorff distance showed that U-Net segmentation improves

when data augmentation is used for the case of CT, as expected. Alternatively, 4-PLS

Texture-UI demonstrates a good performance for RV due to the user interaction who provides

very alike shape initialization. Finally, hybrid proposals present the best segmentation for

LV and overcome the results of CNN-based methods for RV.

On the other hand, for the case of MRI segmentation, the same argument holds for both

ventricle assessments. Our proposals exhibit an improved result in comparison to CNN-

based methods leading to the best LV segmentation, but failed to overcome substantially the

non-trainable 4-PLS Texture-UI method for RV evaluation.
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Figure 5.9: Training and validation loss for CT experiment in (a). Training and validation
loss for MRI experiment in (b).

A visual comparison among methods for a single CT slice is shown in Figure 5.10. We

observe that CNN-based methods fail to attain a full delineation, while methods that include

AC succeed in filling missing information like small holes as if a morphological operation

of dilation was applied. Moreover, hybrid proposals find it easier to avoid abrupt contour

deformations due to the ability to adjust µ1 and µ2 parameters. Finally, similar performance

can be seen in Figure 5.11 for a single MRI image. Methods facing the low contrast of this

modality often struggle to differentiate ventricles. In this sense, texture-based models are

better to differentiate tissue and do better segmentation jobs than intensity-valued techniques.
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Table 5.3: Average performance for CT and MRI experiments

45 CT images 24 MRI images
Left Ventricle Right Ventricle Left Ventricle Right Ventricle

Methods Dice Hausdorff Dice Hausdorff Dice Hausdorff Dice Hausdorff
U-Net 0.890 4.100 0.844 5.375 0.865 2.980 0.821 3.063
U-Net-DA 0.924 3.761 0.854 5.480 0.880 2.985 0.819 3.360
4-PLS Texture-UI 0.905 3.875 0.890 4.306 0.905 2.677 0.873 2.891
Hybrid IB 0.927 3.698 0.860 5.037 0.907 2.825 0.848 3.046
Hybrid TB 0.933 3.621 0.861 5.356 0.915 2.524 0.854 3.368

(a) (b)

(c) (d) (e)

Figure 5.10: Graphic segmentation details of a CT slice. Expert annotations in blue for LV
and red for RV. Results in cyan contour for LV and yellow contour for RV. U-Net in (a),
U-Net-DA in (b), 4-PLS Texture-UI in (c), Hybrid IB in (d) and Hybrid TB in (e).
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(a) (b)

(c) (d) (e)

Figure 5.11: Graphic segmentation details of a MRI slice. Expert annotations in blue for LV
and red for RV. Segmentation results delineated in cyan for LV and yellow for RV. U-Net in
(a), U-Net-DA in (b), 4-PLS Texture-UI in (c), Hybrid IB in (d) and Hybrid TB in (e).
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5.4 Future prospect

Both AC and CNN methods share a lot in common despite the fact that contrasting ap-

proaches are addressed at first sight. First of all, we discussed that the theory of calculus of

variation involves analyzing functions to accomplish the proper minimization process, which

is finally translated into convex solutions for reaching local or global minimum values. In this

sense, the first variation of a functional is entirely computed by using derivatives. On the

other hand, when working with any specified CNN architecture available in the literature,

the loss function and optimizers are the keys to configure the learning process. These two

elements (hyperparameters) are listed below:

� Loss function is the quantity that must be minimized in the training stage. Loss

function represents a measure of success for certain required task.

� Optimizer determines how the network will be updated based on the loss function.

Optimizers are actually implemented based on a variant of the gradient descent method.

A neural network with multiple outputs may have multiple loss functions, but the gradient-

descent process must be based on a single scalar loss value. For the case of multiloss networks,

the results of losses are averaged into a single scalar, see diagram of a classic CNN in Figure

5.12.

Figure 5.12: Basic diagram of a CNN meets loss function.

One of the most fundamental operations in deep learning is to use the score provided

by the loss function as a feedback signal to update the weights, in a direction that the loss
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score is decreasing for the current task. This adjustment is the job of the optimizer, which

is closely related to the backpropagation algorithm. In practice, a CNN function consists of

many tensor operations chained together, each of which has a simple derivative. Based on

calculus, the chain of functions can be derived using the chain rule. Backward propagation

is opposite to the forward propagation, see Figure 5.13, and it starts with the final loss value

and works backward from the top to the bottom layers by applying the chain rule. This

operation computes the contribution that each parameter has to the loss value.

Figure 5.13: Basic diagram of the forward propagation process of a single-layer neural net-
work.

In Figure 5.13, the term L(a, y) represents the loss function in terms of the prediction a

and the true class y, σ(z) is the activation function and z is basically the linear combination

of weights w, inputs x and biases b. The process of updating weights is performed by dL
dw =

(dLda )(dadz )( dzdw ).

The entire process of choosing the right objective function is extremely important since

the network will take any shortcut to minimize the loss. In the case that the objective function

is unable to accomplish a task with success, the CNN will produce undesired operations. All

CNN-based methods will be as ruthless in lowering their loss function, so unintended side

effects are the results of a bad choice.

When we face common problems such as classification, regression and sequence prediction,

there is a simple guideline we can follow to choose the correct loss. For instance, binary cross

entropy is often used for a binary classification problem, while categorical cross entropy for

a multi-class classification problem, as we used in this work. Regarding the choice of a loss

function, note that it is not always possible to directly optimize for the metric that measures

success on a certain task. Loss functions need to be computable given only a mini-batch of

data or a single data point and must be differentiable, otherwise it would be impossible to

use backpropagation to train the network. The proposed multiphase formula based on level

set and all its variants seems to meet these requirements with promising results.
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Conclusions

The proposal presented in this work conceives one of the possible solutions to overcome the

limitation of both trainable and non-trainable methods. A model based on active contours

was initially suggested which is able to segment distinct regions and be extended to multiple

image representation like broad texture descriptions. This improvement allows us to admit

texture features, whereas patterns are highlighted and well recognizable by the vector-valued

multiphase formula proposed here. We also observed possible advantages with this framework

in terms of robustness. For instance, texture-based approaches show signs of confidence when

images are corrupted with Gaussian noise, as we showed in the first experiments.

We believe that the inclusion of hybrid models in the recent improvements of AI leads to

fast and end-to-end automated tools, which are often in high demand today. Our experimental

results demonstrate the effectiveness of our proposed methods, particularly with respect to

reliability and implementation. In our main assessments, the accuracy was compared with

the default state-of-the-art methods for segmenting left and right cardiac ventricles in both

CT and MRI datasets, showing hybrid texture-based model an improvement over the rest of

the methods in most cases.

Nonetheless, we face possible issues related to the complexity as more contours are re-

quested. The number of regions to segment is linked to the number of active contours used.

In this sense, it is evident that the computational cost increases as active contours are added

to the system. Moreover, the number of parameters also augments. Another important is-

sue to mention is the parameter setup, which is specially designed for the required dataset

and application. Selecting default values is an option, but it does not guaranty the best

performance. Nevertheless, this is a generalization problem which is commonly faced by sev-
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eral machine learning-based algorithms. Unless stated otherwise, more attention should be

directed towards overcoming issues of parameter tuning automatically.

Further refinements to the current formulation could yield boosted performance with

many potential applications. Future work could involve how to address 3D data more effi-

ciently due to the advantages brought by level sets, as well as to demonstrate the fulfilled

requirements in order to be included within the optimization stage of neural network archi-

tectures.

6.1 Discussion: A brief of ethics in artificial intelligence

This supplementary section concerns a brief overview of implications in artificial intelligence-

based systems. Among the whole range of significant implications in the field, ethics play

a key role since human beings face several challenging situations, that must be translated

into machine language to provide the desired solution in the decision-making process to avoid

unintended side effects. Is there any dispute or disagreement regarding our interpretation?

The Turing test is an experiment for measuring the machine’s ability to exhibit intelli-

gence. Let us suppose that certain machine which is provided with AI tries to perform the

role of human, while a human helps in the process of deciphering if it is a real human. In the

case where the machine can cheat the human interrogator, then we can say that the machine

has a certain degree of intelligence. Even tough, the latter statement does not necessarily

imply that the machine can reason exactly like a human, but it would be almost impossible

to distinguish if it actually does, since the human was previously deceived. Rather than

cheating the interrogator successfully, the main idea behind this test is to evaluate how well

a machine mimics the human reasoning, good enough to engage a natural conversation. In

such a case, we could wonder that doing something like a human, makes you human?

Throughout the decade of 2020’s, AI is projected to create 2.9 trillion of business value

and 6.2 billion hours-working productivity globally. It means that under a partnership scheme

between humans and AI, they will work to improve cognitive performance, which includes

learning, decision-making and reaching new experiences, etc. This partnership is expected

to reduce errors while providing comfort in performing a certain customized task. ”The goal

is to be more efficient with automation, while being complemented by a human touch and

common sense to manage the risks of decision automation,” says Svetlana Sicular, research

vice president at Gartner [Gar, 2020].
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Figure 6.1: Worldwide Business Value by AI Type (Millions of Dollars). [Gar, 2020]

At this moment and so on, we humans will have to deal with the idea that some decisions

will be taken by an AI. As in any other case, disagreements will arise due to the fact that

such decisions might affect a group of people or the simple reason that we cannot understand

the logic behind. Such is the hypothetical case of an autonomous car that faces the situation

of saving the driver from an accident through two possible exits, one path that leads him

to kill a child or another that leads him to kill an old man. Is AI ready to face such a

brave situation? If an AI can provide an explanation of its actions, are human beings able to

understand it? Undoubtedly, it is a dilemma that even the humans find it difficult to analyze,

although we force machines to decide in a couple of seconds by following mathematical rules

instead of human rules which are forgotten temporarily.

The concept of black boxes dates back to the battle of computationalists to provide elo-

quently a neural network definition by highlighting their lack of logic, which goes further than

programming issues. In this sense, the lack of logic of AI-based systems relies on questioning

their decision and compare them to those human-based decisions. Humans are influenced by

various factors such as feelings of empathy and fear, reasoning, impulses and instincts, which

in many cases help to perceive the risks of exercising certain actions. The dilemma arises

when considering whether humans could trust in a system made up of black boxes whose re-

sponses could be found outside the human intellect. ”We are heading towards a black future

full of black boxes,” says Selmer Bringsjord, scientist in the department of cognitive science

at Rensselaer Polytechnic Institute.
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Nevertheless, current AI systems are designed to optimize and this is a fundamental

operation for solving problems. Indeed, different versions of neural networks found in the

literature are completely based on optimizing certain loss function to find the minimum error

between a true class and its prediction. In addition, the efficiency is measured in time or

epochs (iteration cycles), so real-time and high-accurate systems are mostly required nowa-

days. Based on the aforementioned statement, the fact of proposing a stage that attempts to

explain its actions, makes these systems have to delve into themselves and waste computing

power trying to discern the correct way in which its actions could be explainable for us in

understandable terms. In this way, an optimization-teaching paradox emerges for such sys-

tems: a machine which is designed to optimize cannot be undone (goes against optimizing)

just because we do not understand a decision among all its processes.

At this time, even if someone could provide a reasonable explanation of the operation

and decision-making of AI-based systems, it is highly probable that information remains

incomplete, or perhaps we will reach a certain point where asking machines for an explanation

is something that we will never be able to conceive. Undoubtedly, AI has reached us, enough

to doubt of our own reasoning.
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