Interest Points and Corners
Read Szeliski 4.1

Computer Vision

James Hays

Correspondence across views

* Correspondence: matching points, patches,
edges, or regions across images




Example: estimating “fundamental matrix”
that corresponds two views

Slide from Silvio Savarese

Example: structure from motion




Applications

* Feature points are used for:

— Image alighment
— 3D reconstruction

Motion tracking

Robot navigation

— Indexing and database retrieval
— Object recognition

This class: interest points (continued)
and local features

* Note: “interest points” = “keypoints”, also
sometimes called “features”




This class: interest points

original

e Suppose you have to

click on some point, [:] ‘\
go away and come '
back after | deform the -o I

T

image, and click on the
— Which points would ‘-\
you choose?

same points again.

’ deformed

Overview of Keypoint Matching

1. Find a set of
distinctive key-
points

2. Define a region
around each
keypoint

3. Compute a local
descriptor from the
normalized region

4. Match local
descriptors




Goals for Keypoints

Detect points that are repeatable and distinctive

Invariant Local Features

Image content is transformed into local feature coordinates that are
invariant to translation, rotation, scale, and other imaging parameters

Features Descriptors
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Why extract features?

* Motivation: panorama stitching
* We have two images — how do we combine them?
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Local features: main components

1) Detection: Identify the
interest points

2) Description: Extract vector
feature descriptor X
surrounding each interest
point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman
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Characteristics of good features

Repeatability

+ The same feature can be found in several images despite geometric
and photometric transformations

+ Saliency
« Each feature is distinctive
» Compactness and efficiency
+ Many fewer features than image pixels

Locality

« A feature occupies a relatively small area of the image; robust to
clutter and occlusion
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Goal: interest operator repeatability

* We want to detect (at least some of) the
same points in both images.

M

No chance to find true matches!

* Yet we have to be able to run the detection
procedure independently per image.

Kristen Grauman
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Goal: descriptor distinctiveness

* We want to be able to reliably determine
which point goes with which.

* Must provide some invariance to geometric
and photometric differences between the two
views.

Kristen Grauman
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Local features: main components

1) Detection: Identify the
interest points

2) Description:Extract vector
feature descriptor
surrounding each interest
point.

3) Matching: Determine
correspondence between
descriptors in two views
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Many Existing Detectors Available

Hessian & Harris [Beaudet ‘78], [Harris ‘88]
Laplacian, DoG [Lindeberg ‘98], [Lowe 1999]
Harris-/Hessian-Laplace [Mikolajczyk & Schmid ‘01]
Harris-/Hessian-Affine [Mikolajczyk & Schmid ‘04]
EBR and IBR [Tuytelaars & Van Gool ‘04]
MSER [Matas ‘02]

Salient Regions [Kadir & Brady ‘01]

Others...

K. Grauman, B. Leibe
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Corner Detection: Basic Idea

« We should easily recognize the point by
looking through a small window

+ Shifting a window in any direction should
give a large change in intensity

“flat” region: “‘edge”: “corner”:

no change in no change significant

all directions along the edge change in all
direction directions

Source: A. Efros

18



Finding Corners

« Key property: in the region around a corner,
image gradient has two or more dominant
directions

» Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147--151.
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Corner Detection: Mathematics
Change in appearance of window w(x,y)
for the shift [u,V]:
20
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Corner Detection: Mathematics

Change in appearance of window w(x,y)
for the shift [u,v]:
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Corner Detection: Mathematics

Window function W(X,)) = JPP— -

Change in appearance of window w(x,y)
for the shift [u,v]:

Window Shifted
function intensity

1 in window, O outside Gaussian

Source: R. Szeliski

22

11



Corner Detection: Mathematics

Change in appearance of window w(x,y)
for the shift [u,V]:

E(u,v)= Zw(x,y)[l(x+u,y+v)—I(x,y)]2

x’y

We want to find out how this function behaves for
small shifts

E(u, v)
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Corner Detection: Mathematics

Change in appearance of window w(x,y)
for the shift [u,V]:

E(u,v)= Zw(x,y)[l(x+u,y+v)—I(x,y)]2

We want to find out how this function behaves for
small shifts

But this is very slow to compute naively.
O(window_width? * shift_range? * image_width?)

O( 112 * 112 * 6002 ) = 5.2 billion of these
14.6 thousand per pixel in your image

24
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Corner Detection: Mathematics

Change in appearance of window w(x,y)
for the shift [u,v]:

E(u,v)= ZW(x,y)[l(x+u,y+v)—I(x,y)]2

x’y

We want to find out how this function behaves for
small shifts

Recall Taylor series expansion. A function f can be
approximated at point a as

f(a) ok fl('a)‘z _ ﬂ) g fz(’a) (z — ﬂ-)2 + f 3(’(1)(1 _ (1)3 4.
25
Recall: Taylor series expansion
A function f can be approximated as
f(a) . 1(,(?)(1 —a) + ] 2(;7) (x—a)® + / 3(!(1)(1 —a)*+---
20y
n=0
15|
Approximation of 10|
f(x) = e*
centered at f(0) 5|
i —
-2 o} 2

26
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Robert Collins

crsrensie Taylor Series for 2D Functions

FOetu,y+v) = fx,y) +ufi(x,y) Fvfixy)+
First partial derivatives
1 . .
57 [0 ful ) v fyx,y 4V f (5,9)] +

Second partial derivatives

[1.{3 Sfox(x,y) + u’y froy(x,¥) + v’ fon(x,y) + p3 Sivy(x, \)}

Third partial derivatives

1
3!

+ ... (Higher order terms)

First order approx
fx+uy+v) = f(x,y) +ufe(x,y) +vfi(x,y)
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Robert Collins

crseremsate Harris Corner Derivation
S Gty +v) —10xy)?
~ 2 [I(x,y) +ul,+vI, —I(x, _\--')]2 First order approx

e 2 uzl_‘2 + 2uvl, 1, + vzlf,
L1y I}

(s[4

)

- E [uv] { L ]-“1»"1 1 Rewrite as matrix equation

28
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Robert Collins

CSE486, Penn State HarriS Detector: Mathematics

For small shifts [2,V] we have a bilinear approximation:

E(u,v)=[u,v] M

where M is a 2X2 matrix computed from image derivatives:

I
M=) w(x, . -0
; (%, ) L1, I

\ i
Note: these are just products of
components of the gradient, Ix, Iy

Windowing function - computing a
weighted sum (simplest case, w=1)
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Robert Collins

et Thtuitive Way to Understand Harris

Treat gradient vectors as a set of (dx,dy) points
with a center of mass defined as being at (0,0).

Fit an ellipse to that set of points via scatter matrix

Analyze ellipse parameters for varying cases...

30
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Robert Collins

crererExample: Cases and 2D Derivatives

Linear Edge Flat Corner

X derivative Input image patch

Y derivative
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Robert Collins

CSE486, Penn Statel)lotting Derivatives as 2D Points

02| 1}’ Flat

The distribution of the x and y
derivatives is very different for |
all three types of patches

fo.r [x
[°33 01 [ [ 3 [ 05
7 Corner . Linear Edge
04 o]

03]

02|

(3]

0.1
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Robert Collins

crmeranFitting Ellipse to each Set of Points

The distribution of x and y . ,, A
derivatives can be characterized [** )
by the shape and size of the
principal component ellipse

* AM~A2 = small
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33

Interpreting the second moment matrix

u
Consider a horizontal “slice” of E(u, v): [u v] M { }:const
v
This is the equation of an ellipse.
0
Diagonalization of M: M=R" A R
0 4,
The axis lengths of the ellipse are determined by the
eigenvalues and the orientation is determined by R

direction of the
fastest change

direction of the
slowest change

34
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Visualization of second moment matrices

35

Visualization of second moment matrices
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Interpreting the eigenvalues

Classification of image points using eigenvalues

of M:
Ay

37

Corner response function

R=det(M)—-atrace(M)’ = A4, —a(A +4,)°

a: constant (0.04 to 0.06)

38
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Harris corner detector

1) Compute M matrix for each image window to
get their cornerness scores.

2) Find points whose surrounding window gave
large corner response (> threshold)

3) Take the points of local maxima, i.e., perform
non-maximum suppression

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

39

Harris Detector puarrisss]

e Second moment matrix

1. Image
derivatives
(optionally, blur first)

N\ IX2

I}(o,) 11,(0),)
11,(c,) I(op)

,U(O'I,O'D)=g(0'1)*|:

2. Square of
detM = 4,2, derivatives
traceM =4, +
St 3. Gaussian 't \9(/)(2)
filter g(oy) -7

(LS}
4. Cornerness function — both eigenvalues are strong

har =det[u(o,,0 ;)] - aftrace(u(o, ’O-D))Z 1=
gUINg)-[gU 1) —alg(I})+gU)T

5. Non-maxima suppression

40
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Harris Detector: Steps

41

Harris Detector: Steps
Compute corner response R

42
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Harris Detector: Steps

Find points with large corner response: R>threshold
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Harris Detector: Steps

Take only the points of local maxima of R

44
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Harris Detector: Steps

45

Invariance and covariance

* We want corner locations to be invariant to photometric

transformations and covariant to geometric transformations
 Invariance: image is transformed and corner locations do not change

» Covariance: if we have two transformed versions of the same image,
features should be detected in corresponding locations

46
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Affine intensity change

L= B I—>al+b

» Only derivatives are used =>
invariance to intensity shift/ > 7+ 5

* Intensity scaling: I > al
¢ ¢ M N
threshold //.\ /.\\/\/.‘ / \/’\\/

X (image coordinate) X (image coordinate)

Patrtially invariant to affine intensity change

47
Image translation
» Derivatives and window function are shift-invariant
Corner location is covariant w.r.t. translation
48
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Image rotation

Second moment ellipse rotates but its shape
(i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

49
Scaling
Corner %Z’E\
All points will
be classified
as edges
Corner location is not covariant to scaling!
50
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Review: Harris corner detector Fy)

* Approximate distinctiveness by local auto-
correlation.

* Approximate local auto-correlation by
second moment matrix

* Quantify distinctiveness (or cornerness) as ‘
function of the eigenvalues of the second
moment matrix.

* But we don’t actually need to

compute the eigenvalues by
using the determinant and trace ﬂﬁ

of the second moment matrix. ‘

* Video chess https://youtu.be/vkWdzWeRfC4

51

So far: can localize in x-y, but not scale

52
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Automatic Scale Selection

f(lil...im (x,0)) = f(lil...im (x',0")

How to find corresponding patch sizes?

K. Grauman, B. Leibe
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Automatic Scale Selection
* Function responses for increasing scale (scale signature)
scale 1 dtale
S, (x,0) f(lil__,im (xlao-))
K. Grauman, B. Leibe
54
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)

scale
S, (%.0)

K. Grauman, B. Leibe
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Automatic Scale Selection
* Function responses for increasing scale (scale signature)
scale 5 & e
14, (x,0) S, ., &' 0)
K. Grauman, B. Leibe
56
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)

scale
S, (%.0)

K. Grauman, B. Leibe
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Automatic Scale Selection
* Function responses for increasing scale (scale signature)
£, 1 o) 14, , (+.0)
K. Grauman, B. Leibe
58
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)

K. Grauman, B. Leibe
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What Is A Useful Signature Function?
» Difference-of-Gaussian = “blob” detector

p

K. Grauman, B. Leibe

60
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Difference-of-Gaussian (DoG)

K. Grauman, B. Leibe

61
DoG — Efficient Computation
* Computation in Gaussian scale pyramid
Scale
(next
octave)
Sampling with ~—
step o%=2 A
o
Scale
(first o
octave)
1 o
Original image —o=2% , o
Difference of
Gaussian Gaussian (DOG)
K. Grauman, B. Leibe
62
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Find local maxima in position-scale space
of Difference-of-Gaussian

= List of
(xys)

K. Grauman, B. Leibe
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Results: Difference-of-Gaussian

K. Grauman, B. Leibe

64
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Orientation Normalization

* Compute orientation histogram [Lowe, SIFT, 1999]
* Select dominant orientation
* Normalize: rotate to fixed orientation

o * 2m
65
Harris-Laplace mioniczyk o1
1. Initialization: Multiscale Harris corner detection
Computing Harris function Detecting local maxima
66
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Harris-Laplace mikoisiczyk on)

1. Initialization: Multiscale Harris corner detection

2. Scale selection based on Laplacian
(same procedure with Hessian = Hessian-Laplace)

Harris points

Harris-Laplace points

K. Grauman, B. Leibe
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Maximally Stable Extremal Regions mats o
* Based on Watershed segmentation algorithm

* Select regions that stay stable over a large
parameter range

K. Grauman, B. Leibe
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Example Results: MSER

69

69

Comparison

| Harris

70
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Available at a web site near you...

* For most local feature detectors, executables
are available online:

— http://www.robots.ox.ac.uk/~vgg/research/affine

— http://www.cs.ubc.ca/~lowe/keypoints/

— http://www.vision.ee.ethz.ch/~surf

K. Grauman, B. Leibe
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