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Abstract. Hyperparameter tuning is a time-consuming task for deep
learning models. Meta-learning offers a promising solution to reduce the
time required for this task. In this work, we propose a meta-learning
approach to simulate a set of experiments and select a hyperparameter
configuration (HC) that achieves high accuracy using a deep model. Our
formulation involves conducting a grid search over hyperparameters to
train a convolutional neural network and get an overview of their space.
Then, a meta-regressor was trained using the experiment data to pre-
dict accuracy as a function of hyperparameter sets. Subsequently, the
trained meta-regressor was employed to simulate diverse HCs and assess
the corresponding deep model performance. Our approach was tested
across two different domains: COVID-19 detection using X-ray images,
and lung detection in computer tomography volumes. Furthermore, we
evaluated the proposed approach with two different architectures. Our
results show that the proposed method can simulate a set of experi-
ments using the meta-regressor, saving time and computing resources
during hyperparameter tuning.

Keywords: Deep learning · Meta-Learning · Simulation · Hyperparam-
eter tuning

1 Introduction

Long training times in deep models are an important limitation especially in
the absence of specialized hardware. Ceron and Castro [3], mention an example
of the computational cost of training the Rainbow agent [9] with a powerful
Graphic Processing Unit (NVIDIA Tesla P100). Each Atari game takes 5 days to
train with the mentioned hardware and it is necessary to report the performance
within confidence bounds. Consequently, an average of five independent runs is
reported. They provide empirical evidence that Rainbow requires approximately
1,425 days without taking into account hyperparameter tuning.
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Meta-learning is the process of distilling the experience of multiple learning
episodes, often covering a distribution of related tasks, and using this experience
to improve future learning performance [10]. Meta-learning has emerged as a
promising approach to expedite time-consuming tasks such as hyperparameter
tuning by using meta-data [14,8]. This technique leverages the knowledge gained
from previous experiences to learn more efficiently. By using a reduced number
of performance examples, a meta-regressor can accurately predict the perfor-
mance of new configurations without having to train them all. This enables the
simulation of new performances in a more efficient manner.

Based on the above, and different from those approaches mentioned in lit-
erature [1,7,14], our main contribution constitutes a meta-learning formulation
that predicts the accuracy of a deep model based on a regressor trained with a
limited number of hyperparameter sets. To demonstrate the effectiveness of our
proposed approach, we conducted experiments using chest medical images that
include X-ray and computer tomography. First, we trained deep models using
a grid search strategy, resulting in a collection of training examples. We then
employed a meta-regressor to learn from these examples and predict the perfor-
mance of new hyperparameter configurations, thus enabling the identification of
high-performing hyperparameter settings for deep model training.

The proposed method was evaluated with an interpretable convolutional neu-
ral network using Class-Specific Gate (CSG) [12]. CSG considers a matrix G that
is used to train specific convolutional kernels for each class in the penultimate
layer of a deep model. In the ideal case, each kernel belongs to a single class,
however, in order to reduce the complexity of the implementation, a kernel might
share at most two classes. During training, two paths are followed. In the first
one, a standard training is carried out in which all convolutional kernels are
considered for the backpropagation step. In the second path, some epochs con-
sidering the matrix G are performed. Authors argue that the obtained models
are more interpretable for humans than the optimized with standard training.

Our experiments show that the proposed method accurately predicts how well
different hyperparameter configurations will perform. By using this method, we
can simulate new experiments and reduce the time needed for hyperparameter
tuning when training deep models. We also tested our method on two different
types of chest images to show that it works well in different scenarios.

This paper is organized as follows: in section 2 we introduce background of
meta-learning: the proposed formulation for hyperparameter tuning is presented
in section 3; the experimental results are introduced in section 4; finally, in
section 5 we show the conclusions and future work.

2 Meta-Learning

Meta-learning is the process of distilling the experience of multiple learning expe-
rience - often covering a distribution of related tasks - and using this experience
to improve future learning performance[10]. The framework is further developed
by introducing a mechanism which allows the model to incorporate knowledge
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from multiple related tasks. This is achieved by using a combination of meta-
learning techniques, such as model architecture search [6] and hyperparameter
optimization [14]. At the end of the paper, we discuss how this framework can
be applied to reduce the time spent on hyperparameter tuning for deep learning
models.

In conventional machine learning, a training dataset contains pairs of input
(xi) and output (yi) values, represented as D = (x1, y1), . . . , (xn, yn). The goal
of training a neural network is to learn a function that can accurately predict
output values from inputs. This function is typically represented as it is shown in
Equation 1, where θ is a set of parameters, such as weights in a neural network.
The parameters are learned through an optimization process that minimizes
the difference between the predicted outputs and the predicted outputs in the
training dataset.

ŷ = fθ(x) (1)

Meta-learning is a learning technique that aims to obtain knowledge that
can be used to learn the parameters θ of a model [10]. This is typically achieved
by solving an optimization problem in the form of Equation 2, where L is a
loss function that measures the error between the true labels and the predicted
ones, and ω are assumptions about ”how to learn”, such as the hyperparameters
of a neural network. In this scheme, the optimization problem is solved across
a set of related learning tasks, such as classification or regression problems, in
order to learn a set of parameters that are better suited for these tasks. The
resulting meta-learned parameters can then be used to improve the performance
of a model on new, unseen tasks.

θ∗ = argmin
θ

L(D; θ, ω) (2)

This study demonstrates the effectiveness of using a meta-regressor to ap-
proximate the accuracy of different hyperparameter configurations for training
deep models. The meta-regressor, which plays the role of the ω in meta-learning,
was trained using multiple episodes collected from training the model using dif-
ferent hyperparameter configurations (ω) following a grid search strategy. By
learning from the collected episodes, the meta-regressor can accurately predict
the performance of new hyperparameter configurations without having to per-
form an exhaustive grid search. The experimental results presented in this study
show that the proposed method can achieve high accuracy in predicting the
performance of different hyperparameter configurations.

3 Meta-Learning for hyperparameter tuning

This section outlines the proposed method for hyperparameter tuning using
meta-learning. Specifically, we introduce the use of a meta-regressor to predict
the performance of a hyperparameter configuration when used to train a deep
model. The meta-regressor takes important hyperparameters for convolutional
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neural network training as input and outputs the predicted accuracy. This ap-
proach aims to improve the efficiency of the hyperparameter tuning task by
reducing the number of configurations that need to be trained and evaluated.

The proposed formulation can be seen graphically in Figure 1. First, we need
some examples of the training performance. In order to obtain those samples,
we ran experiments following a grid search strategy [13]. To reduce the train-
ing time we ran the experiments only for few epochs, hypothesizing that if the
performance increases in few epochs it will increase even more in subsequent
epochs [20].

(a) Perform different exper-
iments for few epochs with
different hyperparameters.

(b) Use the results for build
the regressor for predicting
the performance of the hy-
perparameters

(c) Simulate new experi-
ments with the regressor
with different hypeprparam-
eters from the training.

(d) Evaluate the best hy-
perparameters predicted
by the regressor.

Fig. 1. Proposed method for hyperparameter tuning with meta-learning: (a)) Experi-
mental results of few epochs using a grid search; (b) The obtained results are used to
build a regressor for predicting the performance of the hyperparameters; (c) Simulation
of new experiments with a regression model with new samples; (d) Evaluation of the
best hyperparameters according to the results obtained in (c).

The results obtained from training deep models with different hyperparam-
eter configurations were used to train the meta-regressor, as described in the
background section. Specifically, some important the hyperparameters of the
Adam optimizer [11] (learning rate, β1, beta2, ϵ) were used as features to train
the meta-regressor for standard training. For CSG training, relevant hyperpa-
rameters related to interpretability were selected as features (see Table 1). The
meta-regressor was trained using a set of episodes, each consisting of a combina-
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tion of hyperparameters and their corresponding validation accuracy after a few
epochs of training. Formally, the meta-regressor was trained to learn the map-
ping ω → Lval, where ω represents the used hyperparameters and Lval represents
the validation loss after a certain number of epochs.

To further evaluate the effectiveness of the proposed method, we conducted
simulations of new experiments using the trained meta-regressor. We simulated
experiments to explore if there was any hyperparameter configuration that out-
performed the best result obtained in the previous grid search. Afterwards, we
evaluated the performance of the selected hyperparameters configuration, iden-
tified by the meta-regressor, by training a deep model using the corresponding
HC.

To clarify the objectives of the simulation, our aim is to observe whether
there exists a hyperparameter configuration that performs better than the ones
obtained through the grid search. By using the meta-regressor, we are able to
simulate the performance of different hyperparameters without running the en-
tire grid search, thereby reducing the time required for hyperparameter tuning.
The method also allows us to obtain a hyperparameter configuration with good
results in a shorter time compared to training the entire grid search. Further-
more, the proposed method can be easily adapted to different deep learning
architectures and datasets, as long as a representative set of hyperparameter
configurations is available for training the meta-regressor. Overall, the proposed
method offers a practical and time-saving approach to hyperparameter tuning,
which can lead to significant reductions in computational costs when conducting
deep learning experiments.

4 Experimental Results

The aim of the experiments was to show that with a regression model, the
experiments of hyperparameter tuning could be reduced simulating different
HCs. In this section, we first describe the dataset. Then, we introduce the results
obtained fitting the regression model. Finally, the results of the validation stage
of the meta-regressor are presented.

4.1 Datasets description

We used the updated kaggle X-ray dataset for COVID-19 detection. The num-
ber of images in the dataset are 21,165 images comprising four different classes:
COVID-19, normal, pneumonia and lung opacity [4]. Additionally, we used 199
training volumes from the 2020 COVID-19 Lung CT Lesion Segmentation Chal-
lenge [18]. The volumes belong to chest computer tomography from patients
with positive RT-PCR for SARS-CoV-2. In these experiments, we used a subset
of 4,891 slices. Classes were balanced, so they were randomly sampled among
images with and without lungs. In the present study, a random stratified selec-
tion approach was employed to partition both datasets into training (80%) and
testing (20%) subsets, with 20% of the training subset reserved for validation
purposes.
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4.2 Results of the meta-regressor

As discussed in section 3, in order to train the meta-regressor, it is necessary to
gather examples of the system performance along with their corresponding sets of
hyperparameters. To collect this data, we employed a grid search technique that
systematically explores a range of values for the most significant hyperparame-
ters of the learning method, examining its response to different hyperparameter
configurations. This allowed us to assemble a comprehensive dataset encompass-
ing a diverse set of hyperparameter combinations and their corresponding system
performance measures, which was subsequently used to train the meta-regressor.

For the X-ray images, we followed a standard training procedure using the
Adam optimizer [11]. The hyperparameters used to apply the grid search in-
cluded the learning rate, β1, β2, and ϵ, this is because these hyperparameters
are important during the optimization of the neural network weights. In this
experiments, we used the VGG16 architecture [19], the agents was trained for
five epochs to reduce the overall training time.

In the CSG training, we employed the hyperparameters listed in Table 1
for the grid search. These experiments used a computer tomography dataset
to demonstrate the robustness of the proposed method. Since the tomography
dataset contains more images than the X-ray dataset, we tested our method with
a lighter architecture, specifically the VGG11 architecture. This also allowed us
to validate our method with different neural network architectures. The agent
was trained for 30 epochs.

Table 1. Hyperparameters used for the grid search in CSG training.

Hyperparameter Desciption

Learning rate (LR) Learning rate for the optimizer
Mask Period (MP) Number of epochs the period is alternated
Mask epoch min (MEM) Epochs applying CSG training
Lr reg (L REG) Learning rate of the loss regularization path
λ reg (λ REG) Regularization coefficient

A computer with a Titan RTX graphic card, 128 GB of memory and a AMD
thread tripper 3970 processor with 64 cores was used for experimentation. In
order to show an empirical result of the training time during the hyperparameter
tuning task, we ran the experiments of the grid search for the X-ray dataset,
which took approximately 5 hours (each epoch takes 30 seconds). In contrast,
training with the computer tomography dataset took almost 10 days (each epoch
takes near to 1 minute).

We selected Random Forests (RF) [2] and Support Vector Regressor (SVR) [5]
to build the regressor model due to their robustness to overfitting, and generaliza-
tion capabilities. In the Random Forest (RF) model, we used a forest consisting
of 100 decision, this empirically chosen value yielded the best performance across
various practical applications [15]. In the case of the Support Vector Regression
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(SVR) model, multiple experiments were conducted using multiple kernels, in-
cluding the radial basis function, linear, and polynomial kernels. The remaining
parameters were set according to the default values recommended by the scikit-
learn library [16].

During the grid search, the data collected was partitioned into a training set
comprising 80% of the samples and a validation set comprising the remaining
20%. To ensure robustness and avoid potential bias from a single data split, we
followed the methodology outlined in Raschka and Mirjalili work [17]. Specifi-
cally, we repeated the data splitting process one hundred times, each time using
a different random seed. The results of this iterative selection process are sum-
marized in Table 2, which presents the mean and standard deviation values ob-
tained from these repetitions. Notably, the RF regressor exhibited superior per-
formance in terms of mean squared error compared to the SVR. Consequently,
we selected the RF model as the most promising candidate for validating new
hyperparameter configurations. Finally, using the entire dataset, we constructed
the meta-regressor.

Table 2. Results of the meta-regressor training. We show the results for both datasets,
X-ray and Computer Tomography (CT). Random Forest regressor obtained the best
performance with the lowest mean squared error (MSE).

Algorithm X-ray CT

RF 0.0122 ± 0.003 3.96−5 ± 3.34−5

SVR-RBF 0.0160 ± 0.002 0.0010 ± 0.0002
SVR-Poly 0.0159 ± 0.002 0.0010 ± 0.0003
SVR-Linear 0.0266 ± 0.004 0.0010 ± 0.0003

4.3 Validation with new data

In this section, we present the outcomes of simulated experiments using the
regression model. To validate the model’s performance, we assessed various hy-
perparameters in conjunction with the regression model chosen in the preceding
subsection (a Random Forest algorithm with 100 decision trees).

The simulations with the meta-learner were tested on a computer with less
resources than the training computer described in the previous subsection. The
computer has a core i7-6560 processor with 8 GB of memory. The experiments
were run in a single core of the computer. The objective of employing a computer
system with limited resources was to demonstrate the diminished duration re-
quired for hyperparameter tuning, as compared to a more robust computational
platform.

We simulated 250,500 HCs for the X-ray dataset. Considering that each ex-
periment with 5 epochs takes about 30 seconds in the computer with the Titan
GPU for the X-ray dataset, if we trained the entire grid search it would take ap-
proximately 70.31 days, while the simulation of the experiments in the computer
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described in the above paragraph took 23.98 minutes. Although the simulation
results for the top HC scores showed similar predicted accuracy, it is impor-
tant to note that the validation of the HC space was performed using a range
of percentiles rather than solely relying on the Top-HC. Table 3 presents some
examples of the HC scores at different percentiles of the space.

Table 3. Best hyperparameter configurationS for the X-ray dataset with corresponding
predicted accuracies of the regression model.

LR β1 β2 ϵ Predicted
Accuracy

Real Ac-
curacy

0.0001 0.82 0.70 5x10−7 0.9580 0.9527
0.0001 0.82 0.89 4x10−7 0.9509 0.9527
0.0001 0.62 0.90 5x10−7 0.9450 0.9312
0.0001 0.59 0.52 9x10−7 0.9400 0.9398

The next experiment aims to show the effects of increasing the number of
epochs on the training of the agent. The learning curve of the best HC is depicted
on Figure 2. It can be seen that in the fifth epoch the predicted performance is
similar to the real one (0.0053%). Then, we trained the model for 20 epochs and
obtained 96.57% accuracy, which is an acceptable performance.

Fig. 2. Learning curve for the best HC. The accuracy at the fifth epoch is 95.27% and
the highest accuracy was 96.57% training with 20 epochs.

Table 4 presents some of the HCs obtained for the computer tomography
dataset. We initially used the first parameter configuration, expecting it to yield
the best performance. However, the first and second HCs achieved similar per-
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formance. We also followed a similar strategy of the X-ray dataset to illustrate
some parts of the hyperparameter space. Subsequently, we trained the agent
with those hyperparameters, and obtained an accuracy of 98.87%, which was
close to the predicted performance of 99.17%. Figure 3 shows the learning curve
for this training. Despite the second HC yielding better performance, our ap-
proach accurately predicted the performance of the meta-regressor in general
terms.

We simulated 108,864 HCs for this dataset, each experiment took approxi-
mately 30 minutes. Training the entire grid search would take about 54,432 days.
However, with the regression model it took 15.66 minutes in the computer with
limited resources, which is considerable less time than training all the HCs.

Table 4. Best hyperparameter configurations for the computer tomography dataset
with corresponding predicted accuracies of the regression model.

LR MP MEM L REG λ REG Predicted
Accuracy

Real Ac-
curacy

0.0006 5 5 0.007 0.004 0.9919 0.9887
0.0003 6 6 0.007 0.005 0.9896 0.9928
0.0003 4 2 0.003 0.005 0.9799 0.9856
0.0001 5 1 0.004 0.005 0.9699 0.9754

Fig. 3. Learning curve for the best HC. The best accuracy obtained after 30 epochs
was 99.08%.
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5 Conclusions and Future Work

Based on the clear findings presented in this paper, our proposed meta-learning
approach exhibits promising potential in addressing the time-consuming nature
of hyperparameter tuning tasks within deep learning models. We have demon-
strated the robustness of our approach by involving X-ray images and a com-
puter tomography dataset. Also, leveraging an interpretable convolutional neural
network (CNN) and conducting experiments with CSG training and various ar-
chitectural configurations.

By incorporating relevant hyperparameters as input during the training phase,
our method effectively predicts the accuracy of deep models. This indicates its
ability to provide valuable insights and inform decision-making regarding hyper-
parameter selection. However, it is important to discuss the primary limitation of
our method, which lies in the requirement for some examples of the deep model
performance to train the meta-regressor. This reliance on a sufficient number of
performance examples may present challenges in scenarios where such data is
limited or unavailable.

In the future, this technique could be extended to other types of deep learn-
ing models and datasets, potentially improving the efficiency of hyperparameter
tuning across a range of applications. Also, we will apply our formulation to other
performance evaluation functions such as F1 measure, precision, etc. Moreover,
we wish to study the interpretability of the deep learning models and verify if it
can be predicted with the proposed approach as well.
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