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ABSTRACT Deep Learning has been used for several applications including the analysis of medical images.
Some transfer learning works show that an improvement in performance is obtained if a pre-trained model on
ImageNet is transferred to a new task. Taking into account this, we propose a method that uses a pre-trained
model on ImageNet to fine-tune it for Covid-19 detection. After the fine-tuning process, the units that
produce a variance equal to zero are removed from the model. Finally, we test the features of the penultimate
layer in different classifiers removing those that are less important according to the f-test. The results produce
models with fewer units than the transferred model. Also, we study the attention of the neural network
for classification. Noise and metadata printed in medical images can bias the performance of the neural
network and it obtains poor performance when the model is tested on new data. We study the bias of medical
images when raw and masked images are used for training deep models using a transfer learning strategy.
Additionally, we test the performance on novel data in both models: raw and masked data.

INDEX TERMS Covid-19 detection, model compression, transfer learning, deep learning explainability.

I. INTRODUCTION
COVID-19 is the disease caused by a new coronavirus
called SARS-CoV-2. WHO first learned of this new virus
on 31 December 2019, following a report of a cluster of
cases of ‘viral pneumonia’ in Wuhan, People’s Republic of
China.1 Different artificial intelligence techniques for Covid-
19 detection have been proposed, Deep Learning (DL) tech-
niques are very popular because of their advantages such as
the ability to extract features automatically through gradient
descent updates [1]. Nevertheless, long training times and
models with millions of hyperparameters make these tech-
niques in many cases unfeasible to use in computers with
limited resources. Transfer learning (TL) reuses previously
obtained knowledge in a similar task and is used to alleviate
these limitations [2].

DL is a set of machine learning techniques that uses
raw data as input and passes it through multiple abstrac-
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1https://www.who.int/emergencies/diseases/novel-coronavirus-

2019/question-and-answers -hub/q-a-detail/coronavirus-disease-covid-19

tion levels, obtaining different representations that are used
for classification, regression, and unsupervised, among other
tasks [3]. Nonetheless, the explainability of deep models is an
important limitation because they are black boxes that obtain
different levels of representation and are not interpretable for
humans. Some advances of interpretability are reported in
literature [4], popular techniques such as GradCam [5] search
for regions that a neural network uses for the classification.

Another limitation of DL is that deep models contain a
large number of hyperparameters. Because of this, a large
number of examples are needed to obtain an acceptable per-
formance in the task. In those cases, TL is an alternative to
training a DL agent. In transfer learning previously obtained
knowledge in a source task (or more than one source), where
the training data is enough to obtain a model with good per-
formance, is used to train a new related task (or to accelerate
the training) where the training data is insufficient to train a
model [2].

Model compression is used to reduce the hyperparam-
eters and complexity of a trained model, this approach
can be divided into four groups: parameter pruning, where
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FIGURE 1. Examples of artifacts and metadata printed on the images
(shown in red squares). These artifacts could bias the classification of the
different available classes. The images are taken from the last version of
the Kaggle COVID-19 dataset [9].

the unnecessary units in the model are removed; trans-
ferred/compact convolutional filters that try to approximate
the output of convolutional layer applying different transfor-
mations; low-rank factorization joins different units or layers
of a network; and knowledge distillation train less complex
models (student model) to mimic the behavior of a teacher
model [6].

In this work, we propose a transfer learning strategy using a
pre-trained model on ImageNet (in this case, VGG16 [7], but
other models can be used as well) in a new task. In this case,
Covid-19 datasets are used to evaluate the proposed model.
Then, we compress the transferred model removing the units
with σ 2

= 0, that do not contribute to the training of the
output Convolutional Neural Network (CNN).

The proposed method learns a new task through fine-
tuning, then the obtained model is compressed analyzing
the variance of the feature maps and outputs of the fully
connected layers. We select a subset of features in the penul-
timate layer with a greedy search, ranking their importance
according to f-test [8]. Finally, we remove those units of the
hidden layers that obtain feature maps with σ 2

= 0 because
they do not contribute to the classification of the target. Addi-
tionally, we use an explainability technique (GradCam [5]) to
determine if a neural network transferred from a pre-trained
model on ImageNet to a COVID-19 dataset use the regions of
interest to classify an x-ray image or if the metadata or back-
ground information is used for the classification. Examples of
metadata and artifacts are shown in Figure 1. Also, we study
the bias of the model evaluating the obtained models in novel
data obtained from different Mexican hospitals.

According to the results, the proposed method can obtain
a compressed model with fewer parameters than the source
model. Also, it can obtain a subset of the output units that are
used to train a less complex classifier than a neural network,
such as support vector machine (SVM). We observe that
in most cases the trained models pay attention to metadata
shown on the images and regions of interest (such as lungs)
are not used to determine the class of an image.Whenwe hide
this information, the attention of the network changes to the
regions of interest, but the performance of themodel degrades
with respect to the training of the raw data. We share the code
of our implementation is a github repository2

2https://github.com/gr-jesus/XAI-Covid-19

The main contributions of this work are described next:

• Amethod for model compression that removes the units
that do not contribute to the inference of the classes.

• An algorithm based on a greedy search to obtain a subset
of units that serves as input to a classifier such as an
SVM that is less complex than a neural network.

• Also, we show that the metadata printed on the images
of the COVID-19 Kaggle dataset is used to determine
the class of new images. Also, we test the performance
of the obtained models on novel data.

The content of the remaining of this paper is the next:
Section II describes the background of the paper; in sec-
tion IVwe describe the proposedmethod for compression of a
deepmodel; experimental results are introduced on sectionV;
finally, in section VI we show the conclusions and future
work.

II. BACKGROUND
In this section, we present relevant background information
for this paper. First, we describe deep learning, specifically
convolutional neural networks that are used in our experi-
ments. Then, we describe transfer learning, which is a scheme
used for training agents. Finally, we describe the explainabil-
ity of deep models.

A. DEEP LEARNING
Deep Learning is a set of methods that use different levels of
abstraction for supervised [7], unsupervised [10], and rein-
forcement learning [11]. Deep models use artificial neural
networks to obtain an output updating their weights through
gradient descent according to an error function [12].

One of the first applications that used deep models was
Alexnet [13] which used a convolutional neural network to
classify millions of images in one thousand of classes. One
of the main contributions was that they used two graphical
processing units to accelerate the training of the networks.
This model obtained the best performance on ImageNet
2012 challenge.

VGG16 is a model used in our experiments [7], this model
uses small kernels (size = 3 × 3) in different modules that
reduce the size of the inputs, summarizing the feature maps
using a maxpooling operation. In the last layers, they use
fully connected layers to classify the ImageNet dataset. This
model outperforms other ones as Alexnet, VGG16 can be
seen graphically in Figure 2.

B. TRANSFER LEARNING
Transfer learning (TL) is a type of machine learning where
previously obtained knowledge (weights, data, layers, etc.)
is used to improve the performance of a new task. In TL
exists one (S) or more source tasks with enough data to
train a classifier with good performance and a target task
(T ) that does not have sufficient data to obtain a classifier
with an acceptable performance [2]. We aim at obtaining a
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FIGURE 2. VGG16 model architecture. The model use short kernels (size =

3 × 3) in different modules to classify ImageNet dataset [7].

similar performance in less time than training from scratch or
obtaining a better performance at the same time.

For transfer learning in neural networks, a fine-tuning
scheme is used to obtain a model with better performance
than the training from scratch (train an agent initialized with
small random weights). Fine-tuning consists of the use of the
weights of a pre-trained model on another task to start the
training of a new task. Commonly, the last layer is removed
and a new one with random weights is added according to the
number of classes of the new task.

Also, there exists a transfer learning scheme where the
deepest layers of S in the new task are optimized and another
where the full model is updated. The first scheme is used
because the deepest layers obtain more specific features of
the dataset assuming that it may not be necessary to train
every layer on themodel [16]. Nevertheless, determining until
which layer to transfer or optimize is still an open problem of
transfer learning. In this work, we use the second scheme in
order not to restrict the performance of the model.

Negative transfer is themain limitation of transfer learning.
This appears when training from scratch gets better per-
formance than using a transfer learning scheme. Negative
transfer is caused because the distributions (or data) of the
source and target data are different. In this paper, we use as
the source task a pre-trainedmodel on ImageNet that is a large
dataset with a thousand classes in different domains [7], this
could help to improve the performance of the target task.

C. EXPLAINABILITY OF DEEP MODELS
Deep learning uses raw images as input to update the weights
of a deep neural network through gradient updates using
backpropagation algorithm [12]. These updates obtain auto-
matically features from pixels according to the classes in the
dataset. Nevertheless, this process obtains abstract features
that, in many cases, are not interpretable for humans. It is a
different case of other explainable methods such as decision
trees or ensemble methods [12], [17].

In the search for interpreting deepmodels, researchers have
proposed different algorithms as [18] and [5] that search for
the regions where the network is paying attention to the clas-
sification of the images. Zhang et al. [19], propose to build
a graph to determine the relevant regions for classification
according to the feature maps of a hidden layer. Also, some
methods are proposed for natural language processing [20].

In this work, we use GradCam to show the regions used by the
deep model to determine the class the image belongs to [5].

III. RELATED WORK
The aim ofmodel compression is to obtain a compressed deep
neural network model with the same or similar performance
as a model with a higher number of parameters. According
to Cheng et al. [6], methods based on model compression
can be divided into four groups: knowledge distillation, trans-
ferred/compact convolutional filters, low-rank factorization,
and parameter pruning and quantization.

Knowledge distillation techniques [21] mimic the outputs
of certain layers of a teacher model using a student model
with fewer parameters but with the same or similar perfor-
mance. Most of them try to mimic the logits (outputs of a
layer before applying an activation) by applying a relaxing
transformation through a softmax functionwith a temperature
value [22], [23]. A previous work [24] proposed a knowledge
distillation combined with self-supervised learning formula-
tion to detect COVID-19 disease.

Transferred/compact convolutional filters try to approxi-
mate the output of a convolutional layer of a neural network
by applying a transformation to obtain a similar represen-
tation with another shallower network. These methods can
obtain a similar representation but in a new model with fewer
parameters [25], [26].

Low-rank factorization tries to obtain low parameters of
a deep model joining the units or layers of a network with
different transformations of the convolutional kernels in
order to obtain a similar representation with a less complex
model [27].

Parameter pruning and quantization methods try to reduce
the complexity of a deep model by removing the less impor-
tant units of the model [28]. The proposed method lies in
this group, we reduce the number of parameters on a deep
neural network removing the units that do not contribute to
the classification of a model that is fine-tuned in a new task.
Then, we obtain a model with fewer units and the same (and
in some cases better) performance as the source model.

Pruning methods to reduce the complexity of neural net-
works have been proposed in the literature [6], [29], [30].
Choudhary et al. [30] proposed an approach that removes
convolutional filters with lower magnitude, hypothesizing
that these filters are less relevant than those with higher mag-
nitude. They conducted experiments using computed tomog-
raphy images, whereas we use X-ray images. In contrast, the
authors of [29] proposed an iterative method that prunes a
pre-trained model on Imagenet. Unlike this approach, our
method prunes a model in one step, and does not require
an ensemble method, thus resulting in a simpler inference
process for new instances.

IV. COVID-19 DETECTION THROUGH MODEL
COMPRESSION
In this section, we describe the proposed method for model
compression. This method can be seen graphically on Fig-
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ure 3, it consists of three stages. In the first stage, a pre-trained
model on ImageNet (such as VGG16 [7]) is fine-tuned in the
new task, in this work we use Covid-19 datasets. We used
the VGG16 model for our experiments because it contains
a high number of parameters (132 M) and it is widely used
for medical image classification [43], [44]. The second stage
consists of a feature selection of the penultimate layer of
the fine-tuned model, we experimentally observe that a less
complex classifier than a neural network can obtain similar
or better performance The last stage consists of removing the
units that produce outputs with σ 2

= 0, those units in most
of the cases do not contribute much to the inference of the
classes. In the next paragraphs we describe the details of each
stage.

In the first stage of the proposed method, we use a
pre-trained model on the ImageNet dataset to begin the
training of the new task (in this case, datasets for Covid-19
detection). We follow a fine-tuning scheme where the output
layer is removed and a new one is added according to the
number of classes in the target dataset. Then, the entire model
is trained in order not to restrict the performance of the model
in the new task.

The second stage of the proposed method consists of a fea-
ture selection process using two filters. The feature selection
stage is summarized in the Algorithm 1. In the first filter,
those features with zero variance (σ 2

= 0) are removed from
the penultimate layer, this means that the features are constant
in each instance of the dataset, consequently these features
are not useful for classification. In the second filter, we eval-
uate the number of features using these as input for a new
classifier. First, we rank the features using f-test [8]. Then,
we evaluate the performance adding some features to the
dataset according to the ranking of the f-test. Nevertheless,
evaluating each feature could be time-consuming, therefore
we use a greedy search adding a hundred features at each step.
Finally, we evaluate the range where the higher accuracy is
obtained, and we search for the minimum number of features
that obtains the best accuracy. Finally, we create a new model
with the selected number of features.

Algorithm 1Method to Compress a Layer of the Pre-Trained
Model
Require: : A pre-trained on Imagenet P_model, a dataset of the

target taskD
Ensure: A compressed model with fewer units in the penultimate
layer

Fine-tune P_model in the D
Extract the output O of a penultimate model in P_model with DS
Remove those outputs with σ 2

= 0
Rank the features using f-test
while the number of features is high than O do

Add a hundred features to a new in the d
Evaluate the d in a supervised classifier

end while
Select the number of features with the high accuracy
Search if there is a lower number of features with higher accuracy
return A compressed model with the selected outputs

In the last stage of the proposed method, we observe the
variance of the outputs of the hidden layers in the fine-tuned
model. In the convolutional layers, we find the variance of
the feature maps of each convolutional kernel, and in the fully
connected layers the variance of each unit. It is important to
take into account that the layers between the flattened and the
first fully connected layer have many weights of the model,
so it is important to pay attention to the compression of these
layers. Also, the deepest layers can be more compressed than
the shallow ones, this is because the deepest layers obtain
more specific features [16].

After the proposed method is applied we can obtain a
compressed model that can be used as a feature extractor
on the target task. Then, instead of using a neural network
that has a high number of parameters and operations (and
is time-consuming in the training stage), a less complex
classifier (i.e. Support Vector Machine [31]) can be used in
the new task.

The proposed method produces a compressed model that
uses fewer parameters compared with the fine-tuned model,
preserving similar performance compared with the source
model, and in some cases, it obtains better performance.
The method is fast because it uses a greedy search in the
feature selection stage. Nevertheless, the proposed method is
limited in its ability to compress the architecture of the source
model, precluding its use in the removal of individual layers
or the creation of shallower models, such as those created
through knowledge distillation techniques [21]. Additionally,
the method is more effective on architectures with fully-
connected layers, such as VGG or AlexNet architectures.

V. EXPERIMENTAL RESULTS
In this section, we present the results of the proposed method
and a comparison with other compression model techniques.
The aim of the experiments was to show that the proposed
method can compress a pre-trained model without degrading
the performance of the source model. In this work, we used
a VGG16 model pre-trained on ImageNet as the source task.
Also, we wanted to show via explanation techniques that the
first layers obtained similar features to the source model and
in the deepest layers, the source model features change.

For all the experiments we used a computer with Ubuntu
20 operating system, featuring a core i7 processor, 64 GB
of memory, and an Nvidia Geforce 3070 for training CNNs.
We employed Keras with Tensorflow as the backend for the
training of the neural networks and Scikit-Learn [32] for
SVMs.

A. DATA DESCRIPTION
In our experiments, we used three datasets for Covid-19
detection hereby described:

• Kaggle v1. This dataset contains 2,905 X-ray images
of three classes: covid-19 (219 images), normal (1341
images), and pneumonia (1,345 images). The classes are
unbalanced and for covid-19 there are less images than
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FIGURE 3. Proposed method for model compression: (1) fine-tune a pre-trained model on ImageNet dataset, the last convolutional
layer is removed and we add a new one with according to the number of classes in the target task; (2) remove those units with σ2 =

0 from the penultimate layer, then test the units ranking them with f-test and select the best number of features using a greedy search;
(3) remove the units that produce outputs with σ = 0 from the rest of the pre-trained model.

normal and pneumonia classes. We consider using both
versions of this dataset because the new version contains
a new class, then the distribution of the datasets changes.

• In the last update of the dataset (kaggle v3) the number
of images was increased to 21,165 images of four dif-
ferent classes: covid-19 (3,616 images), normal (10,200
images), pneumonia (1,345 images), and lung opacity
(6,062 images). We used the raw data and the masks
provided by the authors of [9].3

• Also, a dataset with computer tomography images col-
lected from different Mexican hospitals was used for the
validation of our method, the dataset contains balanced
data for two classes: normal (221 images) and Covid-19
(60 images).

We applied the same pre-processing of the VGG paper [7].
The images were resized to 224 × 224 and the mean RGB
value was substracted from each pixel.

B. TRANSFER LEARNING AND MODEL COMPRESSION
The first part of the method consisted of transferring the
knowledge of a pre-trained on ImageNet VGG16 model to
a new task. In this case, we wanted to learn a model for
Covid-19 detection using the datasets previously described.
In our experiments, we used Keras library with tensorflow as
backend. The datasets were split 20% for testing and 80% for
training, and 20% of the training set was used for validation,
for the data selection, we follow a stratified strategy for each

3https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-
database

class in order to use a similar distribution with respect to the
entire dataset. We applied a fine-tuning scheme where the
output layer was replaced with a new one according to the
number of classes on the target datasets. The Adam optimizer
was used to train our model with learning rate=0.0001, we
used the categorical cross entropy as a loss function and
L2 regularization was used to prevent the overfitting of the
model. The model was trained for 20 epochs and we selected
the best model according to the accuracy of the validation set.

For testing the second part of the proposed method, we use
a SVM [31] using a polynomial kernel with degree = 3 and
the gamma value is tuned with auto, the rest of the parameters
are the proposed on scikit learn [32]. For the greedy search
to extract the features in the penultimate layer, we added
100 units at each step. Then, we searched in the previous
range where the best accuracy was obtained in order to obtain
fewer units. Finally, we removed the units that produced
outputs with σ 2

= 0 and we built a new model without those
units.We repeated the experiments ten times in order to report
hypothesis tests for the used datasets.

The results of the repetitions of the experiments of the
proposed method are reported on Tables 1-4 (Table 1 for
kaggle v1, Table 2 for computer tomography dataset, Table 3
for raw data of kaggle v3 dataset and Table 4 for masked
data of kaggle v3 dataset). In all the tables we report: the
best accuracy of fine-tuning the VGG16 model pre-trained
on ImageNet (Fine-tuned); the accuracy of compressing the
model with the proposed method and using a SVM to classify
the images with a subset of the penultimate layer (Reduced
SVM); the features used as input of the SVM (Features);
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TABLE 1. Results of the proposed method in computer tomography
dataset.

TABLE 2. Results of the proposed method in kaggle v1 dataset.

the parameters of the compressed model (Parameters); the
percentage (Percentage) of parameters respect the VGG16
model (134,272,835 parameters); and the size of the model
in MB (Size).

In our experiments, the best results were obtained with
the kaggle v1 dataset. For the best experiment, the model
was compressed to 22.15% with respect to the source model
and a higher accuracy was obtained (98.62%). Our exper-
iments yielded compressed architectures with 30-66.5 mil-
lion parameters, which is comparable to the parameter count
of architectures such as ResNet101 (44.7 million parame-
ters) [33] and EfficientNet (66.7 million parameters) [34].
However, simpler architectures such as MobileNet (3.5 mil-
lion parameters) [35] exist. Applying the proposed method,
architectures can be compressed to up to 50% of their original
parameter count. For the Computer Tomography dataset, the
model was less compressed than the kaggle v1 dataset, how-
ever, the performance of the compressed model was similar
to the source model. The kaggle v3 dataset obtained better
results when the raw data was used instead of the masks for
the extraction of lung regions, we discuss later the results with
these datasets.

It is important to note that our method reduces the size
of the model by compressing the source architecture using
the training test to prune the less useful units. An ablation
study was performed using different numbers of instances to
evaluate the obtained model, as shown in Figure 4. It can be
observed that the curve increases in a similar waywith respect
to the number of instances evaluated in the models. The main
advantage of our method is the size of the obtained model,
as the VGG16 model size is 1.5G, the size of the compressed
model with fewer parameters is 113MB.

TABLE 3. Results of the proposed method in Kaggle v3 with raw data.

TABLE 4. Results of the proposed method in Kaggle v3 with masked data.

FIGURE 4. Study of evaluating different numbers of instances in the
models before and after apply our method. The pruned model is the one
with the fewest parameters (28M).

We performed statistical analysis of the results by applying
hypothesis tests that are described next. For all the exper-
iments a Kruskal-Wallis hypothesis test was applied [36],
we selected this test because it is a non-parametric test, does
not assume that the data follows a normal distribution and
it requires six elements on each experiment. The results of
the hypothesis tests for all the used datasets are shown in
Table 5, we set α = 0.05 for all tests. It can be seen that
there is no statistical evidence that exists a difference between
the proposed method and the fine-tuning scheme, the main
advantage is that with our method we obtain models with
fewer parameters than the source model.

We also compared the proposed method with other meth-
ods, using the same reported results of self-supervised
knowledge distillation [24] that compared their results with
other self-supervised learning methods in Kaggle v3 dataset:
BYOL [37], SiamSim [38], Cross [39], PIRL [40] and Sim-
CLR [41].

Table 6 presents the results obtained for the comparison
of the proposed method. For sensitivity and specificity, the
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FIGURE 5. Attention of the neural network of different layers during some epochs of the training using GradCam [5]. It can be
seen that the attention maps do not change much in the shallow layers. On the other hand, the deepest layers change the
attention to other regions that are more relevant for the classification.

TABLE 5. Results of applying the Kruskal-Wallis hypothesis test to the
experiments on the four used datasets using α = 0.05. In any of the four
datasets, there is no statistical evidence of a difference between the
trained transfer learning model and the compressed proposed model.

TABLE 6. Comparison of our method with other approaches.

Covid-19 class is used as a positive class and the others as
negative classes. The proposedmethod obtained better results
than the other methods except with Self-KD. Nevertheless,
we obtained a similar performance. it is important to mention
that the authors report the need to optimize three models,
while our method only requires optimizing one and, more-
over, this model is compressed.

We tested the robustness of the obtained models using a
novel data set never seen by the model before. We used X-ray
images collected from ‘‘LaRaza’’ and ‘‘Lindavista’’ hospitals
in Mexico City. The dataset contains images corresponding
to COVID-19 (60 images) and normal (221 images) classes,
so we trained new agents excluding lung opacity and viral
pneumonia classes. Then, we tested the performance using

TABLE 7. Comparison of the models trained with raw data and masked
data. Training with raw data obtains better performance than the training
with masked data. Nevertheless, when testing the models with novel data
both schemes obtain similar performance.

this data. We repeated the experiments ten times, the results
are shown in Table 7. We can see that the performance
of the model trained with masked images was worse than
with raw images using the validation set. Nevertheless, when
we tested both schemes in novel data, similar scores were
obtained. To validate this, a Kruskal-Wallis test with α =

0.05 was applied and we obtained p-value = 0.6230, con-
sequently, there was no statistical evidence that a difference
exists between training with the masked and with raw data.
We conclude that any of the two models can be selected and
similar performance can be obtained, but when the masked
images are chosen we obtain more interpretable features for
humans as can be seen in the Figure 6.

C. EXPLAINABILITY OF THE MODELS
In the proposed method the units in the deepest layers change
more that the shallow layers. Shallow layers obtain similar
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FIGURE 6. Comparison of the two training schemes for the classes in the datasets (Covid-19, lung opacity, normal and viral pneumonia).
It can be seen that the model trained with masked images shows more explainable features related to lung regions. On the other hand, raw
data pay more attention to metadata and artifacts of the images.

weights compared to the initial model (VGG16 pre-trained
on ImageNet). Figure 5 shows the attention of the model
during epochs 1, 10, and 20, for different layers in the model.
We observe that in the shallow layers the attention of the
neural network is similar during the training. On the other
hand, the last layer changes to different regions of the image
at different epochs of the training.

Also, we analyzed which regions of the images are used to
classify the images. We show these regions for both train-
ing schemes, using the raw images and using the masked
images of Kaggle v3 dataset. The comparison was done using
GradCam for the classes in the dataset in Figure 6 (we use
deel xplique library to obtain the feature maps [42]). We can
see that the network pays attention to different artifacts and
metadata printed on the images of Covid-19 and normal class,
and in the background for the images that belong to lung
opacity. For the viral pneumonia class, the regions are more
similar in both datasets.

VI. CONCLUSION AND FUTURE WORK
This work proposed a compression method based on the
pruning of units that produce outputs with σ 2

= 0 after
transferring a pre-trained model on ImageNet. Also, we apply
a greedy search to select a subset of units in the penultimate
layer as a feature selection and use a SVM to classify images
of different Covid-19 detection datasets.

The results of the proposed method obtain similar perfor-
mance to the pre-trained model according to hypothesis tests
applied to the used datasets. However, the new model has
lower parameters than the source one.

Also, it can be observed that the training stage using the
raw data and the masked images, obtains similar performance
when we test in novel data. The training using masked images
obtain more interpretable features for humans (lung regions),

than the training of the raw data that pays attention to the
metadata printed on the images.

For future work, we want to explore other methods for
model compression like knowledge distillation that can
obtain more compressed models than the pruning methods,
such as the method presented in this paper. The robustness of
the proposed method needs to be evaluated with pre-trained
models and architectures, such as VGG19, ResNet and
MobileNet. Additionally, we intend to assess the applica-
bility of the proposed method in architectures with diverse
components, including residual layers. Moreover, we plan to
use pre-trained models with medical datasets to determine
if the proposed method yields improved results with similar
images.
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