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Abstract. Using satellite data to study small water bodies (SWB) and medium-sized water
bodies (MSWB) is extremely useful for understanding their status, how to conserve them as
water reservoirs, and their vulnerability to climate variability. The images studied in our work
correspond to different-sized lagoons located in areas with high and low topography in a tropical
region of Chiapas, Mexico. Our research project delineates SWB and MSWB. For this analysis,
we considered water bodies to be uniform regions in a synthetic aperture radar image. The
robustness of the method was determined based on an analysis of the morphologies of
23 lagoons. Several methods, including Hermite transform, were analyzed and compared with
other image denoising methods used to improve speckle reduction. To obtain additional spatial
information for image classification, we analyzed texture using the gray-level co-occurrence
matrix. The results indicate that the Hermite filter is the best method for identifying water bodies.
The advantage of this filter is the identification of local patterns such as edges and lines. It also
preserves and improves aspects related to the homogeneity of water bodies, using the Hermite
coefficient selection criteria for local pattern feature selection/extraction. The lake water extent
products demonstrate that Sentinel-1 is useful for identifying SWB in this study area. The results
show very high detection of water bodies, with adequate detection for water bodies larger than
2 ha, and an area accuracy of 80%. © 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)
[DOI: 10.1117/1.JRS.14.036503]
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1 Introduction

Water bodies are systems that store fresh water. Their natural ecological state depends on
variables such as air, rainfall, evapotranspiration, aquifer recharge, and surface and groundwater
runoff. With regard to their ecology, medium-sized water bodies (MSWB) and small water
bodies (SWB) have a great diversity of flora and fauna,1 particularly when they are located in
natural settings where human intervention has been scarce. Because of the size of these water
bodies and their seasonal changes in water storage capacity, they are considered to be indicators
of the state of a territory and help in understanding climate variability. Depending on their
geographic location, under local natural conditions, these water bodies can change in size or
can form a system of multiple water bodies.

Unfortunately, due to human activities such as tourism and agriculture, the ecological con-
dition of these reservoirs is becoming vulnerable. Kelly-Quinn et al.2 stated that there are multi-
ple views of conservation and different uses of these natural resources, which indicates a need to
identify research priorities to better protect SWB. They suggest a need to continue researching
conditions related to water surface extension. While global remote sensing methodologies are
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valid for geographically large territories, for detailed scales such as the case of SWB, their ability
to identify medium and small lakes on the land surface is limited. In the case of satellite images
obtained with data from optical sensors, it is difficult to find products that are not affected
by clouds. For this reason, maps of continental water bodies are generated for a particular
observation period, for example, annual. The purpose of these thematic products is to quantify
continental water resources at global and regional scales to provide a synoptic view.3 Meanwhile,
several studies have demonstrated the usefulness of synthetic aperture radar (SAR) data for iden-
tifying the surface of water bodies, such as rivers, lakes, coastal waters,4 and for monitoring
floods.5,6 Because SAR can observe and capture information in day or nighttime conditions and
can record the land surface regardless of cloud cover, its data are extremely useful for monitoring
water bodies and for continuously updating existing cartography. SAR images can detect water
bodies because of the physical principle behind how the radar sensor detects water surfaces,
namely, the high contrast in the backscattering of the sensor’s response. There are other factors
that modify the return signal to the sensor, such as changes in lake surfaces when calm water
becomes wavy due to wind or rain. In these cases, the return signal to the sensor detects back-
scattering as a nonhomogenous zone.7

The new satellite series provides good spatial and temporal resolution, which is useful for
some of the ranges in the mapping of small and medium-sized lakes. The launching of the
European Space Agency’s (ESA) Sentinel-1 (S1) and Sentinel-2 (S2) missions is enabling new
processing initiatives to be applied to the study of MSWB and SWB (streams, small lakes, and
ponds). Various investigations state that water bodies are considered to be SWB when their
maximum size is between 1 and 10 ha.8 Pôssa and Maillard9 showed that S1 data result in good
delimitation of SWB in an urban area. They also obtained good results using a support vector
machine (SVM) for the classification. Their study included three individual water bodies, one
that measured 183 ha and two others with an approximate size of <7 ha.

This study provides an analysis of the lake water extent (LWE) for SWB and MSWB to
improve their delimitation and detection. This LWE study analyzes the Montebello Lagoon sys-
tem in Chiapas, Mexico, which is a small region covering several square kilometers. This system
includes several different-sized water bodies. Their water surfaces are divided into two groups:
300 to 8 ha and 3 to 2 ha.

We propose a new strategy to delineate water bodies with good precision. This proposal takes
into account the configuration of the S1 sensor and makes it possible to separate the water class
as a homogenous region, where all pixels within the water body are assigned to water and the
border pixels separate the water/nonwater region with well-defined edges. This methodology
includes a preprocessing stage that is designed to use different noise reduction algorithms.
During this stage, data preparation affects the classification of results. In an effort to reduce
noise, different despeckling algorithms10 were used, including the Lee filter, gamma maximum
a posteriori (MAP) filter, Frost filter, and Hermite filter.11 This last one was shown to be an
effective tool for detecting and extracting characteristics such as edges and lines. Along with
the noise reduction algorithm analysis, this study also assessed the potential use of texture
parameters to estimate water body surfaces. The texture feature provides information on the
spatial distribution of backscattering coefficient variations in a water body and between neigh-
boring nonwater pixels. Several authors suggest using different SAR textures obtained with the
gray-level co-occurrence matrix (GLCM) to monitor continental water bodies and to increase the
feasibility of obtaining water/nonwater masks.12,13 However, even though GLCM can identify
the pattern of a water body, we still need to determine whether the texture feature improves the
identification of patterns in SWB and MSWB. Thus, we propose a set of tests to find the best
method to determine LWE, in combination with the classification of the SVM algorithm. These
tests can be applied after selecting the best noise reduction algorithm and evaluating and
assigning the different Haralick texture features. To evaluate the results, we propose calculating
the indicators of area accuracy (AA) for each water body surface and comparing those with
a reference map generated with S2 data.

This work is structured as follows. Section 2 presents the study site and describes the char-
acteristics of the images that were used. Section 3 describes the bases for the noise reduction
methodologies, the calculation of GLCM, the extraction and preparation of the data, and the
analysis metrics used to evaluate precision. In Sec. 4, the findings obtained with the LWE maps
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are shown for each lake and the results of the accuracy assessment are presented. Lastly, Sec. 5
discusses the most relevant conclusions.

2 Study Area and Dataset

2.1 Study Site

The study area is located in a region with a group of different-sized lagoons, composed of more
than 50 water bodies (Fig. 1).14,15 This system covers territory in Mexico and the Republic of
Guatemala. The lagoons have a great biological diversity and are used in different ways by the
nearby inhabitants, depending on the local context and sociocultural activities, such as agricul-
ture, tourism, and recreation. They are located in the south-southeastern region of the state of
Chiapas, where one of the studied lagoons—Laguna Internacional—crosses the border with
Guatemala.

The water bodies of the Montebello Lagoon are of the lentic type (standing water and non-
flowing), having no movement. These lakes are part of a karstic system in high and medium
mountains. The Montebello Lagoon system has forms that are called uvala and doline, as may be

Fig. 1 Location of the study area corresponding to the Montebello Lagoons. A lagoon system is
seen with water bodies of different sizes and shapes. Background: ALOS PALSAR (12.5 m) digital
model for the terrain.
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seen in the map of geomorphological characteristics of the Montebello Lagoons National Park.16

Dolines are water bodies that have rounded to elliptical surfaces, and uvalas are surfaces with
shapes that are mainly elliptical.

Some lakes are connected by climatic conditions and seasons such as the rainy season (see
Fig. 2). The lakes with the greatest extension are San Lorenzo, Montebello, and Lago Tziscao.
The subsystem known as five lakes is formed by La Cañada, Agua Escondida, Peña Blanca,
El Caracol, and El Perol. During heavy rainy seasons, their surfaces are connected.

2.2 Radar Data

S1 data were used to obtain water/nonwater binary masks. The characteristics of the products
that were used are as follows: sensor SAR type = C-band SAR (5-cm wavelength); product
type = ground range detection (GRD); polarization = dual (VV: transmitted vertically, received
vertically and VH: transmitted vertically, received horizontally); equivalent number of looks
(ENL) = 4.4; number of looks in range × azimuth ¼ 5 × 1; spatial resolution ðmÞ ¼ 20.4 ×
22.5 m in the ground range and azimuth direction; and pixel spacing (m) in range × azimuth ¼
10 × 10 in ground geometry. The S1 images are identified as S1A_IW_GRDH_1SDV_
20190212T120153_20190212T120218_025896_02E210_2986_HT.data (S1A), in descending
orbit with the acquisition date of February 12, 2019, and time of 12:01:53; and S1B_IW_
GRDH_1SDV_20190209T001348_20190209T001413_014862_01BBD1_535D_HT.data (S1B),
in ascending orbit with the acquisition date of February 9, 2019, and time of 00:13:48.

2.3 Digital Terrain Model

The digital terrain model used for terrain correction was the ALOS Phased Array Type L-band
SAR (PALSAR) with a 12.5-m resolution, downloaded from the Alaska Satellite Facility
Distributed Active Archive Center.17 This model is used for the process of correcting geometric
and radiometric distortions in the radar signal. The information on the terrain in the study area
corrects the slope, which decreases the shadow effect (ID: ALPSRP254270310-RTC_HI_RES).

2.4 Sentinel-2 Data

The water/nonwater binary masks obtained with SAR were compared with a synthetic reference
water/nonwater binary mask obtained with S2 data. This optical image has a spatial resolution of
10 m. To prepare the reference image, three cloudless S2 images were acquired and evaluated
during the month of the study. They were atmospherically corrected using the Sen2Cor module
(S2 atmospheric correction) from the Sentinel Application Platform (SNAP) toolbox. Also using
SNAP, all image bands with a 10-m spatial resolution were resampled. The dates of the images
analyzed are S2B_MSIL2A_20190212T163409, S2A_MSIL2A_20190217T163341, and S2B_
MSIL2A_20190314T163039. The S1 and S2 images were obtained from the Copernicus

Fig. 2 Images of the natural conditions of some high mountain lagoons in the study zone.
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website.18 To verify the superimposition of the images obtained with S1 and S2 by date, color
RGB compositions were generated to confirm that there was no geographic displacement. The
segmentation was previously carried out with the sentinel water mask (SWM). This index, pro-
posed in Ref. 19, selects the two bands with the highest reflectance for water—blue (B2) and
green (B3)—and the two with the lowest reflectance—NIR (B8) and SWIR (B11). The index
formula is SWM = blue + green/NIR + SWIR. Lastly, the binary mask maps obtained based on
the SVM classification were consistent, and no changes in LWE among the three dates were
identified. To determine the reference water mask, the date selected was the one closest to the
date of the S1 ascending image and the S1 descending image. The resulting acquisition date of
February 12, 2019 was selected. The vector information was then generated. Figure 1 shows the
reference data. Table 1 shows the reference data for the 23 study lakes in the Montebello Lagoon
system, measured in ha. All calculations were measured in m2. These lakes are located at a
maximum altitude of 1470 to 1560 masl.

3 Methods

The main methodological steps include: preprocessing, the water feature extraction test, and
accuracy assessment. Figure 3 shows a diagram of the general procedure used for LWE.
Water bodies were detected with GRD product images. The Sentinel-11A and 11B images were
processed with free SNAP software. The SNAP, developed by ESA, was used for preprocessing,
calibration, filtering, GLCM, and visualization.

3.1 Preprocessing of Radar Data

3.1.1 Application of orbit file and thermal noise removal

As shown in the preprocessing block in Fig. 3, orbit updating was applied first. This is done
because the metadata file is first generated as a provisional file that includes the acquisition

Table 1 Reference data for each lake in the Montebello Lagoon system (February 12, 2019).

Lagoon/lake
Altitude max.

(masl) Area (ha) Lagoon/lake
Altitude max.

(masl) Area (ha)

Group 1 Group 2

Lago Tziscao 1515 307.635881 El Perol 1561 3.321428

San Lorenzo 1487 183.6146 Agua Amarilla 1519 3.296636

Montebello 1516 99.001221 Internacional 1499.5 3.071955

San José (Yalguech) 1453 62.7603 Agua Tinta 1484 3.059546

Bosque Azul 1452 55.066606 Ensueño 1494 2.905777

Lago Pojol 1536 43.431093 Yuchan 1521 2.706607

Liquidambar 1470 42.6059 Camarón 1534 2.150318

Poza Azul 1535 21.160164 La Cañada 1549 1.908817

Chanujabab 1453 20.950135 Chulul 1519.5 1.597041

Balantetic 1476.5 14.949466 La Esmeralda 1473 1.521229

Kikchayil 1513 12.84627 — — —

Chaj Chaj 1458.5 9.765615 — — —

La Encantada 1489.5 8.145258 — — —
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parameters in a general way. The precise satellite orbit file is generated a few days later, and
it then becomes necessary to update the file to what is called precise orbit ephemerides,
which is found on the S1 Payload Data Ground Segment webpage.

Through thermal noise removal, thermal noise is eliminated to remove values that are
seriously affected by this type of noise, which can be present at the edges of an image or
in discontinuities in the inter-subswath.

3.1.2 Calibration

The SAR images Yðx; yÞ were calibrated by transforming the values from digital numbers to
backscattering coefficient units—sigma nought value (σ0). This value represents the power
returned to the antenna from the ground for each polarization (VV and VH).

3.1.3 Speckle filtering of SAR images

With SAR image capture, speckle noise makes it more difficult to visually interpret images and
reduces the effectiveness of the segmentation and classification algorithms. There are two ways
to reduce speckle: multilook processing and spatial filtering. In this work, we applied several
spatial filtering techniques. Methods that use spatial filtering to reduce speckle noise are aimed at
achieving a balance between speckle reduction and the amount of detail that is needed to pre-
serve a particular application. Speckle noise affects images of homogenous zones, leading to the
appearance of textural differences. Rayleigh defined a criterion to determine when to consider a
surface to be rough and when to consider it flat. A surface is considered to be rough when
H ≥ λ∕ð8 cos θÞ, where H is the height at which the sensor is located, λ is the observation
wavelength, and θ is the angle of incidence. The amplitude, A, of the signal received by the

radar is modeled as A ¼ ffiffi
I

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
r þ C2

i

p
, where I is the intensity and Cr and Ci are the real

and imaginary components of the signal received by the antenna, respectively. The amplitude of
the SAR images is represented by a Rayleigh distribution that is given by the following equation:

EQ-TARGET;temp:intralink-;e001;116;129pðAÞ ¼ 2A
σ2

exp

�
−
A2

σ2

�
; (1)

where A ≥ 0, the mean is μ1 ¼ σ
ffiffiffi
π

p
∕2, and the variance is σ21 ¼ ð4 − πÞσ2∕4. Based on these

expressions, it is possible to obtain the signal-to-noise ratio (SNR) for one-look amplitude.

Fig. 3 Summary of experiments carried out in this study. First, the preprocessing block; second,
the feature water extraction; and finally, the validation block.
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EQ-TARGET;temp:intralink-;e002;116;735SNR ¼ μ1
σ1

¼
ffiffiffiffiffiffiffiffiffiffiffi
π

4 − π

r
≈ 1.9131: (2)

Speckle noise in SAR images is generally described as a multiplicative model. The SNR for
multilook is SNRNlooks ¼ 1.9131

ffiffiffiffiffiffiffiffiffiffi
Nlook

p
.

The ideal filter does not lose any information when reducing speckle. For example, in
homogenous areas, the filter must preserve the radiometric information and the edges between
the different areas in textured zones. When reducing speckle, adaptive speckle filters take into
account changes in the local properties of terrain backscattering. To adapt, these filters use the
local intensity of the scene (the mean intensity of the pixels of the moving window filtering) and
its local variation. That is, an adaptive speckle filter adapts to local variations in the intensity of
the image. In general, filters that use small windows (3 × 3 or 5 × 5) better preserve texture
information.

Lee filter. With the Lee filter, a linear model is used to analyze the multiplicative model.
The Lee filter is based on the minimum mean-square error (MSE) criterion. The calibrated and
despeckled image (Y0) is formulated as

EQ-TARGET;temp:intralink-;e003;116;531Y0ðtÞ ¼ YcðtÞWðtÞ þ YmðtÞ½1 −WðtÞ�; (3)

where YcðtÞ is the backscattering intensity value of the central pixel in the filter kernel, YmðtÞ
is the backscattering intensity value of the pixels not in the filter window, WðtÞ ¼ ð1−C2

uÞ
C2
Y

is the

weighting function, Cu ¼
ffiffiffiffiffiffiffiffi
1

Nlook

q
is the coefficient of variation (Cu) of the estimated noise with

Nlook being the number of looks, CY ¼ σ
YmðtÞ is the Cv for the image, and σ is the standard

deviation of the backscattering intensities without the window.
To spatially filter each individual pixel in an image, the backscattering coefficient values (σ0)

are used within a 3 × 3 filter window. The pixel value is the weighted sum of the observed
(central) pixel value and the average value. The weighted coefficient is a function of the local
heterogeneity of the terrain, measured in terms of the Cv. In practice, this filter requires the local
Cv to be estimated for each scene.

Frost filter. This algorithm is based on convolving the SAR image with the adaptive impulse
response function. The Frost filter replaces the local pixel of interest with a weighted sum of the
values with an n-x-n moving window. The weight factor decreases with the distance of the pixel
of interest. This filter assumes multiplicative noise and stationary noise. The formula is given by

EQ-TARGET;temp:intralink-;e004;116;302mðtÞ ¼ e−KC
2
uðtoÞjrj; (4)

where K is the constant that controls the attenuation factor of the impulse response function, t0
refers to the pixel to be filtered, and Cu is the coefficient of variation.

This filter uses an exponentially attenuated convolution kernel that adapts to the local Cv.
The impulse response of the SAR system is obtained by minimizing the MSE between the
observed image and the reflectivity of the scene. As in the previous case, the Nlook parameter
is used to estimate the noise variance and to control the amount of smoothing that the filter
applies to the image.

Gamma filter. This filter is based on the supposition that the scene intensity has a gamma
distribution. Similar to the Frost and Lee filters, this filter minimizes the loss of textural infor-
mation and is appropriate for scenes with features that represent a Gaussian distribution, such as
tree-covered areas, agricultural zones, and oceans.

Kuan20 first proposed the use of the gamma MAP filter to reduce speckle noise.
The application of this filter requires a priori knowledge of the scene’s density probability
function. Kuan assumed a Gaussian distribution for this probability density function.
Lopes21 modified the Kuan MAP filter by assuming that the scene has a gamma
distribution, and two thresholds were established. The gamma MAP filter result is given as
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Sðt0Þ ¼ ½ðα − Nlook − 1ÞYðt0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2ðt0Þðα − Y − 1Þ2 þ 4αNlookYðtoÞ

p
�∕2α; for Cu ≤ CYðt0Þ ≤

Cmax, where Nlook is the number of looks, Cmaxðt0Þ ¼
ffiffiffiffiffiffiffiffi
2Cu

p
, α ¼ 1þ C2

u∕C2
Yðt0Þ − C2

u,
and Cu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∕Nlook

p
. For CYðt0Þ < Cu, and CY > Cmax, Sðt0Þ ¼ Yðt0Þ and Sðt0Þ ¼ Yðt0Þ,

respectively.

Hermite transform. This study used the Hermite transform (HT) as an algorithm for noise
reduction.11,22 This algorithm adapts to the statistical characteristics of images. HT is a decom-
position technique for n-dimensional signals (such as an image) that projects a window localized
image on an orthogonal basis composed of the Hermite polynomials. This method can be
described by the following steps.

i. Forward polynomial transform.

The input SAR image, defined as Yðx; yÞ, with ðx; yÞ coordinates, is multiplied by
a Vðx − p; y − qÞ window function at all ðp; qÞ positions. The polynomial transform is
defined by the following function:

EQ-TARGET;temp:intralink-;e005;116;552Yðx; yÞ ¼ 1

Wðx; yÞ
X
p;q∈S

Yðx; yÞVðx − p:y − qÞ; (5)

where Wðx; yÞ is a weighting function equal to
P

ðp;qÞ∈SVðx − p; y − qÞ and S is the
sampling lattice and is related to the complete signal description through the windowing
mapping process. This process is carried out at several equidistant positions on the image.
In addition, a necessary condition for the weighting function is to be different from zero for
all ðx; yÞ. The next step is to approximate the localized signal within the window
Vðx − p; y − qÞ with an orthogonal polynomial expansion. To calculate the polynomial
coefficients Ym;n−mðp; qÞ, the Yðx; yÞ image is convoluted with the Dm;n−m filter as
follows:

EQ-TARGET;temp:intralink-;e006;116;408Ym;n−mðp; qÞ ¼
Z þ∞

−∞

Z þ∞

−∞
Yðx; yÞDm;n−mðp − x; q − yÞdx dy (6)

for m ¼ 0; : : : :n and n ¼ 0; : : : :N. The filter is expressed as Dm;n−mðx; yÞ ¼
Gm;n−mð−x;−yÞV2ð−x;−yÞ, where Gm;n−mðx; yÞ is the polynomial of m degree in x and
n −m in y. N is the maximum order of the polynomial expansion.

ii. Inverse polynomial transform.23

The resynthesized image Y 0ðx; yÞ is obtained by

EQ-TARGET;temp:intralink-;e007;116;300Y 0ðx; yÞ ¼
XN
n¼0

Xn
m¼0

X
ðp;qÞ∈S

Ym;n−mðp; qÞPm;n−mðx − p; y − qÞ; (7)

where Pm;n−mðx; yÞ ¼ Gm;n−mðx;yÞVðx;yÞ
Wðx;yÞ is the interpolation function for m ¼ 0; : : : ; n and

n ¼ 0; : : : N and the weighting function is given by Wðx; yÞ ¼ P
ðp;qÞ∈SVðx − p; y − qÞ.

iii. HT.

The HT resembles some of the characteristics of human vision. It is based on the analysis
of images with Gaussian derivatives and local processing. The HT is a special case of a
polynomial transform in which the local analysis window Vðx; yÞ is the Gaussian function.
In this case, the associated orthogonal polynomials are the Hermite polynomials.

EQ-TARGET;temp:intralink-;e008;116;159Gn−m;mðx; yÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nðn −mÞ!m!
p Hn−m

�
x
σ

�
Hm

�
y
σ

�
; (8)

where HnðxÞ is the n’th Hermite polynomial of degree n in x.
The decompositions consist of a number of subimages that represent a low-pass residual

known as zero-order coefficients (Y0;0) and several high-pass bands containing detailed
information coefficients, where Y0;1 and Y1;0 are the first-order coefficients for SAR images.
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Y0;2, Y1;1, and Y2;0 are the second-order coefficients for SAR images, respectively, and so
on, until the highest coefficient order, N. The zero-order coefficient Y0;0 represents a smooth
version of the original image. A rotated version of the HT was proposed in Ref. 24. This
version locally adapts the coordinate axes of the HT to the orientation of edges.

Figure 4 shows an HT expansion of a SAR image. The original image is decomposed
into a number of subimages that consist of a low-pass (approximation) image with a zero-
order coefficient (Y0;0) and a series of high-pass coefficients containing detailed information
that correspond to first- and second-order HT coefficients.

iv. Adaptive noise reduction in SAR images.

As described in Refs. 11 and 22, the noise reduction method consists of adaptively
blurring the image. First-order HT coefficient energy Y2

1;0 þ Y2
0;1 is used to detect relevant

edges in the image. To discriminate between edges and noise in the energy measure, an
adaptive local threshold is set. Because speckle noise can be modeled as multiplicative,
noise variance is proportional to the local mean value; therefore the local threshold is deter-
mined by

EQ-TARGET;temp:intralink-;e009;116;435T ¼ 2α
μ2Y

ANlook

ln

�
1

Pr

�
; (9)

where α is a proportionality constant, μY is the local mean of the original image, A is the
SNR, Nlook is the number of looks of the Yðx; yÞ image, and Pr is the probability of noise in
the image and is defined by the user (for example, 0.5).

This adaptive, moving threshold results in a binary mask that shows the locations of edges
that are relevant to the user’s parameters. This binary mask is multiplied by the higher-than-zero-
order HT coefficients so that, after the inverse HT transform is performed, noisy regions in the
image can be reconstructed with the zero-order HT coefficient only, while regions with edges
can be fully reconstructed, thereby preserving sharpness. A more elaborated method involves a
multiresolution approach that enables detecting edges at different spatial scales as well as using
the rotated HT.24,25 This makes it possible to reduce noise not only in homogeneous regions but
also on the edges, resulting in sharper images.

The HT algorithm was implemented with MATLAB version 7.0. To restore the images, the
experimental processing parameters used were as follows: noise type = multiplicative, noise to
eliminate ð1 − PrÞ ¼ 15%, number of looks = 1, polynomial transform parameters = directional
processing, window length = 4, subsampling period = 2, and pyramid levels = 1.

The filters were evaluated for their ability to reduce noise by computing the Cv and the equiv-
alent number of looks (ENL), and preserving edges as measured by edge preservation degree-
ratio of average (EPD-ROA). The EPD-ROA26 was calculated by the following equation:

EQ-TARGET;temp:intralink-;e010;116;166EPDROA ¼
P

i∈Y jED1ðiÞ∕ED2ðiÞjP
i∈Y jEO1ðiÞ∕EO2ðiÞj

; (10)

where Y is the image information, ED1ðiÞ and ED2ðiÞ are the adjacent pixel values of the des-
peckled image in horizontal or vertical orientations, respectively, and EO1ðiÞ and EO2ðiÞ are the
corresponding adjacent pixel values along a certain orientation of the original image and that of
the speckled image for real data.

Fig. 4 Detailed images of zero-order coefficients (Y 0;0) and first-order coefficients ðY 1;0;Y 0;1Þ.
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Logarithmic transform is used to convert the backscattering coefficient to decibels (dB),27

and the denoising images are geometrically corrected before calculating Haralick texture
descriptors.

3.1.4 Water texture analysis

There are various Haralick texture descriptors that indicate the behavior of water body surfaces. For
example, a homogeneous region is considered “calm water,” seen as white or dark color, and the
segmentation contains a “solid area.”When there is “rough water” within a water body, the spatial
relationships between two internal pixels are different and are seen as a gradient of gray levels.
When this happens in the image segmentation process, it leads to a “holes in the lake” effect.

The Haralick model was calculated based on the following parameters found in the SNAP
tool developed by the ESA. First, a 5 × 5 window size was used, where the spatial relationship
between neighbors was defined to avoid loss of details. With regard to spatial relationships,
angles were selected in four directions: horizontal, vertical, diagonally up, and diagonally down.
The quantization included 32 levels. Displacement or distance was 2, which refers to the distance
between a pair of pixels (reference and neighbor). Generally, texture descriptors provide the
same type of information and are correlated, some positively and others negatively.

Texture descriptors were selected based on visual interpretation, the content of the textural
information, and correlation. Four texture measurements were calculated in this work: GLCM_
mean, entropy, energy, and GLCM_contrast. GLCM_mean is a statistical texture descriptor that
has a filtering effect that reduces speckle noise, but there is a loss in edge sharpness. It smooths
the water surface, generates pixels that are very similar, and favors the identification of homog-
enous zones, which contributes to distinguishing water from nonwater pixels. GLCM_mean
is highly correlated with the homogeneity feature. Entropy indicates variations in intensity.
Negative entropy values indicate that there are more ordered elements, which are interpreted
as homogenous zones. For this reason, the interface edge or outline of a water body is expected
to be highly distinguishable and quantifiable. Energy indicates a uniform backscattering coef-
ficient throughout the water body and is highly correlated with the homogeneity descriptor.
Contrast is more commonly associated with the visual characteristics of edges, and it highlights
changes in water and nonwater borders.

3.1.5 Layer stacking test

This analysis is based on a stack of textures with no texture images. Twelve general tests were
conducted, some of which took into account aspects related to texture. Table 2 lists and describes
the tests that were generated as input for the SVM algorithm.

3.2 Water Extraction Feature

Unlike other supervised classifiers, the SVM algorithm is based on the distribution of the data
used to assign a pixel to a class. The SVM classifier uses a geometric criterion that takes into
account the maximum margin between classes. An optimal hyperplane is defined as the maxi-
mum separation between classes, which depends on the multidimensional space available for
processing. That is, for multispectral images, it depends on the number of bands to be classified
by the SVM algorithm. With the training data, the SVM algorithm is transformed into a vector
space with a greater dimension. This process is performed with a kernel by which the separation
hyperplane is generated. Different types of margins and kernels (mathematical functions) exist,
including separable linear, polynomial, and a radial basis function. The input parameters of the
kernel are a constant (c) that penalizes the pixels that are located on the wrong plane and gamma
(γ), which is proportional to the amplitude of the kernel. This study used SVM, which was
implemented with the Montevedi (ORFEO-CNES) free software toolbox. The parameters
include linear kernel function with a γ value of 1, border margin with a minimum of 1, and
relationship between the training and validation data of 0.5.

In the case of SWB and MSWB, when using the classifying method to differentiate between
water and nonwater borders, we need to consider that there are transition zones that may have a
high degree of heterogeneity. The training phase and defining the number of classes are very
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important for training the SVM classifier and for generating good class separation to obtain a
water/nonwater binary mask. The nonwater class in this study includes bare soil, cities, agri-
cultural land, grasslands, and forests. The water class includes the water pixels corresponding
to each lake in the Montebello Lagoons system.

3.3 Assessing Accuracy

Water body indicators were analyzed based on the LWE maps to quantify the efficacy of the
classification of each test studied. Using different methods, a vector cartography of the shapefile
polygon was obtained by turning the binary mask into a vector. For each lake or reservoir, three
assessment methods were used to evaluate precision: AA (%), completeness (%), and overlap. In
addition, shape characteristics were measured using shoreline development (SLD) to understand
the different morphologies of the 23 lagoons. The first method, AA, is based on the following
equation:9

EQ-TARGET;temp:intralink-;e011;116;262AA ¼ aref − aSAR
aref

� 100; (11)

where aref is the reference area and aSAR is the area obtained from S1 data.
Quantitative precision was evaluated by calculating the indicators of completeness and over-

lap. Completeness28 is defined as the ratio of the area extracted within the reference area to
the reference area, given as a percentage.

EQ-TARGET;temp:intralink-;e012;116;173Completeness ¼ area of extraction within reference

area of reference
� 100: (12)

The overlap indicator29 is defined as the total number of matching pixels from both regions
(observed and reference) divided by the sum of the areas of the two regions. If both regions are
identical in size, the overlap value is 1.

EQ-TARGET;temp:intralink-;e013;116;94Overlap ¼ 2 � intersection
area1þ area2

: (13)

Table 2 Layer stacking tests.

Filter
Desc/asc

orbit Pol
GLCM-textural

descriptor ID

Lee Yes VV/VH None LEE-SIGMA0-DB-VV

LEE-SIGMA0-DB-VH

Hermite Yes VV/VH None HERMITE-SIGMA0-DB-VV

HERMITE-SIGMA0-DB-VH

Lee Yes VV/VH Mean LEE-GLCMMEAN-DB-VV

LEE-GLCMMEAN-DB-VH

Hermite Yes VV/VH Mean HERMITE-GLCMMEAN-DB-VV

HERMITE-GLCMMEAN-DB-VH

Lee Yes VH Mean + entropy +
energy

LEE-GLCMMEAN-ENTROPY-ENERGY-DB-VH

Hermite Yes VH Mean + entropy +
energy

HERMITE-GLCMMEAN-ENTROPY-ENERGY-DB-VH

Lee Yes VH Mean + contrast LEE-GLCMMEAN-ENTROPY-ENERGY-DB-VH

Hermite Yes VH Mean + contrast HERMITE-GLCMMEAN-CONTRAST-DB-VH
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SLD measures the shape of a lake (in meters or feet). SLD is the ratio of the shoreline length
to the circumference of a circle with an area equal to the area of the lake.

EQ-TARGET;temp:intralink-;e014;116;711SLD ¼ L
2

ffiffiffi
π

p
A
; (14)

where L = shoreline length and A = surface area of the lake.

4 Results and Discussion

4.1 Speckle Filter Analysis

The special requirement of despeckle filters is that they preserve the edges of SWB. The problem
with SAR images is speckle noise, which complicates the identification of edges. To detect a
water surface, the edge of a lake needs to be well-defined and separable from the background
(nonwater) pixels. Table 3 presents the performance of each algorithm based on the calculation
of the CV , ENL, and EPD-ROA. Figure 5 shows the details of the images that were filtered using
the different methods.

As seen in Table 3, based on CV , the best noise reduction results were obtained in descending
mode with a Lee filter and for VH polarization, resulting in a CV of 0.124. For the VV channel,

Fig. 5 Images resulting from noise correction with four filter methods. Descending and ascending
orbits, VV and VH polarizations.
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aCV of 0.116 was obtained using the HT filter. With regard to ascending mode, theCV was 0.123
with the Lee filter, for both VVand VH polarizations; with the HT filter, it was 0.119 for VVand
0.132 for VH polarizations. The ENL value is high when the quality of the denoising image is
good. The calculation of ENL in this work resulted in high values for the HT filter. In all tests, the
average EPD-ROAwas between 0.96 and 1, which shows that the edges are well preserved. The
best results were obtained with the gamma filter and the HT filter, shown in bold in Table 3.

We selected the two best noise reduction filters. A visual inspection identified the filters that
best preserved the edges (Fig. 5). With the HT filter, we can see that the image is sharp, the edges
are not degraded, and the homogenous zones with high backscattering intensities are smoothed.
Image sharpness is achieved because of the directional adaptive nature of the HT method. First-
order Hermite coefficients detect sharp edge positions and orientations, thereby smoothing only
in the parallel directions of edges. This strategy not only reduces noise on the edges but also
produces a sharpening effect.

As we can see from the previous findings, the quantitative values indicate that the Hermite
and Lee filters result in the best speckle reduction according to Cv and ENL. The products that
were obtained from these two filters were used to perform the subsequent tests.

4.2 Analyses with Binary Water Mask

Figure 6 shows the LWEmaps resulting from each test, including both VVand VH polarizations,
ascending and descending orbits, Lee and HT filters, and with and without texture. The 23 main
lakes in each LWE map were analyzed to evaluate the classification of the 14 LWE maps that
were obtained by the different methods presented in Table 2.

The surface properties and area (km2) of each lagoon were determined for each LWE map.
The areas obtained with S2 data served as reference areas for the accuracy assessment, as
explained in Sec. 2.2. The radar chart in Fig. 7 shows the AA for each water body, so the areas
can be easily compared. Each method is represented by a different color, and each axis corre-
sponds to a lagoon.

We divided the 23 lagoons into two groups according to the surface areas of the lakes. The
first group includes medium-sized lakes in which the water surface covers between 307.83 and
8.14 ha. This includes 13 lagoons that extend from Lago Tziscao to La Encantada. The second
group includes the lagoons with surface areas between 3.32 and 1.52 ha, which were labeled
SWB. This includes the remaining 10 lakes from El Perol to La Esmeralda (see Table 1). The
radar charts in Figs. 7 and 8 show the lakes from biggest to smallest.

4.2.1 Group 1: MSWB

As seen in Fig. 7, for ascending orbit and VV polarization, the analysis of the areas in the radar
charts shows a drastic decrease in the areas of the San Lorenzo, San José, and Chanujabab lakes.
This could possibly be explained by the presence of a certain degree of roughness on the water
surface resulting from natural winds that were present at the time of data acquisition. In ascend-
ing orbit, the data were acquired during the first seconds of the day. This result agrees with the
visual evaluation of the LWE maps in Fig. 6. Visually, our findings show that, for the VV polari-
zation and in ascending orbit, artifacts that look like holes in the lakes can be seen in these three
lakes (San Lorenzo, San José, and Chanujabab). That is, the edges of these water bodies are
not completely delimited, as seen in the LWE maps with the IDs LEE-SIGMA0-DB-VV,
LEE-GLCMMEAN-DB-VV, HERMITE-SIGMA0-DB-VV, and HERMITE-GLCMMEAN-
DB-VV. This agrees with what was reported in Ref. 30, namely, that the VV band is more
sensitive to rough surface conditions. As seen in Fig. 6, with this water body size, VH cross
polarization is less sensitive to surface effects that have a certain degree of roughness.

As shown in the radar charts in Fig. 7, in descending mode for both VVand VH polarizations,
the AA ranges between 80% and 98% for the lakes extending from Tziscao to La Encantada.
This may suggest calm water because the SAR data were acquired at mid-day.

With regard to the analysis of MSWB, the AA of the tests that used texture data (such as
GLCM_mean and GLCM_mean with energy and entropy) were generally not better than the AA
that resulted from the tests without texture. Nevertheless, they did generate homogenous internal
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areas in the water bodies, which were difficult to detect because of the rough water surface.
Meanwhile, the percentages resulting from the tests with GLCM_contrast were lower than the
tests with texture.

4.2.2 Group 2: SWB

Figures 6 and 7 show the results for SWB. Figure 7 shows the AA in the form of four radar charts
for ascending and descending orbits. As can be seen, the descending orbit data underestimate VH

Fig. 6 Results of the LWE maps obtained with the different methods studied. The water masks
obtained with each test are in purple. The reference water masks are delineated in a vector form
(black).
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polarization, which may be due to tree cover around these SWB. With VH polarization, there is
greater variability in backscattering in tree-covered areas around a water body. For SWB, VV
polarization better detects water body surfaces when there are no effects from roughness on the
surface due to winds or heavy rain. In general, the results obtained with the GLCM matrix show
that texture variables are very sensitive to the identification of the water body sizes that were
analyzed in this study. This is in spite of the fact that the texture metrics that were used improved
the uniformity of the water body pattern. The analysis of the texture descriptors suggests that
texture parameters cannot be recommended for the delineation of SWB. As seen by comparing
the radar charts shown at the bottom of Fig. 7, which present the AA in descending mode with
Lee and Hermite filters, the six tests resulted in greater detail in AAwith the Hermite filter than
with the Lee filter.

Based on the above-mentioned results, a new set of LWE maps with high AA percentages
was selected. This new set included the four LWE maps with the IDs LEE-SIGMA0-DB-VV,
LEE-SIGMA0-DB-VH, HERMITE-SIGMA0-DB-VV, and HERMITE-SIGMA0-DB-VH.

The radar charts in Fig. 8 shows the calculations of the AA for ascending and descending
orbits, completeness percentages, and overlap (descending orbit) for each lagoon. The SLD
index was also determined for descending orbit. Table 5 (see the Appendix for details) presents
data that compare the different measurements of precision and the SLD.

Fig. 7 Radar charts (radial net) of AA obtained with the tests studied for each lagoon, with and
without texture, ascending and descending with Lee filter and Hermite filters. The La Cañada,
Camarón, and La Esmeralda Lagoons were under 20% in ascending orbit and were not included
in the chart.
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Figure 8 shows the AA in ascending and descending orbits. As can be seen, VV polarization
had better results than VH polarization for most of the lakes studied. However, in ascending
orbit, the La Cañada, Camarón, and Esmeralda Lagoons presented pixels with this pattern that
were under 40% in area (not included in the chart).

With regard to descending orbit, the HT filter resulted in good AA (>80%) for VV and VH
polarizations. As seen in Table 4 (see the Appendix for details), for VV polarization, 22 lakes had
an accuracy of over 80% with the Hermite filter and 21 with the Lee filter (see Fig. 8).

For both polarizations, the completeness percentage is between 80% and 100% for most of
the lakes. Also for both polarizations, the percentages are lower for the Camarón, Cañada,

Fig. 8 A radar chart (radial net) of AA (%) (ascending and descending orbits), completeness (%),
overlap, and shoreline development for descending orbit.
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Chulul, and Esmeralda lakes, which measure <2 ha in size. The completeness results presented
in Table 4 show 18 water bodies with a value over >80% with the HT filter and 18 with the Lee
filter.

Overlap is another criterion (Table 5). The reference image is considered to be a template that
at greater superposition will have a value close to 1. Superposition is defined as the total number
of pixels that exist in both regions, divided by the sum of the areas of both regions. In the case of
the VVand VH polarizations, the overlap values ranged from 0.7 to 0.96. However, with the VV
polarization in descending mode, better results were obtained using the Hermite and Lee filters,
with 10 and 9 lakes having an overlap value >0.9, respectively.

4.3 Identification of Morphological Properties

The shapes of the lagoons were studied based on the coastline parameter (SLD). Figure 8 shows
this radar chart. SLD is useful because it is a morphological indicator that enables comparing
changes that can occur in the shapes of water bodies over short time periods. All S1 methods are
compared with the S2 reference in this radar chart (Table 5). In the case of the San Lorenzo
Lagoon, the coastline value is >3, which may indicate that the shape of this water surface
is mainly elliptical (uvalas landform). Many lagoons have values that are close to 1, which indi-
cates that these are rounded lagoons and could be classified as small circular lagoons. In the
literature, many of the lagoons in this study area are identified as having a doline landform,
a very rounded shapes. Our previous field study found that many water bodies change their
SLD due to connectivity or isolation processes related to seasonality. SAR can potentially
be used to study these dynamic cycles.

5 Conclusions

This paper presented several methods for restoring S1 datasets. In particular, noise speckle
reduction has an important effect on the restoration of SAR images. With the Hermite filter
algorithm, the internal texture of water bodies is preserved as a homogenous area. The LWE
maps that were obtained with the Hermite technique show that there were no problems with
the pixels of the water/nonwater borders because the algorithm restored them, thereby achieving
sharp edges and adequately separating the water/nonwater elements. With regard to the MSWB
and SWB, these small regions are affected by noise. The Hermite filter enables restoring the
homogenous internal values of the water body.

This study was able to evaluate and determine an optimal methodology for quantifying each
LWEmap. The reliability indices and the visual identification of reliability indicate that the LWE
obtained with the new denoising approach provided better results with the HT, followed by the
Lee filter, using descending orbit and VV polarization. With the given acquisition time of the
descending orbit and the data acquisition geometry, all of the lakes in the study area could be
adequately characterized.

Furthermore, this investigation contributes to the exploration of techniques for delineating
MSWB and SWB located in high mountains and plains, such as the Montebello Lagoon system.
Given the geographic characteristics and the abundant cloudiness in the study area, S1 SAR data
are valuable for multitemporal monitoring in this region.

In the context of climate change, and considering the ecosystem services that are provided by
MWB and SWB, it is important to conserve these ecosystems. The temporal analysis of this type
of systems provides important information about how climate variability affects their ecological
behavior.

6 Appendix

Comparison between the HT filter and Lee filter methods. Evaluation of the lagoons based on
completeness (%), AA (%), overlap, and SLD.
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