
Digital Object Identifier

Hermite transform based algorithm for
detection and classification of high
impedance faults
DANIEL GUILLEN1, (Member, IEEE), JIMENA OLVERES2, VICENTE TORRES-GARCIA,
(Senior Member, IEEE), and BORIS ESCALANTE-RAMIREZ2
1Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, N.L., México.
2Universidad Nacional Autónoma de México, Facultad de Ingeniería, Coyoacán, Ciudad de México, México.

Corresponding author: Jimena Olveres(e-mail: jolveres@cecav.unam.mx).

ABSTRACT This work proposes a new algorithm to cope with the classification of high impedance
faults (HIFs) in distribution systems because any HIF can be represented by small current magnitudes
with non-linear variations, which complicate its detection in distribution grids. The proposed method uses
the Hermite transform (HT) because this signal processing technique offers several advantages, one of
which is associated with the multiple resolution levels resulting from the filter functions and the analysed
electrical signal. The Hermite coefficients will depend on the filter functions where the filters help extract
the most essential high frequency components aiming to identify the transient behaviour of HIFs. The
processing of HIF signals allows identifying the main features regarding other transient events and typical
faults. In this sense, to classify different types of faults and HIFs, a multiresolution approach based on the
Hermite transform (HT) is proposed. The analysis is carried in a distribution network considering distributed
generation, and all findings are discussed using three different classifiers, which are also compared against
the discrete wavelet transform (DWT); the discussed results show that the proposed approach presents better
performance during the discrimination of HIFs from typical faults.

INDEX TERMS Classification, Distribution grids, Fault detection, Hermite transform, High impedance
faults, Multiresolution analysis.

NOMENCLATURE
Hn Hermite polynomials
Ln Hermite-expansion coefficients
Dn Filter functions
G(x) Gaussian window
i(x) Electrical signal
v Arc voltage
i Arc current
τ Time constant
g(t) Arc conductance
P (v, i) Arc power in steady-state
Ia, Ib, Ic Line currents
IHTa, IHTb, IHTc High-frequency components
F1 Standard deviation
F2 Average absolute magnitude
F3 Average energy
F4 Kurtosis index

I. INTRODUCTION

THE aim of any distribution system (DS) is to supply
the energy demanded by all possible customers. The

grid congestion and the distances associated with the power
distribution expose the grid to critical conditions such as
faults and abnormal scenarios, which may affect the power
quality and the system reliability. In this context, the pro-
tection systems must be reliable to detect faults as fast as
possible to avoid large interruptions of load. One of the
main existing issues of the distribution grids is the protection
against short circuits that produce high current magnitudes
resulting from “low impedance fault (LIFs)”. However, in
some cases, the fault may present small current magnitudes
originated by “high impedance faults (HIFs)”, which are
characterized by a nonlinear behavior [1], [2]. Therefore,
the correct discrimination between LIFs and HIFs has been
an essential subject of interest because HIFs may present
complex transient behaviour that complicate their detection.
A HIF occurs when an overhead conductor makes contact
with any object that hosts a path to ground. Due to the small
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current magnitudes and the nonlinearity of the phenomenon,
HIFs may not be detected by conventional overcurrent pro-
tections [3]. As a consequence of that, HIF detection has
been studied using different signal processing techniques
that may show the transient information associated with the
electric arc phenomenon. The arc phenomenon is non-linear,
asymmetric, and unpredictable that makes more complex the
HIF detection in distribution grids. In fact, several studies
have been carried out by analysing the patterns of the voltage
and current signals aiming to find the HIF characteristics.

In general, the analysis of HIFs can be carried out in
time, frequency, or time-frequency domains where the fea-
ture exploration is developed by advanced signal processing
and artificial intelligence techniques. For instance, in [4] a
methodology based on the harmonic content has been imple-
mented, where the detection uses odd and even harmonics
of the current signal to distinguish HIFs from other transient
phenomena. In the same way, another proposal has been dis-
cussed in [5]; this method evaluates the even harmonics into
the voltage waveform by using smart meters (SMs). In [6] the
incorporation of inter-harmonic components superimposed
into the current of conventional protections such as automatic
recloser, and sectionalizer is analyzed demonstrating that
this method facilitates the detection due to the variations
found in the inter-harmonics. Following the same basis of
inter-harmonics, the complex nature of HIFs has motivated
to develop new proposals using multiresolution approaches;
for instance, in [7] a proposal combines two techniques
such as maximum overlap discrete wavelet packet transform
(MODWPT) and empirical mode decomposition (EMD),
demonstrating effective outcomes during the detection and
classification of HIFs.

Due to the nonlinear behaviour and the intermittency of the
electric arc, the current waveforms present asymmetries that
can be detected by multiresolution techniques. For example,
a simplified version of the DWT is employed, which uses the
energy of the wavelet coefficients [8], [9]; HIF detection is
carried out using a sliding window of one cycle of the fun-
damental frequency, which is validated with several surfaces
when HIFs take place into the distribution grid. In the same
way, in [10] a DWT-based method is introduced that monitors
the high- and low-frequency components of voltage through
the system. Another way to deal with HIFs in distribution
networks is based on power spectral density (PSD) resulting
from a multiresolution analysis by using the DWT [11],
where the detection and classification process is carried out in
a radial distribution system. In [12] a DWT-based ensemble
Random Subspace (RS) classifier is proposed for discrimi-
nating HIFs in distribution grids with a photovoltaic system,
where other three classifiers are employed such as K-nearest
neighbour (KNN), logistic regression (LR), and random tree
(RT) showing their effectiveness during the classification
process of HIFs.

Other techniques such as mathematical morphology, em-
pirical mode decomposition, and morphological gradient
have been employed for HIFs detection and classification

[13]–[16]. In [14], a multistage morphological-based fault
detector is proposed to cope with HIFs in distribution sys-
tems by extracting the nonlinear features of HIFs. On the
other hand, the EMD-based method proposed in [15] uses
voltage signals to identify the predominant harmonic com-
ponents, and the classification is performed by applying
an artificial neural network (ANN). In the same context,
in [17] a multilayer perceptron (MLP) artificial neural net-
work (ANN) is proposed; in that proposal, the classification
method is based on higher-order statistics (HOS), which is
also combined with Fisher’s discrimination ratio for extract-
ing specific patterns associated with the HIFs. The multi-
resolution morphological gradient (MMG) method has also
been proved to be an effective tool for discriminating HIFs
from other transient phenomena [16]. That method consists
of analysing the fault currents to extract the main features
that are used as inputs to a multi-layer perceptron neural
network. Therefore, the detection will depend on the feature
extraction used in the classifier and the data set. In the same
context, a classifier named boosted decision trees (BDT) has
been applied in HIFs [18]; the proposed method employs the
high-frequency components and is performed through real
data set comprising a large number of experiments that are
also assessed in the presence of noise. Another approach
based on time-frequency analysis is proposed using a support
vector machine (SVM) classifier [19]. A similar application
of SVM is reported in [20], which is combined with Principal
Component Analysis (PCA) to cope with the detection and
classification of HIFs.

On the other hand, other techniques based on time-domain
analysis have been introduced [21], [22]. For instance, in [21]
the superimposed high-frequency components of voltages
and currents are analyzed using the moving sum of one
cycle of the fundamental frequency. Besides, a time-domain
approach focusing on fault location based on a linear least
square-based estimator is also applied in [22]. In general, the
limitations and advantages of all different applied methods
depend on the signal processing techniques employed and the
feature extraction process, which will define the effectiveness
of any classifier. In this sense, this paper proposes a new
method based on the Hermite transform (HT), which offers
several coefficients of resolution in only one scale of analysis.

The main contribution of this work is the development of
a new method able to discriminate typical faults from HIFs
in distribution networks by including distributed generation.
The method employs a multiresolution analysis following the
fundamentals of the HT, which takes into account different
resolution levels, and at the same time presents adaptability
since each filter function resonances in different proportions
regarding the electrical signal under study. Therefore, the
method offers large capabilities during the feature extraction
that is the key to getting successful results during the discrim-
ination process. The classification process is mainly devel-
oped using four different characteristics defined by the high-
frequency components. This proposed scheme is assessed by
employing three different classifiers KNN, SVM, and NN. In
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addition, the obtained results are verified through comparison
results with the DWT.

II. HIGH IMPEDANCE FAULTS MODELLING AND
ANALYSIS
A. HERMITE TRANSFORM
The Hermite transform is an efficient signal processing tool
that is also used for examining electrical signals (voltage
or current signals). The main transient components of any
electrical signal i(x) can be extracted by expanding the signal
following a decomposition process defined by the Hermite
polynomials [23]. The decomposition of the signal i(x) is
carried out by using a sliding a Gaussian window G(x−kT )
at overlapping positions, which can be expressed in the time
domain as follows:

G (x− kT )

[
i(x)−

∞∑
n=0

Ln (kT )Hn (x− kT )

]
= 0 (1)

where Hn(x) corresponds to the Hermite polynomials,
whereas Ln(kT ) stands for the expansion coefficients.

The Hermite polynomialsHn(x) build an orthogonal basis
with respect to a Gaussian window. Therefore, the expansion
coefficients can be obtained with [23]:

Ln (kT ) =

∫ ∞
−∞

i (x)Hn (x− kT )G2 (x− kT ) dx (2)

Expression (2) shows the polynomial expansion coeffi-
cients Ln(kT ) of a signal i(x); in fact, the coefficients
Ln(kT ) can be computed through a convolution between the
filter functionsDn(x) and the studied signal i(x). Notice that
the process is followed by a subsampling process at multiple
positions of T , and the filter functionsDn(x) are represented
by:

Dn (x) = Hn (−x)G2 (−x) (3)

The filter function of order n corresponds to the n − th
derivative of a Gaussian function, and each filter function of
order n can be represented by [23]:

Dn (x) =
1√

2nn!

dn

d
(
x
σ

)n [ 1

σ
√
π
e

(
− x2
σ2

)]
(4)

On the other hand, the subsampling period T is a free
parameter with the only restriction that the adjacent Gaussian
windows must be overlapped.

The HT presents several advantages over other decompo-
sition schemes. One of the most relevant advantages is its
optimal location property in time-frequency based on the
uncertainty principle. Besides, each Gaussian window rep-
resents a function that guarantees no spurious artifacts in the
resulting analyzed signals. Additionally, the analysis filters
(Gaussian derivatives) have proven to be efficient feature
detectors. The multiscale analysis of the studied signal can be
performed by systematically increasing the Gaussian window

width; this process allows detecting any transient component
(frequency components) at different time scales [24], [25].

From a practical point of view, digital signals require dis-
crete computation, so the discrete Hermite transform should
be formulated and two approaches can be used according
to [23]. The first one consists of approximating the filter
functions by finite support filters; the second one uses a
discrete polynomial expansion, that is, the continuous Her-
mite polynomials are approximated by discrete polynomials
(Krawtchouk polynomials), which are orthogonal regarding
the binomial window function, which in turn corresponds to
an approximation of a Gaussian window. Both approaches
allow getting similar results, and the first one is chosen to
analyse the studied signals in this work.

For applications in distribution systems, the line currents
of a specific protected distribution line are sampled and these
are processed using the HT to discriminate LIF from HIF.
Once the current signals are sampled, these are analysed by
expanding each signal according to the HT approach, and the
produced Hermite coefficients Ln(kT ) can be employed to
find the most significant features aiming at discriminating
HIFs from typical faults. The time-frequency features of
the HIF signals can be efficiently detected by changing the
spread of the analysis function (Gaussian function) due to its
optimal location as argued before.

B. MODELLING OF HIGH IMPEDANCE FAULTS
HIFs in distribution grids are frequently composed of non-
linear characteristics coming from an electric arc and the
contact surface, these are responsible for developing small
current magnitudes, a non-linear dependency between volt-
ages and currents, and asymmetric current waveforms. These
characteristics can be used to develop HIF models. The
behaviour of HIFs can be understood using a non-linear
resistance, which facilitates the implementation to conduct
simulations. In this work, a HIF model based on the arc
conductivity is used, which is developed by a first-order
differential equation [4].

d (lng(t))

dt
=

1

τ
(
vi

P
− 1) (5)

where v and i represent the arc voltage and current, re-
spectively; g(t) is the arc conductance, τ(v, i) is the time
constant, and P (v, i) is the arc power in steady-state. Then,
by taking τ as a constant and the steady-state power as
P = P0 + v0i, the solution to (5) can be obtained.

According to [4], the general equation to represent the arc
conductance in the time domain is expressed by:

g(t) = G0(1− e−t/τ ) (6)

where g(t) is the time-varying conductance and G0 is the
steady-state conductance. Due to the need to interface the
non-linear conductance-resistance model with the standard
models, in this work, the model is implemented with a non-
linear resistance by using a block of a controlled current
source through Matlab-Simulink software.
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FIGURE 1. HIF model implemented in Matlab-Simulink.

C. HIFS ANALYSIS BASED ON THE HERMITE
TRANSFORM
Figure 1 shows a test system to cope with the signal process-
ing of HIFs in active distribution networks. The sampling
frequency used is 6.4 kHz for a fundamental frequency of
50 Hz. A HIF was simulated between buses 3 and 9 of the
test systems. In this case, Fig. 2a) depicts the HIF current
at the fault point along the fault period. In addition, the
corresponding voltage-current (V-I) characteristics are shown
in Fig. 2b). Finally, the line currents seen by the protection
devices are represented in Fig. 2c). In this case, a current
transformer (CT) with a ratio of 100:5 was employed. Due to
the current magnitudes of HIFs, the CT will not experience
the saturation phenomenon.

Figure 3 depicts the HT coefficient for a typical HIF fault.
Each resolution level corresponds to the HT coefficients ac-
cording to the filter function defined by the Hermite polyno-
mials. The HT coefficients at each resolution are normalized
magnitudes where it can notice that the HT is suitable to
reveal the underlying high-frequency components when a
HIF occurs. It is important to highlight that the calculation
of the HT coefficients will permit the detection and classify
HIFs in distribution grids with higher efficiency.

III. CLASSIFICATION APPROACH FOR HIGH
IMPEDANCE FAULTS
A. FEATURE EXTRACTION
The effectiveness of any classifier to discriminate typical
faults from high impedance faults depends on the feature
extraction that can be carried out in the time or frequency
domains. The feature extraction of high impedance faults is
not an easy task since the current magnitudes may present
small changes that can be interpreted as load variations [20].
As a consequence, HIFs require robust algorithms able to
distinguish them from other fault types. One effective way to
extract the most relevant characteristics of HIFs is commonly
based on multiresolution approaches [18], [26]. In general,
multiresolution analysis facilitates feature extraction because
it provides information in time and frequency at different
resolution levels. As a consequence, a suitable selection may
help to enhance the effectiveness of any classifier.
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FIGURE 2. HIF in a distribution network: a) current, b) V-I characteristics, and
c) line currents seen by the digital relay.

In this work, the feature extraction is performed through
a Hermite transform-based multiresolution approach where
it can obtain the high-frequency components of the analysed
signals, HIFs and different types of faults in distribution net-
works. The analysis employs different resolution levels that
allows identifying the most relevant transient characteristics,
which are used to establish the feature extraction defined by
statistical indexes as follows:

F1 =

√√√√ 1

N − 1

N∑
k=1

(yk − µ) (7)

F2 =
1

N

N∑
k=1

|yk| (8)

F3 =
1

N

N∑
k=1

y2
k (9)

F4 =
(1/N)

∑N
k=1 (yk − µ)

(1/N)
(∑N

k=1 (yk − µ)
2
)2 (10)
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FIGURE 3. HIF signal processed by the HT: a) coefficients of order 0, b)
coefficients of order 1, c) coefficients of order 2, d) coefficients of order 3, e)
coefficients of order 4, f) coefficients of order 5, and g) coefficients of order 6.

where N is the number of samples, µ represents the average
value, F1 corresponds to the standard deviation, F2 is the av-
erage absolute magnitude, F3 stands for the average energy,
F4 represents the Kurtosis index.

B. PROPOSED APPROACH
This proposal introduces a new method to detect and classify
HIFs as well as typical faults in distribution systems. The
proposed approach is summarized in Fig. 4, which consists
of six stages. First, the electrical signals are measured on
the protected line by employing current transformers (CTs).
Next, all measured signals Iline (Ia, Ib, and Ic) are processed
by the HT to extract the high-frequency components. To
this aim, the process consists in representing all transient
frequency components in different resolution levels comput-
ing the convolution between any measured signal and the
Hermite polynomials. Therefore, each current signal Iline
will be represented by a matrix of N samples and L resolu-

tion levels IHTC−line. In this work, the Gaussian derivatives
from 1-st to 6-th are used according to the HT. Then, to
distinguish HIFs from typical faults, a max-pooling process
is carried out to reduce the transient information; for this
purpose, it is suggested using a resolution level (or level of
decomposition) multiple of three, this means that the max-
pooling will generate a new matrix with N samples and L/3
resolution levels, and it is also computed the determinant
for the resulting matrix so that the new signal IHT−line
is represented by one dimension, that is, N samples. This
signal IHT−line will store all transient components used to
the feature extraction. Lastly, the feature extraction process is
carried out that will define the inputs of the classifier. Finally,
the complete data set is divided to conduct the training and
validation stages of classification to distinguish HIFs from
typical faults.

For better understanding, Fig. 5 shows the stages of the
proposed approach. The line currents are processed using
the HT, where the HT coefficients are employed to extract
the most essential high-frequency components. Notice that
this proposal faithfully captures the transient information
produced by HIFs in distribution systems. For example, Fig.
5a) depicts the line currents (Ia, Ib, and Ic) where small
changes in the current magnitudes occur at t = 0.5 s.
Based on the proposed method, the processing of the HT
coefficients permits to identify of the most relevant transient
components, which is confirmed in Fig. 5b), both for the non-
faulted phases (IHTa and IHTb) and the faulted phase IHTc.
Finally, the defined features are shown in Fig. 5c) which
correspond to the faulted phase Ia just after processing the
HT coefficients stored in IHTa.

C. CLASSIFIERS
To deal with the classification of high impedance and typical
faults, three different classifiers are used in this work such as:
k-nearest neighbour (KNN), support vector machine (SVM)
and artificial neural networks (ANNs).

1) K-nearest neighbour (KNN)

KNN is a supervised classifier based on a distance metric
and K number of neighbours defined by the user [27]. For
example, many training samples of any particular fault type,
also known as a class, a new sample can be assigned to the
class according to the most frequent K-nearest neighbours
(KNNs). That is, the algorithm assigns the sample to the
class among its KNNs, where K is an integer. In addition,
to overcome bias in the class prediction due to unbalanced
data, weight proportional to the inverse of the distance from
the K neighbours is assigned to each class. In the process
of creating a KNN classifier, K is an important parameter
and different values will cause different performances, they
impose a significant influence on the time and accuracy
performance of the classification. For this work, K is 5 and
the used metric was the Euclidean distance.
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FIGURE 4. Schematic diagram of the proposed approach.
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FIGURE 5. HIF simulated : a) line currents seen by the digital relay, b)
transient components-based algorithm using HT, and c) features.

2) Support vector machine (SVM)

Support vector machine is a widely known algorithm for
supervised learning. This classifier uses an objective function
aiming at minimizing misclassification errors by maximizing
the separation margin. It also separates classes by construct-
ing a hyperplane in the high dimensional features as shown
in Fig. 6.

For instance, in a two-class problem, the mapping consists

+

+++
+
+

Positive hyperplane

           wTx=-1

Negative hyperplane

           wTx=1

Decision boundary

          wTx=0

M
argin

o

o

o
o

ooo

o Support vectors

FIGURE 6. Support vector machine diagram.

of a two-stage dataset (xiyi)
N
i=0 with N data points where

xi is the training data, and yi is the corresponding class,
which takes values of +1 and -1. In this sense, the margin
is the distance between the separating hyperplane and the
training samples that are closest to the hyperplane, these are
also called support vectors. The hyperplane separates both
categories, and its equation is:

wTxi + b = 0 (11)

where ω represents the weight vector, and b is the bias
parameter; both parameters determine the position of the
hyperplane. In the training stage, the best values of these
parameters are obtained such that they maximize the sep-
aration between both categories, obtaining the separation
margin as m = 2/‖m‖. Therefore, the objective function
will maximize the margin defined by the relation between m
(margin value) and ω (weight values), that is, the solution
allows obtaining these values, and the samples are classified
correctly as [28]:

y(i)(w0 + wTx(i)) ≥ 1,∀i (12)

Finally, the classification is carried out by separating all
negative samples on one side of the hyperplane (first class),
and the positive samples on the other side of the hyperplane
(second class). Additionally, SVMs can be converted into a
multivalued classifier using one to one method. In this work,
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a Gaussian radial basis function (RBF) kernel is employed
and a cross-validation procedure is carried out during the
training of the data set used.

3) Artificial Neural Networks (ANNs)
An ANN classifier is widely used in machine learning, which
has proven to be a powerful supervised learning algorithm
because of its parallel processing, nonlinear mapping, and
associative memory. Multilayer neural networks are able
to produce robust diagnostics for different areas of electric
power systems [29]. The method consists of a training stage,
where the network weight parameters are tuned by means of
back-propagation so that a cost function must be minimized.
The equation shows an iterative process to update the weights
through the back-propagation process.

w := w + ∆w,

∆w = −η5 J(ω) (13)

where,w represents the weights, which are updated by taking
a step in the opposite direction of the gradient 5I(ω).
Besides, the gradient is multiplied by a factor known as the
learning rate η .

In general, the learning rate balances the speed of the
learning with the overshoot of the global minimum of the
cost function, which is usually defined by the sum of square
errors. Therefore, if the error is low, then the weights offer a
better behavior. A graphical basic architecture of a single-
layer neural network is shown in Fig. 7. For a multilayer
scheme, the output is connected to the next layer and so on. In
this application, 10 layers are used and the activation function
corresponds to the cross-entropy.

.

.

.

Activation
  function

Transfer
function

WeightsInputs

x1

x2

x3

xn

Output to the 
next layer j+1

w1j

w2j

w3j

wnj

∅ 

FIGURE 7. Single-layer neural network.

IV. RESULTS AND DISCUSSIONS
A. DISTRIBUTION GRID UNDER TEST
The detection and classification analyses are carried out by
using the IEEE 33-bus test feeder, which is shown in Fig. The
The detection and classification analysis are carried out by
using the IEEE 33-bus test feeder, which is shown in Fig. 8.
All simulations are carried out in Matlab/Simulink software
by employing a sampling frequency of 6.4 kHz. All fault

scenarios are performed between buses 3 and 23, correspond-
ing to the distribution line identified as L3-23. The data set
includes non-fault scenarios, HIFs, and typical faults such as
single-phase-to-ground, double-phase-to-ground, and three-
phase-to-ground faults. The typical faults take into account
different fault locations along the distribution line, several
fault resistance, and different fault inception angles; different
contact surfaces for HIFs are analysed considering variations
in the electric arc’s conductance. Besides, capacitor bank
switching is simulated at bus 24, load changes of linear
load are assessed at bus 25, and finally, a non-linear load is
modelled at bus 29.

B. DETECTION BASED ON THE HT COEFFICIENTS
The proposed approach can be employed to cope with the
HIF detection based on a sliding window analysis. In this
case, the detection index is defined by the extracted features
as follow:

λ(k) = N ×
(
F1(k) + F2(k) + F3(k)

3

)
× F4(k) (14)

To analyse the performance of the transient components-
based algorithm, an analysis of several fault scenarios is car-
ried out using the test system shown in Fig. 8. For example,
a HIF is simulated taking into account a power electronic
converter-based distributed generator (250 kW Photovoltaic
system) at bus 25. In this case, a HIF was simulated at t = 0.5
s and its results are depicted in Fig. . From Fig. a), it can
be noticed that the line currents in the abc reference frame
show small changes in magnitude during the fault which was
simulated at t = 0.5s. On the other hand, Fig. b) shows the
most relevant transient information during the pre-fault, fault
and post-fault periods. Notice that the proposed approach
can disclose the underlying high-frequency components of
the analysed signal which can be verified in Fig. b). Af-
ter processing the HIF signal information, Fig. c) displays
the results of the HIF detection according to the transient
components-based algorithm.

To highlight the advantages of the proposed approach, a
single-phase fault is simulated and its results are shown in
Fig. 10. In this case, the fault is simulated at t = 0.5 s and the
line currents observed by the protection devices are depicted
in Fig. 10a). After processing the line currents, the most
essential transient components are captured that will be used
to extract the signal features in order to identify HIFs; these
components for each line current are displayed in Fig. 10b)
and the HIF detection corresponds to Fig. 10c). Therefore, a
transient event is detected so to confirm that a HIF occurred,
it is required at least one cycle of the fundamental frequency
to avoid false classification results.

Capacitor switching may be one cause of false detection
as well as load changes. Therefore, the proposed approach
is examined considering the transient behaviour under non-
fault conditions. For instance, Fig. 11 the response when
a capacitor bank is energized at bus 24 (1.5 MVar). These
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FIGURE 8. IEEE 33-bus test feeder.
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FIGURE 9. HIF with distributed generation: a) line currents and b) HT
coefficients, and c) HIF detection using transient components-based algorithm.

results correspond to an energization when the voltage (Phase
A as a reference) is crossing by its maximum value, t = 5.05
s. The line currents in the abc reference frame are shown in
Fig. 11a) and Fig. 11b) presents the results of the detection in-
dex computed by employing the HT coefficients. Notice that
the transient response disappears during the first two cycles.
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FIGURE 10. Single-phase fault with fault resistance of 100 Ω: a) line currents
and b) HT coefficients, and c) HIF detection using transient
components-based algorithm.

Therefore, this phenomenon may generate false classification
results during the transient period, this means that after two
cycles the transient components-based algorithm will offer
good performance during the detection and classification of
HIFs.

8 VOLUME YY, YYYY



D. Guillen et al.: Hermite transform based algorithm for detection and classification of high impedance faults

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Time [s]

-20

-10

0

10

20

C
u
rr

e
n
t 

[A
]

a)

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Time [s]

-6

-4

-2

0

2

4

6

C
u
rr

e
n
t 

[A
]

b)

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Time [s]

0

0.1

0.2

0.3

0.4

0.5

A
m

p
li

tu
d
e

c)

FIGURE 11. Capacitor switching: a) line currents and b) HT coefficients, and
c) HIF detection using transient components-based algorithm.

Figure 12 shows the results during load changes. The
change is simulated at bus 29 caused by a non-linear load.
The non-linear load is energized at t = 0.5 s and its results
are displayed in Fig. 12. In this case, a small change is
taken into account, and the line currents seen by the digital
protection device are shown in Fig. 12a), while the corre-
sponding transient information is captured by processing the
line currents using the HT which coefficients are represented
in Fig. 12b). Notice that the load change presents significant
differences along the time as shown in Fig. 12c), however,
this event is correctly identified as a non-faulted condition.

Based on the results, the proposed method exhibits good
performance during the fault detection and the detection
time will depend on the sampling frequency used. In this
case, the average time is 20.2 ms considering the system’s
frequency, 50 Hz. Before the average time, a HIF may not
be correctly detected and can be classified as a non-fault
condition. In consequence, the performance of the classifiers
may also be affected. Therefore, to improve the detection and
classification of HIFs, this work needs at least two cycles
regarding the fundamental frequency, that is, higher accuracy
and reliability entail a longer detection time so that for HIFs
the accuracy will be important to avoid additional problems
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FIGURE 12. Load change at bus 29: a) line currents and b) HT coefficients,
and c) HIF detection using transient components-based algorithm.

based on the complex nature of the electric arc phenomenon.

C. CLASSIFICATION RESULTS

Table 1 depicts the results reached by the classification pro-
cess. Based on the results, notice that the most promising
classifier is KNN because this presents better performance
than SVM and ANN. In general, the effectiveness of classi-
fiers will especially depend on the data set used for training,
and the feature extraction process. As a consequence, if there
is a data set substantially full of significant information, the
classification results will be more accurate. Table 1 presents
the obtained results applying the proposed method. In addi-
tion, for comparison purposes the studied faults were also
processed by the DWT using 6 decomposition levels using
the mother wavelet Daubechies 4 (Db4). Results show that
both signal processing techniques present small differences
when the KNN classifier is applied where the most significant
discrepancy appears with the other two classifiers. On the
other hand, Fig. 13 presents the confusion matrix following
the proposed approach by using the KNN classifier. From
Fig. 13, notice that the false-positives of the HIFs are identi-
fied as non-fault conditions.

Another subject to analyse the metrics of any classifier
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TABLE 1. Proposed approach using HT and DWT

Classifier Accuracy (%)
DWT HT

SVM 94.7122 98.1538
KNN 98.8191 99.2722
ANN 84.7286 92.0189
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FIGURE 13. Confusion matrix using HT and KNN with a balanced data set.

is its behaviour when an unbalanced data set is employed.
For example, in this application, a critical condition will be
when the protection systems are not capable of detecting
any condition of HIFs, that is, the fault could be classified
as a non-fault scenario. This represents a critical scenario
compared to misclassification resulting in other fault types,
for example, a double-phase fault which is identified as a
three-phase fault. In this sense, an unbalanced data set is
employed to assess the proposed method whose results are
shown in Table 2 and Fig. 14. It can be noticed that the
results present significant changes in the classifiers used as
is shown in Table 2. However, the best results correspond to
the KNN classifier while the ANN improves in comparison
with the results shown in Table 1. Besides, the SVM offers
small changes in both scenarios when a balanced and an
unbalanced data set is employed.

Finally, the confusion matrix obtained by the developed
method is depicted in Fig. 14. Notice that HIFs produce
false positives identified as non-fault events and double-
phase faults. This means that if a HIF is classified as a fault
(no matter which fault type), this will be better for the system
than a HIF will be identified as a non-fault event. Finally,
the comparison results after applying the DWT show that
both techniques generate similar results, where the better
results are achieved by the KNN classifier since all results
are very close to those produced by the proposed approach.
In terms of complexity both DWT and HT demand a similar
computational burden. The advantage of the HT relies on
the basis functions that are better suited to detect signal
changes at multiple resolutions since they consist of Gaussian
derivatives of different orders at different scales, whereas the
DWT has a single basis function (mother wavelet) at different
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FIGURE 14. Confusion matrix using HT and KNN with an unbalanced data
set.

scales. In conclusion, the proposed method presents better
performance for the discussed scenarios.

TABLE 2. Proposed approach using an unbalanced data set.

Classifier Accuracy (%)
DWT HT

SVM 96.3636 97.5152
KNN 98.8182 98.7273
ANN 96.9697 96.9697

V. CONCLUSION
A new method for fault detection and classification of HIFs
in distribution systems was proposed. This proposal included
a methodology based on the high-frequency components,
which are obtained by using a multiresolution approach
according to the HT. All mathematical fundamentals were
addressed and the method was proved under different tran-
sient scenarios to demonstrate its performance during the
discrimination of HIFs from other types of faults. In addition,
the non-fault transient events were discussed to show that
high-frequency components produced by the non-linear load
changes will depend on the load capacity. This means that
larger load changes (non-linear load) may produce misclas-
sification depending on the harmonic content. Based on the
results, the transient components-based method exhibited
good performance and effectiveness for different analysed
scenarios by exploiting the advantages of the HT, where the
HT coefficients played a key role to extract the most essen-
tial information during the transient period of the electrical
signals. It was noticed that the Hermite transform presents
several advantages with respect the DWT due to the localiza-
tion properties of the Gaussian function and its derivatives of
the HT, which retain the most relevant transient information
according to the statistical indexes used. Finally, different
classifiers such as SVM, KNN, and ANN showed good
accuracy taking as inputs the statistical indexes defined by
the HT coefficients. The obtained results were also compared
with the DWT where it was found that KNN offered better
performance than the other tested classifiers.
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