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ABSTRACT

Sargassum has affected the Mexican Caribbean coasts since 2015 in atypical amounts, causing economic and
ecological problems. Removal once it reaches the coast is complex since it is not easily separated from the sand,
damaging dune vegetation, heavy transport compacts the sand and further deteriorates the coastline. Therefore,
it is important to detect and estimate the sargassum mats path to optimize the collection efforts in the water.
There have been some improvements in systems that rely on satellite images to determine areas and possible
paths of sargassum, but these methods do not solve the problems near the coastline where the big mats observed
in deep sea end up segregating in little mats which often do not show up in the satellite images. Besides,
the temporal scales of nearshore sargassum dynamics are characterized by finer temporal resolution. This paper
focuses on cameras located near the coast of Puerto Morelos reef lagoon where images are recorded of both beach
and near-coastal sea. First, we apply preprocessing techniques based on time that allows us to discriminate the
moving sargassum mats from the static sea bottom, then, using classic image processing techniques and neural
networks we detect, trace, and estimate the path of the mat towards the place of arrival on the beach. We
compared classic algorithms with neural networks. Some of the algorithms we tested are k-means and random
forest for segmentation and dense optical flow to follow and estimate the path. This new methodology allows to
supervise in real time the demeanor of sargassum close to shore without complex technical support.
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1. INTRODUCTION

Since 2015 the Mexican Caribbean Shores have been affected by abnormal amounts of sargassum mats. These
algae pose economic and ecological repercussion in the region.1 When sargassum decomposes it releases leachate
and organic particles causing severe impacts in the nearby ecosystems.2 The decomposition also liberates noxious
gases and unpleasant smell that discourage tourism which is the principal income in the region.1 There have
been studies for the exploitation of this resource3 using sargasso as raw material for different products. Although
for a better performance it is necessary to get rid of sargassum before it gets to the shore, if it reaches the beach,
it becomes more difficult to separate it from the sand, which causes deterioration in the coastline and hinders
its processing and transportation.

Quantity and arrival events have proven to be unpredictable. There have been some cases in which it greatly
varies its amount by few hundred meters. Some companies like Dakatso offer their services including satellite

Optics, Photonics and Digital Technologies for Imaging Applications VII, edited by
Peter Schelkens, Tomasz Kozacki, Proc. of SPIE Vol. 12138, 1213804

© 2022 SPIE · 0277-786X · doi: 10.1117/12.2621537

Proc. of SPIE Vol. 12138  1213804-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Oct 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



and drone monitoring for collection, as well as barriers that contain and redirect the algae.3 Thus, it is necessary
to effectively detect sargassum before it gets to the shore or when the barriers get full.

There are different ways to analyze satellite images to detect and study the sargassum arrivals. In4 satellite
images are processed using 2 and 5 spectral bands to obtain 5 vegetal indices to train a Random Forest algorithm.
These methods show their strength when detecting sargassum mats in deep sea, where the mats are bigger.5,6

These models are complemented with simulated ocean current algorithms,7 helping to improve their temporal
capacity. In8 it is mentioned that spatial and temporal resolutions in satellite images are inversely proportional.
Near to the coast the waves are less affected by the currents and gain influence by the wind, which causes the
sargassum mats to segregate. This condition makes it vital to increase the spatial resolution of the image, which
in turn derives in loss of temporal definition and the decreases the track capability of the mats. Additionally,
the size and layers of the satellite images make it more difficult to store and execute the algorithm in modest
systems. At least in cloudy days some images are useless since the cloud blocks away the sargassum mats.

For the above reasons, there are systems that record images from the nearby coast. In the work of Valentini9

smartphone-based cameras were used to train a pixel-wise convolutional neural network, and were capable to
classify coast, sea and sargassum. Rutten et al10 used 5 years of hourly images captured from a fixed camera
system to analyze stranded sargassum. As a result, a cyclic behavior of sargassum was described and the
intriguing capability of self cleaning under rough sea conditions, which might be characteristic of reef lined
beaches. However, the temporal resolution was not sufficient to infer mat sizes, direction and speed. We propose
a passive system capable of analyzing images captured with the same camera to locate, trace and get the size of
the sargassum mats near the shore. Making the recollection efforts more efficient and providing a unique set of
data required to implement numerical models that can represent the mat dynamics in the nearshore, crucial to
test barrier designs.

1.1 Optical flow

Estimating motion vectors field in computer vision is known as optical flow. This task consists of estimating
vectors of the apparent motion of pixels in an image along of a sequence. To solve this problem many both
traditional and neural networks-based methods have been designed along the years.

Traditionally optical flow estimation has been approached by differential approximation methods and intensity
invariance assumption such as Lucas-Kanade algorithm,11 a more efficient method was proposed by G. Farneback
in12 which is based on polynomial expansion instead of a linear algorithm, such as Lucas-Kanade. Some others
used a variational approach derived from the work of Horn and Schunck13 and turned the problem into an energy
minimization one. All of these methods are accurate, however they can be sometimes numerically heavy since
their approach is a hand-crafted optimization problem. Some others, are quite slow due to the many iterations
they have to perform in order to converge to a minimum.

In the deep learning era, many architectures have emerged during the last few years to tackle the optical
flow estimation problem. Early architectures used convolutional neural networks (CNNs) and a correlation layer
such as FlowNet,14 an improved version of this work was proposed by E. Ilg et al.15 using a stacked architecture
achieving more accurate results. In spite of its good results this kind of architectures still had a tremendous
amount of parameters which made them quite robust and hard to train. A less robust model was proposed on16

(PWC-Net) which was smaller in size and easier to train than previous models, this new proposal used a pyramid
and warping scheme along with a cost volume, achieving better comparable results to the state-of-the-art. Recent
models have far outperformed the PWC-Net and previous models results, such as RAFT,17 Z. Teed and J. Deng
used a correlation cost volume and a gated recurrent unit (GRU) as an iterative mechanism to achieve a better
optical flow estimation. Some new models emerged based on RAFT architecture, that is the case of GMA18

which added a new module to solve the occlusion problem presented on many cases of a sequence. S. Jiang et al.
were the first to use transformers in the optical flow task due to its recent success in natural language processing
tasks to model long-range dependencies, that is why we are using this architecture to estimate optical flow along
the sargassum data and make a comparison with results of a traditional method such as Farneback´s.
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2. DATA PROCESSING

Images are collected from a building near the shore of Puerto Morelos, Mexico, reef lagoon. The system was
first implemented by the Engineering Institute at UNAM to study deterioration in the coastline. The images
are a result of calculating the average of 30 images taken every 2 seconds, the result is a smoother image with
most artifacts produced by waves are removed. These parameters were selected to avoid affecting the size and
position of the sargassum mats, if images are averaged longer than 2 seconds, sargassum mats may appear larger
than they really are.

The first action is to crop useless areas from the images like the beach and the sky. Furthermore, only the
second layer of the image in the HSV color space is used. Another average operation takes place to discriminate
information from the bottom sea and any other motionless objects in the images. Several minutes of the event
are analyzed to ensure the sargassum mats move enough without affecting the result. Then we generate a mask
image from the subtraction of the bottom image and the original average image, this mask indicates all the
coordinates that move in our interval of time allowing us to focus on these areas. The final results can be seen
in Fig. 1.

(a) (b)

(c) (d)

Figure 1. (a) Original image, (b) Average image,(c) Substraction, (d) Final mask

This preprocessing is needed to discriminate large brown stains produced by the so called brown tide from
sargassum mats. Brown tide is a phenomenon present in the coast when sargassum decays, the color of bride
tide is similar to that of sargassum´s. Without this preprocessing step, the brown tide could be mistaken for
moving sargassum mats making subsequent steps more difficult.

3. DETECTING AND CLASSIFYING SARGASSUM

Even though a lot irrelevant data is discarded, certain spontaneous events, like moving boats and clouds changing
the illumination, can affect the process. Two different that ways to eliminate these variables are proposed, the
first one uses classic algorithms of classification such as Random Forest and K-means; the second one is a U-Net.
To train and evaluate our algorithms we manually labeled a group of images in which these problems are present.

3.1 Classic algorithms

Random forest and a K-means classifiers were used to distinguish between sargassum mats and other invasive
elements. The classification results profits from the preprocessing step by executing a pixel-by-pixel classification
only in the areas in which movement was detected, this makes a faster and cleaner process. 300 labeled images
were used for training with critical events. Different numbers of clusters for the K-means and different maximum
depths for the Random Forest were tested.

We are only interested in sargassum mats so the algorithm has some internal freedom to get a better separation
for all the different shades and objects that may exist in the image. Random Forest algorithm was set to a
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maximum depth of 15 and the K-means was set to 15 clusters. The K-means algorithm presented an accuracy
of 83.3939% while the Random Forest presented accuracy of 94.2031%. Results can be seen in Fig. 2 where the
best results belong to the Random Forest algorithm that removes most of the brown tide.

(a) (b)

(c) (d)

Figure 2. (a) Input image, (b) Hand selected mask, (c) Output from Randon forest , (d) Output from K-means

3.2 UNET

A U-Net convolutional Network, based in Ronneberger et al algorithm,19 was applied adding small changes like
using as input a three layer RGB image. A lot of information was lost in the case of gray-scale images, because
the sargassum patches can be easily confused with the brown tide and seagrass. In the training and subsequent
prediction of the U-Net, masked images obtained in the preprocessing phase are used to focus the net’s attention
in the areas of interest. The images must be re-sized to fit the system requirements; in our case an input layer
of 256 by 256 was established. The final learning curve can be seen in Fig. 4

At the end, a Gaussian filter is applied to smooth the output image, so the final binary mask looks cleaner.
The final result can be seen in Fig. 3 where the input image (a) is shown with a lot of cloud reflection, the desired
output is in (b), and finally the raw output (c) and his binarized output.

(a) (b)

(c) (d)

Figure 3. (a) Input image, (b) Hand selected mask, (c) Output from the unet, (d) Mask generated
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(a) (b)

Figure 4. (a) Accuracy curve for the U-NET, (b) Loss curve for the U-net .

4. SARGASSUM MOTION ESTIMATION

We used the generated masks as data input to estimate optical flow, both implementations of Farneback method
and GMA architecture were implemented in order to compare results of a traditional method and a neural
networks based one. We also evaluated both methods with a dataset taken from20 since the ground truth is
provided within this dataset, so that way we can determine how accurate a method is.

4.1 Farneback method

One requirement for this algorithm is that input images must be in gray scale. Default parameters for Farneback
method were used.

4.2 GMA architecture

This implementation was based on source code from the original paper of GMA. However, ours was trained with
MPI Sintel dataset along with synthetic echocardiograms processed dataset where we have completed the ground
truth with interpolation methods. Fig. 5 shows the training process and the end-to-end point error (EPE) which
is a common evaluation metric for optical flow. It can be noticed that the validation datasets behaved similarly
and the EPE slightly fluctuated but decreased. The same behavior is shown in the entire training EPE. Tab. 1
shows the achieved EPE values in validation datasets at the end of the training process.

Table 1. End-to-end point error (EPE) in validation datasets

Dataset EPE

Clean (Sintel) 0.84

Final (Sintel) 1.33

Echocardiograms 0.23
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(a) (b)

(c) (d)

Figure 5. (a) Clean MPI Sintel validation dataset, (b) Final MPI Sintel validation dataset, (c) Echocardiograms dataset
with interpolated ground truth, (d) GMA training error.

4.3 Post processing

Optical flow estimation of the entire scene is multiplied by the corresponding mask (binarized), in order to keep
motion vectors only on regions of interest (sargassum regions). This post processing is also applied to Farneback
estimation. Fig 6 shows the final sargassum motion estimation.
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(a) (b)

(c) (d)

Figure 6. (a) Complete estimation of GMA, (b) Corresponding image mask, (c) Post processed optical flow of GMA, (d)
Post processed optical flow of Farneback.

5. METHODS EVALUATION

5.1 Classic classifiers and U-NET

As observed, classic and net classifiers perform differently, the best classifier being the U-net followed by Random
Forest as shown in Tab. 2.

Table 2. Classifiers performance

Classifier Accuracy

K-means 83.3939%

Random Forest 94.2031%

U-Net 97.0702%

Performance can also be assessed in two specific cases. Fig. 7 shows how these classifiers deal with moving
boats, random forest and K-means struggle to eliminate the ship while the U-net does not.

In Fig. 8 a raindrop in the camera lens is evident. Its effect in the image is a heavy blur in a specific area,
so some of the pixels of a real mat can be lost in this region. Again, Random Forest and K-means struggle to
discern the difference between the real mat and the raindrop while the U-net eliminates the latter.
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(a) (b)

(c) (d)

Figure 7. (a) Input image of a boat in image, (b) K-means classifier, Random forest (c), Mask generated (d)

(a) (b)

(c) (d)

Figure 8. Input image of raindrop in camera lens (a), K-means classifier (b), Random Forest (c), U-net (d)

5.2 Farneback and GMA architecture

5.2.1 Evaluation dataset

As mentioned before, a different dataset was used to evaluate each method and verify accuracy of the estimate
optical flow in the sargassum dataset. The sequences contained in the evaluation dataset consist of Grove2,
Grove3, Urban2, Urban3 and Venus. Fig. 10 shows the estimated optical flow of each method with ground truth
encoded with the color wheel shown in Fig. 9. Tab. 3 confirms that GMA implementation presents a lower EPE.

Figure 9. Color wheel to encode optical flow.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 10. (a) Grove2 Farneback estimation , (b) Grove2 GMA estimation (ours), (c) Grove2 ground truth, (d) Grove3
Farneback estimation , (e) Grove3 GMA estimation (ours), (f) Grove3 ground truth, (g) Urban2 Farneback estimation
, (h) Urban2 GMA estimation (ours), (i) Urban2 ground truth, (j) Urban3 Farneback estimation , (k) Urban3 GMA
estimation (ours), (l) Urban3 ground truth, (m) Venus Farneback estimation , (n) Venus GMA estimation (ours), (o)
Venus ground truth.

5.2.2 Sargassum dataset

Finally, both methods have been validated and their accuracy calculated. Based on the above GMA estimation
is preferred over Farneback´s. Fig. 11 shows the optical flow estimation in four consecutive frames of sargassum
data, showing red colors, meaning that sargassum is shifting to the right. Fig. 12 displays the actual frames in
which optical flow is estimated.
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Table 3. EPE on evaluation dataset

Sequence Farneback GMA

Grove2 0.58 0.26

Grove3 1.33 0.71

Urban2 1.41 0.28

Urban3 2.97 0.35

Venus 1.44 0.26

(a) (b)

(c) (d)

Figure 11. Optical flow estimation: (a) Frame 1, (b) Frame 2, (c) Frame 3, (d) Frame 4.

(a) (b)

(c) (d)

Figure 12. (a) Frame 1, (b) Frame 2, (c) Frame 3, (d) Frame 4.

6. DISCUSSION

This work focuses on near to real-time detection of sargassum mats near the coast with static camera images. It is
a complement of approaches based on satellite image analysis, as mentioned before. The proposed preprocessing
stage proves to be useful to reduce the data quantity to analyze, eliminating most of the undesired objects, but
it is also needed to ease the classification task in charge of discriminating moving objects like ships and sudden
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changes like raindrops and cloud illumination. The best performing classifier was the U-net which better removed
these elements very quickly, but it requires more computational resources and some refinement to correctly detect
small patches that get lost when the image is resized. Classic classifiers do a better job with smaller patches,
but they were not able to totally eliminate the major objects.

Regarding the optical flow estimation, we have shown that neural networks and traditional methods produce
reliable results for this particular case of sargassum data. GMA was the best model to estimate optical flow. It
allowed to trace sargassum up to the shore once it was detected by any of the classification methods used in this
work.
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