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ABSTRACT

Superpixel algorithms oversegment an image by grouping pixels with similar local features such as spatial posi-
tion, gray level intensity, color, and texture. Superpixels provide visually significant regions and avoid a large
number of redundant information to reduce dimensionality and complexity for subsequent image processing
tasks. However, superpixel algorithms decrease performance in images with high-frequency contrast variations
in regions of uniform texture. Moreover, most state-of-the-art methods use only basic pixel information -spatial
and color-, getting superpixels with low regularity, boundary smoothness and adherence. The proposed algo-
rithm adds texture information to the common superpixel representation. This information is obtained with
the Hermite Transform, which extracts local texture features in terms of Gaussian derivatives. A local iterative
clustering with adaptive feature weights generates superpixels preserving boundary adherence, smoothness, reg-
ularity, and compactness. A feature adjustment stage is applied to improve algorithm performance. We tested
our algorithm on Berkeley Segmentation Dataset and evaluated it with standard superpixel metrics. We also
demonstrate the usefulness and adaptability of our proposal in medical image application.

Keywords: Hermite Transform, local clustering, medical image segmentation, Texture superpixels.

1. INTRODUCTION

The idea of superpixels was introduced by Ren and Malik1 and describes the oversegmentation of an image into
homogeneous regions that try to respect the image contours. These perceptually meaningful regions can be used
to replace the structure of pixel grid2 and have been used as a preprocessing in many computer vision applica-
tions such as contour detection,3 segmentation,4 object localization,5 classification6 and data augmentation in
supervised training of deep neural networks.7

According to the literature, a superpixel method should include these properties: (i) Superpixels should be
disjoint and assign a label to every pixel;8 (ii) The clustering must group pixels into homogeneous areas in
terms of its features;9 (iii) Superpixels should adhere well to image boundaries;2 (iv) Superpixels should be
compact, placed regularly and exhibit smooth boundaries. The metrics to evaluate the superpixels properties
include Undersegmentation Error (UE),2,10 Achievable Segmentation Accuracy (ASA),11 Explained Variation8

and Global Regularity.12

Different approaches to generate superpixels have been proposed. We can classify these methods in different
categories, according to Ref. 8, but the most used and important for this work are Contour Evolution10 and
Clustering-based methods such as SLIC superpixels which is the most representative superpixels method used
in practical applications due to its time-efficiency.

However, most classic methods use only basic pixel information -spatial and color-, getting superpixels with
low regularity, boundary smoothness and adherence, in regions where texture is present. For that reason, our
proposed algorithm adds texture information to the common superpixel representation. These texture features
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are obtained with the Hermite Transform, which has demonstrated to be useful for texture description13,14

especially in medical image applications.15,16

In this paper, we use the Hermite Transform to include texture information in a SLIC superpixel method
modification, to improve superpixel performance on images with important texture presence. Section 2 reviews
the theoretical background of Hermite Transform. Section 3 describes the proposal feature representation and
discriminability measure distance. In Section 4 Experiments and Results are presented. The final section
concludes the paper.

2. HERMITE TRANSFORM

The Hermite Transform17 is a local decomposition technique that expands an image into orthogonal polynomials
with respect to a Gaussian window. The analysis functions are similar to Gaussian derivatives that, according
to Ref. 18, fit the receptive field profiles of mammalian visual systems.

2.1 Polynomial Transform

A Polynomial Transform is a signal representation technique based on polynomial approximations within a local
window. The input signal L(x) is localized by multiplying it by a window function V (x) and projecting it onto
orthogonal polynomials with basis functions Gn(x), where n is the polynomial grade. These basis functions are
orthonormal with respect to V 2(x).17

Ln(kT ) =

∫ −∞
∞

L(x) ·Gn(x− kT )V 2(x− kT )dx (1)

Eq. 1 is the Direct Polynomial Transform which maps the input signal to the coefficients Ln(kT ) by convolving
the input signal with the analysis functions or filter functions (eq. 2) following by a subsampling T.

Dn(x) = Gn(−x)V 2(−x) (2)

From the Inverse Polynomial Transform (eq. 3)17 we can achieve signal reconstruction from the coefficients
Ln(kT ), interpolating it with the Pattern functions (eq. 4) and summing over all orders n.

L(x) =

∞∑
n=0

∑
k

Ln(kT ) · Pn(x− kT ) (3)

Pn(x) =
Gn(x)V (x)

W (x)
(4)

2.2 Hermite Analysis Functions

The Hermite analysis functions of the Hermite transform17 of degree n in one dimensional are defined in eq. 5:

Dn(x) =
(−1)n√

2nn!
· 1

σ
√
π
Hn

(x
σ

)
e

−x2

σ2 (5)

where Hn(x) are the Hermite polynomials given by Rodrigues’ formula and σ is the standard deviation of
the Gaussian window V (x) (eq. 7). The filter function Dn(x) is equal to the nth order derivative of a Gaussian
(eq. 6).17

Dn(x) =
1√

2nn!
· dn

d( xσ )n

[
1

σ
√
π
e

−x2

σ2

]
(6)

V (x) =
1√√
πσ
· e

−x2

2σ2 (7)
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2.3 Bidimensional Cartesian Hermite Transform

A Gaussian window in two dimensions has the property of being spatially separable17 and the two dimensional
analysis functions can be written as in equation 8.

Dn−m,m(x, y) = Dn−m(x)Dm(y) (8)

where n−m is the analysis order in direction x and m in direction y.

And input image L(x, y) can be expanded into the basis Dn−m,m(x, y) as shown in equation 9.

Ln−m,m(x0,y0) =

∫
x

∫
y

L(x, y) ·Dn−m,m(x0 − x, y0 − y)dxdy (9)

for n = 0, 1, ..., dmax and m = 0, ..., n, where dmax is the maximum desired derivative degree.

Figure 1 shows the Coefficients of the Cartesian Hermite Transform where the vertical and horizontal patterns
can be observed.

L00 L10 L20

L01 L11

L02

Figure 1: Coefficients of the Cartesian HT up to second order for a image of Berkeley Dataset.
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3. PROPOSAL

Most of the superpixel segmentation algorithms have important dependence on color and spatial features to
get compact and perceptual segments. However, texture information on images is a great guideline for image
segmentation, especially in medical image analysis.15 For that reason, our proposal combines the idea of SLIC
superpixels2 with texture feature representation based on Hermite Transform,13 including a weight distance
adjustment to improve results.

3.1 Feature Representation

CIELAB is the color space used to calculate the color difference in many superpixel algorithms2,19 because it
allows to perceive chromatic aberration easily. The color feature vector is [l, a, b], where l stands for lightness, a
and b are the color dimensions. The corresponding color difference dc between two pixels pi and pj is calculated
using a normalized Euclidean distance as follows:

dc(pi, pj) =
√

(li − lj)2 + (ai − aj)2 + (bi − bj)2 (10)

To enforce compactness, spatial feature difference is included (eq. 11). The spatial feature vector [x, y]
represents the vertical and horizontal coordinates of a pixel.

ds(pi, pj) =
√

(xi − xj)2 + (yi − yj)2 (11)

In addition to the color and spatial features, texture feature represented by the Hermite Transform coef-
ficients is included to improve the performance of the algorithm, especially in areas where color difference is
not significant. The texture feature is represented by vector tex = [L00, L10, L01, L20, L11, L02]. The texture
difference between pi and pj is set to:

dtex(pi, pj) = ‖texpi − texpj‖ (12)

Combining the color, spatial and texture feature, a pixel is described by:

pi = [li, ai, bi, xi, yi, L00i , L10i , L01i , L20i , L11i , L02i ] (13)

3.2 Distance measure

The final distance measure between two pixels pi and pj described by eq. 13 is:

D =
√
wc(dc)2 + ws(ds)2 + wtex(dtex)2 (14)

where wc, ws and wtex are weights to be adjusted iteratively. It is important to note that wtex has the same
length as vector tex. It means, each Hermite coefficient has its own weight.

As proposed in Ref. 20, the weights are adjusted using the sum of the within cluster distances SWq for each
feature (eq. 15).

SWq =

k∑
r=1

n∑
s=1

ûps,crdq(pq, cr) (15)

where q corresponds to the set of features, k is the number of superpixels, n is the number of pixels, ûps,cr is
a binary variable to indicate whether a pixel ps (s = 1, 2, ...n) belongs to a cluster center cr(r = 1, 2, ...k); and
dq(pq, cr) measures the distance of pixel ps to center cr on feature q.20 Weight feature q is adjusted following eq.
16.
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wq =
1∑

t∈FeatureSet

[
SWq

SWt

] 1
β−1

(16)

where β is fixed to 9, as specified by Ref. 21.

4. EXPERIMENTS AND RESULTS

We tested our algorithm on Berkely segmentation dataset22 and compared our proposal with SLIC,2 the most
popular and used superpixel method, and Turbopixels,10 one of the most regular and compact superpixel results.

4.1 Evaluation metrics

We evaluate the performance of the algorithm using standard superpixels metrics,2,8, 10,12,20,23 such as Un-
dersegmentation Error -UE, Achievable Segmentation Accuracy - ASA, Explained Variation - EV, and Global
Regularity.12

For an image I, a superpixel decomposition S = {Sk}k∈{1,...,|S|} with |S| superpixels Sk, and a ground truth
denoted G = {Gj}j∈{1,...,|G|} with Gj a segmented region, we have the following evaluation metrics.

4.1.1 Undersegmentation Error - UE

The Undersegmentation Error - UE measures the overlap of superpixels with multiple and nearby ground truth
segments.8 Ref. 24 proposed a free parameter formulation of UE (equation 17).

UE(S,G) =
1

|I|
∑
Sk

∑
Gj

min{|Sk ∩Gj |, |Sk \Gj |} (17)

4.1.2 Achievable Segmentation Accuracy - ASA

The Achievable Segmentation Accuracy - ASA also aims at evaluating the overlap of superpixels with a ground
truth. It is calculated as:

ASA(S,G) =
1

|I|
∑
Sk

max
Gj
|Sk ∩Gj | (18)

4.1.3 Explained Variation -EV

Explained Variation - EV8 helps to evaluate the homogeneity of the color clustering and is defined as equation
19.

EV (S) =

∑
Sk
|Sk|[µ(Sk)− µ(I)]2∑
p∈I [I(p)− µ(I)]2

(19)

4.1.4 Global Regularity - GR

The Global Regularity measure, proposed by Ref. 12, aims to evaluate the shape regularity and consistency in
only one metrics.

GR(S) = SRC(S)SMF (S) (20)

with,
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Smooth Matching Factor - SMF compares the spatial distributions of the average superpixel shape S∗ to
each registered superpixel shape S∗k .

SMF (S) = 1−
∑
Sk

|Sk|
|I|

.

∥∥∥∥ S∗|S∗| − S∗

|S∗k |

∥∥∥∥
1

/2 (21)

Shape Regularity Criteria - SRC mesures the convexity, the smoothness of the contours and the balanced
repartition of the pixels within the shape.

SRC(S) =
∑
Sk

|Sk|
|I|

CR(Sk)Vxy(Sk) (22)

where, CR(S) = CC(Hs)
CC(S) is the Criteria of Regularity - CR, with CC(S) = |P (S)| |S| the relation between

the perimeter and the area of a shape S. Hs is the convex hull which entirely contains the superpixel form

S.12 Vxy(S) =
min(σx,σy)
max(σx,σy)

defines the variance as a ratio between the minimun and maximun variance of pixel

positions x and y, which belong to S, where σx and σy are the standard deviations of the pixel positions.

4.2 Results

The quantitative evaluation of the behavior of the two methods -SLIC and Turbopixels- considered to compared
our proposal with includes the metrics described in Section 4.1. We performed the experiments taking into
account a number of superpixels variation from 100 to 900 with step of 100 superpixels. Figure 2 shows the
results. According to these results, our proposal presents good homogeneity of color clustering Figure 2(c),
acceptable respect of image objects Figure 2(a)(b) and low regularity Figure 2(d).

(a) Undersegmentation Error (b) Achievable Segmentation Accuracy

(c) Explained Variation (d) Global Regularity

Figure 2: Quantitative comparision for Berkeley Dataset images.
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Figure 3 provides the visual comparison of superpixels generated with our proposal, SLIC and Turbopixel
when the number of superpixels is 100. It can be seen that our proposal generates smoother superpixels than
SLIC ones, but both algorithms present low regularity. Turbopixel generates the smoothest superpixels but its
boundary adherence is low.

Proposal SLIC Turbopixel

Figure 3: Visual comparision for Berkeley Dataset images.

4.3 Application to medical imaging

Due to mammography limitations for breast cancer diagnosis, Ultrasound imaging has become an important aid
to improve this diagnosis.25 Shape and texture features are used to differentiate benign and malignant breast
tumors. Because of that, better segmentation results of breast Ultrasound images have been sought. Superpixels
have shown to be useful as a preprocessing step in image segmentation, and the Hermite Transform can provide
good texture descriptors. Consequently, we propose to use our algorithm to presegment breast Ultrasound images
to improve tumor classification.

The visual comparison of superpixels methods SLIC, Turbopixels and our proposal are shown in Figure 4
for breast Ultrasound images. The red contour is the expert delineation that is superposed to the superpixels
contours (cyan contours) to confirm the usefulness of our superpixel proposal as a preprocessing step to improve
the performance in subsequent medical image processing.

5. CONCLUSION

In this paper, we presented a superpixel algorithm that adds texture information, obtained with the Hermite
Transform to the SLIC method with weights feature adjustment in each iteration, to improve the discrimination
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Original image Proposal SLIC Turbopixel

Figure 4: Visual result for Breast Ultrasound images.

of pixels in images of important texture content. Experimental results showed that we got superpixels with
better object adherence, smoothness and homogeneity. Regularity remains a concern to improve, however, the
superpixels are perceptually meaningful. The usefulness and adaptability of our proposal was demonstrated by
applying it to breast Ultrasound images.

Texture feature inclusion with Hermite Transform and feature weights adjustment proved to be good but not
enough to get better results in superpixels regularity. To cope with this issue, future work considers the idea of
feature selection over the texture features in local regions of the images.
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