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Cubic  Convolution Interpolation for Digital  Image 
Processing 

ROBERT G. KEYS 

Absfrucf-Cubic convolution interpolation is a  new  technique  for re- 
sampling  discrete  data.  It  has  a  number of desirable  features  which 
make it useful for image  processing.  The  technique  can  be  performed 
efficiently on a digital computer.  The  cubic convolution interpolation 
function converges  uniformly to the function being  interpolated as the 
sampling  increment  approaches  zero,  With the appropriate  boundary 
conditions and  constraints on the  interpolation  kernel, it can  be shown 
that the order of accuracy of the  cubic convolution method is between 
that of linear  interpolation  and  that of cubic  splines. 

A one-dimensional  interpolation function is derived  in this paper. A 
separable extension of this algorithm to two dimensions is applied to 
image  data. 

I 
INTRODUCTION 

NTERPOLATION is the  process  of  estimating the  inter- 
mediate  values  of  a  continuous  event  from discrete samples. 

Interpolation is used  extensively  in digital image processing to 
magnify or reduce images and to correct spatial distortions. 
Because of the  amount of data associated  with digital images, 
an efficient interpolation  algorithm is essential. Cubic  con- 
volution  interpolation was developed  in  response to this 
requirement. 

The  algorithm  discussed  in  this  paper is a  modified  version 
of the  cubic  convolution  algorithm  developed  by  Rifman [ l ]  
and  Bernstein [ 2 ] .  The  objective  of  this  paper is to derive the 
modified  cubic  convolution  algorithm  and to compare  it  with 
other  interpolation  methods. 

Two  conditions  apply  throughout  this  paper.  First,  the 
analysis pertains  exclusively to  the one-dimensional  prob- 
lem;  two-dimensional  interpolation is  easily accomplished  by 
performing  one-  dimensional  interpolation  in  each  dimension. 
Second,  the  data  samples are assumed to be equally  spaced,  (In 
the  two-dimensional case, the  horizontal and ,vertical sampling 
increments  do  not have to be the same.) With these  conditions 
in mind,  the first topic to consider is the derivation  of the 
cubic  convolution  algorithm. 

BASIC CONCEPTS CONCERNING THE CUBIC 
CONVOLUTION ALGORITHM 

An interpolation  function is a special type of approximating 
function. A fundamental  property of interpolation  functions 
is that  they  must coincide  with the sampled  data  at  the  inter- 
polation  nodes,  or  sample  points,  In  other  words, iff is a  sam- 
pled function,  and if g is the corresponding  interpolation  func- 
tion,  then g(xk)  = f ( x k )  whenever x k  is an  interpolation  node. 
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For equally  spaced  data,  many  interpolation  functions  can 
be written in the  form 

Among the  interpolation  functions  that  can be characterized 
in this manner are cubic splines and linear interpolation  func- 
tions. (See Hou  and  Andrews [3] .) 

In (l), and  for  the  remainder  of  this  paper, h represents  the 
sampling  increment,  the xk’s are the  interpolation  nodes, u is 
the  interpolation  kernel,  and g is the  interpolation  function. 
The Ck’S are parameters  which  depend  upon  the  sampled  data. 
They are selected so that  the  interpolation  condition,g(xk) = 
f ( x k )  for  each x k ,  is satisfied. 

The  interpolation  kernel  in (1) converts discrete data  into 
continuous  functions  by an operation similar to convolution. 
Interpolation  kernels have a significant impact  on  the numer- 
ical behavior  of  interpolation  functions. Because of  their  in- 
fluence  on  accuracy  and efficiency, interpolation  kernels  can 
be effectively used to create  new  interpolation  algorithms. 
The  cubic  convolution  algorithm is derived  from a set  of  con- 
ditions  imposed on the  interpolation  kernel  which are designed 
to maximize  accuracy  for  a given  level of computational  effort. 

THE  CUBIC  CONVOLUTION  INTERPOLATION  KERNEL 
The  cubic  convolution  interpolation  kernel is composed  of 

piecewise cubic  polynomials  defined  on  the  subintervals (- 2, 
- l), (- 1, 0), (0, l), and (1, 2). Outside the interval (- 2, 2), 
the  interpolation  kernel is zero, As a  consequence of this  con- 
dition,  the  number of data  samples  used to evaluate  the  inter- 
polation  function in (1) is reduced to four. 

The  interpolation  kernel  must be symmetric.  Coupled  with 
the previous  condition,  this  means  that u must have the form 

2 < Is[. 
The  interpolation  kernel  must  assume  the values u(0) = 1 

and u(n) = 0 when n is any  nonzero integer. This  condition 
has an important  computational significance. Since h is the 
sampling  increment,  the  difference  between  the  interpolation 
nodes xi and x k  is ( j  - k )  h. Now if xi is substituted  for x in 
(I) ,  then (1) becomes 

Because u ( j  - k )  is zero  unless j = k ,  the right-hand side of (3) 
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reduces to cj.  The  interpolation  conditon  requires  that g(x j )  = 
f ( x j ) .  Therefore, cj =f(xj) .  In  other  words,  the ck’s in (1) are 
simply  replaced by the sampled  data.  This is a  substantial 
computational  improvement over interpolation  schemes  such 
as the  method of  cubic splines. The spline interpolation  kernel 
is not  zero  for  nonzero integers. As a result, the ck’s must be 
determined  by solving a  matrix problem. 

In  addition to being 0 or 1 at  the  interpolation nodes, the  in- 
terpolation  kernel  must be continuous  and have a continuous 
first derivative. From  these latter  conditions,  a set of equa- 
tions  can be derived  for  the coefficients in (2). 

The  conditions u(0) = 1 and u ( 1 )  = u ( 2 )  = 0 provide  four 
equations  for  these coefficients: 

1 = u ( 0 ) = D l  

O=u(l-)=Al +B1 +C1 +Dl  

0 = u ( l + )  = A ,  t B2 + C2 t Dz 
O = u ( 2 - ) = 8 A z   t 4 B 2   + 2 C z   + D z .  

Three  more  equations are obtained  from  the  fact  that u’ is 
continuous at  the nodes 0,  1 ,  and 2:  

- c1 = u‘(o-) = U ‘ ( O + )  = c1 
3A1 + 2B1 t C1 = u’(l-) = ~’(1’) = 3Az + 2Bz t Cz 

12A2 t 4B2 cz = U’(2-) = U’(2’) = 0. 

In all, the  constraints  imposed  on u result in seven equations. 
But since there are eight  unknown coefficients, one  more  con- 
dition is needed to obtain a unique solution. h fman  [ l ]  and 
Bernstein [ 2 ]  use the  constraint  that A z  = - 1. In  this pre- 
sentation,  however, Az will  be selected so that  the  interpola- 
tion  function g approximates  the original function f to as high 
a degree as possible. In  particular, assume that f has several 
orders  of  continuous derivatives so that Taylor’s theorem, 
from calculus, applies. The  idea will be  to choose A z  so that 
the cubic  convolution  interpolation function and the  Taylor 
series expansion  for f agree for as many  terms as possible. 

To accomplish this, let A 2  =a.  The  remaining seven coef- 
ficients  can be determined,  in  terms  of a ,  from  the  previous 
seven equations.  The  solution for the  interpolation  kernel, 
in  terms of a,  is 

~ ~ t 2 ) ~ ~ ~ ~ - ( a t 3 ) ~ s ~ ’ + ~  

o < J s l < l  
u(s)= a l s I 3  - 5alsI2 t gals1 - 4a 1 < Is1 < 2   ( 4 )  

Now suppose that x is any  point  at  which  the  sampled  data 
is to be interpolated,  Then x must be between two consecu- 
tive interpolation  nodes  which  can be denoted  by xi and xi+ ,  . 

Let s = (x - xj)/h. Since (x - xk j /h = (x - xi +- xi - xk)/h = 
s + j - k ,  ( 1 )  can be written as 

2 <  \SI. 

g ( x )  = cRu(s + j  - k).  ( 5 )  
k 

Furthermore, since u is zero  except in the interval (-2,   2j ,  and 
since 0 < s < 1 ,  ( 5 )  reduces to 

g ( x )  = C j - , U ( S  + 1 )  t C i U ( S )  -t C j + l U ( S  - 1 )  + C i + , U ( S  - 2). 

(6)  

From (4) ,  it follows that 

u(s t 1 )  = a(s t 1)3 - Sa(s t 1)’ + 8a(s t 1 )  - 4a 

= as3 - 2as2 t as 

u(s) =(a t 2)s3 - (a + 3)s2 +- 1 

u(s-  1 ) = - ( a + 2 ) ( s -  I ) ~  - ( a + 3 ) ( s -  1)2 t 1 

= - ( a t   2 ) s 3  + (2a t 3)s2 - as 

u(s- 2 ) = - a ( s -  2)3 - 5a(s-  2)’- 8a(s-  2)-   4a 

= -as3 +as2. 

By substituting  the  above  relationships  into (6) and collect- 
ing powers  of s, the cubic  convolution  resampling  function 
becomes 

g ( x )  = - [a(cj+’ - ~ j - 1 )  + (a + 2)  (cj+l - ~ i ) ]  s3 

+ [2a(cj+, - c j - , )  + 3(cj+l  - ci) + a ( ~ j + ~  - cj)] s’ 

- a(cj+l - c j - , ) s  t cj. (7) 

I f f  has  at least three  continuous derivatives in  the interval 
[x j ,  xi+, 1 ,  then according to Taylor’s  theorem 

cj+1 =f(xj+l)  = f ( ~ j )  + f ’ ( ~ j ) h  + f ” ( ~ j ) h ’ / 2  + O(h3> (8) 
where h = - xi. O(h3)’represents  the  terms  of  order h3 ; 
that is, terms  which go to zero at  a rate proportional to h 3 .  
Similarly, 

Cj+2  = f ( x j )  + 2 h f y X j )  t 2 h 2 f y x j )  t o(h3) (9) 
c j - l  = f ( x j ) -  h f y x j )  + h 2 f y x j ) / 2  + o(h3). ( 10) 

When (8)-(10) are substituted  into (7), the following  equa- 
tion for the  cubic  convolution  interpolation  function is 
obtained. 

g ( x )  = - (2a t 1 )  [2hf’(xj)  t h2f”(xj)]s3 

t [(6a t 3 )  hf’(xj) -t (4a t 3)   h2 f”(x j ) /2]  s’ 

- 2@hfyXj )  t f ( x j )  + o(h3 1. (1 1 )  

Since sh = x - xi, the  Taylor series expansion forf(x)  about 
x is 

f(x) =f(x i j  t shfr(xi) t t o(h3). (12) 

Subtracting  (1 1) and ( 1  2)  

f ( x )  - g ( x )  = (2a + 1 )  [2hf’(xj)  t h’f”(xj)] s3 

- (2a t I )  [3hf’(xj) t h’f’’(xi)] s2 

+ (2a t 1 )  shf’(xjj t O(h3).  (13) 

If the  interpolation  function g(x )  is to agree with the  first 
three  terms  of the Taylor series expansion forf, then  the pa- 
rameter a must be equal to - i. This  choice  provides the  final 
condition  for  the  interpolation  kernel: A2 = - 3. WhenAz = 
a = - 1, then 2 
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Equation (14)  implies that  the  interpolation  error goes to zero 
uniformly at a rate  proportional to h 3 ,  the cube  of the sam- 
pling increment. In  other words, g is a third-order  approxi- 
mation  for f. The  constraint A z  = - 3 is  the only choice for 
A 2  that will  achieve third-order precision; any other  condition 
will result in at most a first-order  approximation. 

Using the final condition that Az  = - 3, the cubic convolu- 
tion  interpolation  kernel is 

BOUNDARY  CONDITIONS 
In  the initial discussion, f, the  function being sampled, was 

defined for all  real numbers. In practice, however, f can only 
be observed on a finite interval. Because the domain o f f  is 
restricted to a finite interval, say [a, b ]  , boundary  conditions 
are necessary. 

First  of all, the sample points xk must be defined to corre- 
spond  to  the new interval of observation, [a, b ] .  Let x k  = 
Xk-1 t h f o r k = 1 , 2 , 3 ; . - , N , w h e r e x o = a , x N = b , a n d  
h = (b  - a)/N for some large integer N .  (The integer N may 
be chosen  from the Nyquist criterion.) The results of the  pre- 
vious section are valid for  any  set of uniformly spaced sample 
points  and  thus are not  affected  by  this new definition  for 
the x k k  

On the interval [a, b ]  , the cubic  convolution  interpolation 
function can be written as 

since to determine g for all x in the interval [a, b ]  , the values 
o f c k   f o r k = - 1 ,  0, 1, , N t  1 areneeded. Fo rk=O,  1 , 2 ,  

* * , N ,  ck = f ( x k ) .  For k = - 1 and  for k = N  t 1, however, the 
value off  is unknown, since and x N +  fall outside the  in- 
terval of observation. The values  assigned to cW1 and c ~ + ~  are 
boundary  conditions. 

Boundary  conditions  must be chosen so that g(x)  is an O(h3) 
approximation to f ( x )  for all x contained in  the interval [a, b ]  . 
To find  an  appropriate  condition  for  the  left-hand  boundary, 
suppose that x is a point  in  the  subinterval [ x o ,   x 1  1 .  For this 
value  of x ,  the  interpolation  function reduces to 

g(X)=C-1U(S+ ~ ) + c ~ u ( s ) + c ~ u ( s -  ~ ) + c ~ u ( s -  2)  (17) 

where s = (x  - xo) /h .  By substituting  the  equations in (1 5 )  for 
u and collecting powers of s, the  interpolation  function re- 
duces to 

g(X) = S3 [Cz - 3 C l  t 3Co - C-1] /2  - S2 [Cz - 4Cl 
t 5 c ~ - 2 c ~ , ] / 2 t s [ c , - c ~ ~ ] / 2 t c ~ .  (18) 

If g is  an 0 ( h 3 )  approximation forf,  then  the s3 -term  must be 
zero. This means that c - ~  should be chosen so that c - ~  = cz - 
3cl t 3c0,  or 

After  substituting (19) into (18), the  interpolation  function 
becomes 

g(x> = s2 [ f ( x z )  - 2f(x,  1 +f(XO)l /2  + s [ - f ( x z )  

f 4 f h  1 - 3f(x0 11 / 2   + f ( x o ) .   ( 2 0 )  

All that remains is to show that (20)  is a third-order  approxi- 
mation  for f ( x ) .  First  expand f ( x 2 )  and f ( x l )  in a Taylor 
series about x .  : 

f ( x z )  = f ( x o )  t 2 f y x 0 ) h  + 2 f y x O )  h2 + o(h3)   (21)  

f ( X 1 )  = m o l  + f ' ( x o )  h + f " ( X O )  h 2 / 2  f 0(h3) .  (22)  

By replacing f ( x z )  andf(xl)  in (20)  with (21)  and (22) ,  the 
following result is obtained. 

g(x )  = f ( x o )   t f y x o )  sh t f r f ( x o )  ~ / 2  t o(h3).   (23) 

Since sh = x - x o ,  the Taylor series expansion for f ( x )  about 
x .  is 

f ( x )   = f ( x o )   t f ' ( x o )  sh + f " ( x o )   s 2 h 2 / 2  + O(h3). (24)  

Subtracting (23) from (24) 

f ( x )  - g(x )  = 0(h3 1. 
Thus, the boundary  condition specified by (19) results in a 
third-order  approximation  for f ( x )  when x .   < x  < x l .  

A similar  analysis can be used to  obtain cN+ 1 .  If x is in  the 
interval [x,+l, X N ] ,  the boundary condition 

cN+l = 3 f ( x N ) -   3 f h - 1 )  + f ( X N - Z )  (25)  

will provide a third-  order approximation  for f. 
Using the  interpolation kernel defined by (15) and  the 

boundary  conditions (19) and (25), a complete  description of 
the  cubic convolution interpolation  function can  now be 
given. 

When xk < x  < x k +  , the cubic convolution interpolation 
function is 

g(x )  = Ck-1 (-s3 i- 2s2 - s) /2  + Ck(3S3 - 5s2 -I- 2) /2  

+ Ck+ 1 (-3S3 t 4S2  t S)/2 t ck+z (S3  - s2 ) /2  

where s = (x - xk)/h and ck = f ( x k )  for k = 0, 1, 2 ,  * , N ;  
c-1 = 3f (x0) -   3 f (x l )+ f (x2 ) ;  and C N + ~  = 3f(xrv) - 3 f ( x ~ - ,  + 

One of the basic assumptions used to derive the  cubic  con- 
volution algorithm was that  the sampled function possessed a 
continuous  third derivative. This assumption is not unreason- 
able for  many practical problems. For example, the sampled 
function is often assumed to be band  limited. Since band- 
limited  functions are infinitely  differentiable,  they easily meet 
the requirements for  cubic convolution  interpolation. 

Although a continuous  third derivative is required  for  the 
sampled function,  no such  restriction is imposed on  the  in- 
terpolation  function.  In general, the cubic  convolution  inter- 
polation  function will not have a continuous second drivative. 
Nevertheless, if  the sampled function has a continuous  third 
derivative, then  from  the results of the last two  sections,  the 

f (xN-2)* 
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interpolation  function is a third-order  approximation.  This 
fact  is not inconsistent  with  other  interpolation  methods.  For 
example, linear interpolation gives a second-order  approxima- 
tion, provided the sampled function has a continuous second 
derivative. However, the linear interpolation  function is not 
everywhere continuously  differentiable.  Further comparisons 
with other  interpolation  methods are the  topic  of  the  next 
section. 

COMPARISON WITH OTHER METHODS 
There are  several important  considerations  in  the analysis  of 

an interpolation  method. Of major  importance is the accuracy 
of the  technique:  the exactness with which the  interpolation 
function  reconstructs  the sampled function.  Additionally, 
some interesting  effects  can be predicted  from  the spectral 
characteristics of the  interpolation kernel. In  this  section,  the 
accuracy, the spectral properties,  and  the efficiency of the 
cubic  convolution interpolation algorithm will be compared 
with other  methods. 

Some  indication of the accuracy of the  method is  given by 
the  type of function which can be exactly  reconstructed.  The 
cubic  convolution interpolation  function  exactly  reconstructs 
any  second-degree polynomial. This is because the  third de- 
rivative of any second-degree polynomial is zero  and,  thus, the 
approximation  error is zero. In  contrast, linear interpolation 
will reproduce at  most a first-degree polynomial. A scheme 
referred to by Rifman [l] and Bernstein [2] as the  “nearest- 
neighbor” algorithm uses the nearest sample as the  interpo- 
lated value. The nearest-neighbor algorithm is exact only 
when the sampled function is a constant. By using cubic  con- 
volution instead of linear interpolation  or nearest-neighbor 
resampling, the degree of  complexity of functions  which can 
be exactly  reconstructed is increased. 

The relative accuracy of different  interpolation  methods  can 
be determined  from  their convergence rates. The convergence 
rate is a measure of how  fast  the  approximation  error goes to 
zero as the sampling increment decreases. In  the derivation of 
the  cubic convolution algorithm, it was found  that  the ap- 
proximation  error consists of terms proportional  to h 3 ,  where 
h is the sampling increment. In this case, the  approximation 
error goes to  zero  at least as fast as h3 goes to zero.  Thus, the 
convergence rate  for  the  cubic convolution interpolation  func- 
tion  is 0(h3) .  

Linear interpolation  functions have a O(h2) convergence 
rate. To see this, suppose that x is a point  between the pair 
of interpolation nodes xi and xi+,  . Let s = (x  - xj)/h.  From 
Taylor’s theorem,  iff has a continuous second derivative in the 
interval [xi ,  xi+ , ] , then 

f ( X j )   = f ( x )  - f ’ ( x )  sh + O(h2) (26) 

where O(h2) is the remainder term. Since - x = (1 - s) h,  
it also follows (from Taylor’s theorem) that 

f ( x j + l )   = f ( x )   + f ’ ( x )  (1 - 8 )  h + O(h2).  (27) 

Now  if (26) is multiplied  by 1 - s and  if (27) is multiplied  by s 
and the resulting equations are added, then 

(1-s)f(xi)+sf(xj+l)=f(x)+0(h2). (28) 

The  left-hand side of (28) is the linear interpolation  function 
for f ( x ) .  The right-hand side  of (28) shows that  the  approxi- 
mation  error is proportional to h 2 .  Thus, the convergence rate 
for linear interpolation is O(h2). Since the cubic convolution 
algorithm has a O(h3) convergence rate,  the cubic convolution 
interpolation  function will  generally be a more  accurate ap- 
proximation to  the sampled function  than  the linear interpola- 
tion  function. 

The nearest-neighbor algorithm has a O(h) convergence rate. 
This is an  immediate consequence of the mean value theorem. 
I f f  has a continuous derivative on  the interval between x and 
xi, then  there  is a point m between x and xi such that 

f ( x >   = f ( x j )  +f‘(m) sh (29) 

where s = (x - xj) /h.  If xi is the nearest interpolation node to 
x ,  then f ( x j )  is the value  of the nearest-neighbor interpolation 
function  for f ( x ) .  The approximation  error in (29) is propor- 
tional to h which means that  the convergence rate is O(h). 

Additional insight into  the behavior of  interpolation  func- 
tions can be  gained from  their  frequency  domain  character- 
istics.  All of the  interpolation  functions  mentioned so far can 
be written  in  the  form 

Examples of some interpolation kernels which replace u in 
(30) are shown in Fig. 1. 

Taking the Fourier  transform of (30), 

G(U) = 2 ck eXp ( - ibxk)  hU(Uh) (3 1) 
k 

where 

and 

1 r+- 

Equation (31) illustrates the “smoothing”  effect of inter- 
polation.  The summation  term in (31) is the discrete Fourier 
transform  of the sampled data, and U(oh)  acts as a smoothing 
filter. An  analysis of the various interpolation schemes can be 
made by comparing the Fourier  transforms of their  interpola- 
tion kernels. 

The amplitude  spectra of the nearest-neighbor, linear inter- 
polation,  and  cubic  convolution  interpolation kernels are 
graphed in Fig. 2 for frequencies from 0 to 4n/h. The response 
of  an ideal interpolation kernel (for band-limited data) is a 
unit  step  function which has the value  of one  for frequencies 
between - n/h and +n/h, and  zero elsewhere. Such an interpo- 
lation kernel would pass  every frequency component of a 
band-limited function  without change, provided the sampling 
increment was sufficiently small. 

Deviations from the ideal spectrum in the shaded region in 
Fig. 2 (from 0 to +n/h) cause a loss  of high frequency  infor- 
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0 n/ h 2n/ h 3H/ h 4n/ h 

Fig. 2. Amplitude  spectra of interpolation  kernels. 
FREOUENCY 

mation.  In image data,  the loss of high  frequency  information 
causes the image to appear  blurred.  On the  other  hand, devia- 
tions  from  the ideal spectrum  beyond  the  shaded  area  contrib- 
ute  to aliasing. From Fig. 2, it is evident that of  the  three 
methods  presented,  the  cubic  convolution  method  provides 
the best  approximation to the ideal spectrum. 

Some  of  the  points  discussed  in  this  section  can be illustrated 
with  a  numerical  example.  Since the  cubic  convolution algo- 
rithm was developed  for  resampling image data,  it is appro- 
priate to use a  two-dimensional  example.  Consider  the  two- 
dimensional radially symmetric function, f(x, y )  = sin (0.5r2), 
where r2 =x2 + y 2 .  Since the  Fourier transform of this  func- 
tion is F(o,, a,,) = cos(0.5p2) where p 2  = o$ + o;, the 
function f ( x ,  y )  is not band  limited.  From  the  sampling 
theorem,  it is known  that  any  attempt  to  reconstruct f from 
discrete samples  must fail. Nevertheless,  with the results de- 
rived in  the last section,  a  reasonably  accurate  approximation 
for f can be obtained  within  a  bounded region. 

For  this example,  identical  sampling  increments  were used 
for both  the x and y coordinates.  The  sampling  increment h 
was chosen to be half the  length of the interval between the 
22nd  and  23rd  zeros  of f ( r ) .  This value of h guarantees that 
there will  be at least two samples  between  each  zero  crossing 
of f ( r )  within the region over whichfis being  sampled. In  this 
case, the  sampling  increment will  be h = 0.132119066. Sam- 
ples  of f ( x ,  y )  were  obtained  on  a 64 X 64 element grid with 
the origin in  the  upper  left-hand  corner. 

An image  was formed  from the  two-dimensional  data  by 

converting  amplitude values into light intensities. Maximum 
intensity  (white) was  assigned to  the maximum  amplitude of 
f, t1. Zero  intensity  (black) was  assigned to the  minimum 
value off, - 1. Intermediate values  of f(x, y )  were  converted 
to proportional  shades  of gray. 

The  physical size of an image is controlled  by  the  number  of 
samples  in an  image and  the  sample  spacing.  The  example 
images  in this paper are displayed  at a sample  spacing  of 100 
samples/in  horizontally  and  96  samples/in vertically. Each 
image  fills a 3.5  in  square.  Therefore,  a  two-dimensional  array 
of 350 X 336  points is required to represent  each image. To 
obtain a 350 X 336  point array  from  a 64 X 64  point  array, 
two-dimensional  interpolation  must  be  used.  Interpola- 
tion employed  in  this  manner is equivalent to digital image 
magnification. 

Two-dimensional  interpolation is accomplished  by  one- 
dimensional  interpolation  with  respect to each  coordinate. 
The  two-dimensional  cubic  convolution  interpolation  function 
is a separable  extension  of the  one-dimensional  interpolation 
function. When (x, y )  is a  point  in  the  rectangular  subdivision 
[xi, xi+, ] X [ yk ,  y k + l ] ,  the  two-dimensional  cubic  convolu- 
tion  interpolation  function is 

where u is the  interpolation  kernel  of (15) and h, and h, are 
the x and y coordinate  sampling  increments.  For  interior grid 
points,  the cik’s are given by cjk =f (x i ,  y k ) .  If xN is the  upper 
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Fig. 3. Interpolation of image data. Image (a) was created by sampling the  test  function, sin (0.5r2), o n a  350 X 336 point 

grid. Image (b) was constructed  from a 64 X 64 array of test  function samples, using linear interpolation to estimate 
intermediate values. Image (c) was derived from  the same 64 X 64 array of  data using cubic convolution. 

boundary of the  x-partition  and yM is the upper  boundary  of 
the  y-partition,  then  the  boundary  conditions are 

c - ~ ,  k = 3 f ( x 0 ,  ~ k )  - 31% Y k )  + f h  ~d 
C N + 1 , k   = 3 f ( X N , Y k ) -   3 f ( X N - l , Y k ) + f ( X N - 2 , Y k )  

for k=0, 1,2;*. ,M 

~ i , - ~  = 3 f ( x i , ~ 0 ) -  3 f ( x i 9 ~ 1 ) + f ( x j ~ ~ 2 )  

c i , ~ + 1  = 3 f ( x i , ~ ~ ) -  3 f ( x i , ~ ~ - l ) + f ( x i , ~ ~ - 2 )  

for j = O ,  1,2; . - ,N 

c-1,-1 = 3co,-1 - 3 C l , - ,  t c2,-1 

CN+1, -1   =3cN,- l  - 3 c N - l , - l   + c N - 2 , - 1  

C - l , M + i   = 3 C o , M + i  - 3 C i , M + 1  -I- C2,M+1 

C N + l , M + i   = 3 C N , M + l  - 3CN-1 ,M+1  +CN-2 ,M+1.  

For  comparison, a 350 X 336  point  array was created  by 
directly evaluating f at each grid point. The image created  in 
this  manner is shown  in Fig. 3(a). Next,  the 64 X 64 point 
array was resampled to a 350 X 336 point array  with  a linear 

interpolation  algorithm.  The resulting image  is shown  in Fig. 
3(b). Finally, the  cubic  convolution  algorithm was used to 
resample 64 X 64 point array. In Fig. 3(c), the image obtained 
by  cubic  convolution  interpolation is shown. 

To compare the accuracy  of the  two techniques,  “error” 
images were  obtained  by  subtracting  the  interpolated images 
from  the  exact image [Fig. 3(a)]  and  taking  absolute values. 
The linear interpolation  error image  is shown in Fig.  4(a) and 
the cubic  convolution  error image is displayed  in Fig. 4(b). 
Maximum intensity  (white)  corresponds to  the maximum ab- 
solute error in  the linear interpolation image. Zero error is 
represented  by  zero  intensity (black). Error  magnitudes be- 
tween  zero  and  maximum linear interpolation  error are repre- 
sented  by  corresponding  shades of gray.  Thus,  increasing in- 
tensity  denotes  an  increasing  magnitude of error in  Fig.  4(a) 
and (b). 

The  most  obvious  difference  between  the  two  error images 
is that  the cubic  convolution  error image  is uniformly  darker. 
As expected,  the  cubic  convolution  interpolation  function is 
a  better  approximation to the sampled  function  than  the linear 
interpolation  function. 
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tions are performed for each  interpolated  point.  The  example 
in Fig. 3 provides a practical  demonstration  of  the  efficiency 
of  cubic  convolution. The  computer  time  required  for  cubic 
convolution resampling of  the image in Fig. 3 was slightly 
greater  than  the  computer  time  needed  for  linear  interpolation 
(0.29 min versus 0.28 min). However, in  applications  with 
larger data  sets,  the  computer  time  for  cubic  convolution  re- 
sampling is about twice that  of linear  interpolation. 

Cubic spline  interpolation  requires even greater  computa- 
tional  exertion.  This  is because the  interpolation  coefficients 
-the cR’s in (1)-must be determined  by solving a  tridiagonal 
matrix  problem;  in two dimensions,  the  matrix is block  tri- 
diagonal.  Since  there is one cR for  each  data  sample,  the  rank 
of the  matrix is equal to the  number of  data  samples. Unless 
the cR’s can be stored in the same location  used  for the  input 
data,  additional  storage,  equal to the  size.of  the input  data file, 
must be provided.  After the  interpolation  coefficients have 
been  computed,  cubic  spline  interpolation involves roughly  the 
same amount  of work as the  cubic  convolution  method. 

Cubic  convolution  interpolation is much more  efficient  than 
the  method of cubic splines, in  terms  of both storage  and  com- 
putation  time. Because the  data  samples are the  cubic  con- 
volution  interpolation  coefficients,  the  efficiency  of  the  cubic 
convolution method is closer to  the efficiency  of  linear  inter- 
polation  than  the  cubic spline method. 

The objective up to this  point was to derive the  cubic  con- 
volution  algorithm  and to compare its performance  with  other 
common  interpolation  algorithms.  In  the  next  section, varia- 
tions of the  cubic  convolution method will be  considered. In 
particular,  a  brief  outline will  be  given for  the  construction  of 
an interpolation  function which has fourth- order  accuracy. 

(b) 
Fig. 4. Interpolation error; the absolute value of the difference be- 

tween Fig. 3(a) and the interpolated image. In the above display, 
black denotes zero error; white is the maximum absolute error. 
(a) Error caused by resampling with linear interpolation. (b) Cubic 
convolution resampling error. 

It is also possible to detect aliasing effects in  the  linear  inter- 
polation  error image. Superimposed  on  the  circular ridges in 
Fig.  4(a) are horizontal  and  vertical  lines.  These  lines are arti- 
facts  created by resampling with a linear  interpolation  func- 
tion.  Although aliasing effects are present  in the error image 
derived by  cubic  convolution  interpolation,  their  magnitude 
is much smaller.  These  results are predictable  from  the  com- 
parison  of the amplitude  spectra in Fig. 2. 

Another  important consideration when comparing  numerical 
procedures is their  computational  efficiency. Of the  methods 
discussed so far,  the  nearest-neighbor  algorithm is the  simplest. 
For  this  procedure, no arithmetic  operations are necessary. 
The  interpolated sample point  is assigned the value of  the 
nearest  sample  from  the original data. 

Next  in  simplicity is linear  interpolation.  For  this  procedure, 
two sample  points are involved jn the  interpolation  of  each 
new point.  Two  additions  and  one  multiplication are needed 
for each  interpolated  point. 

The cubic  convolution method uses four  sample  points  for 
each  interpolation  point. Nine additions  and  eight  multiplica- 

FOURTH-ORDER  ALGORITHMS 

The convergence rate of the  cubic  convolution  interpolation 
function is 0(h3)., The  cubic  convolution  interpolation  func- 
tion is also unique.  Therefore,  any  interpolation  function 
whose kernel  satisfies the  conditions outlined  in  the  first  part 
of  this  paper will have at  most  a  third-order  convergence  rate. 
Furthermore,  the convergence rate will be  third-order if and 
only  if  the  interpolation  function is the cubic  convolution  in- 
terpolation  function.  Nevertheless,  interpolation  functions 
with  higher  order convergence rates are possible. By removing 
or  altering  the  conditions  on  the  interpolation  kernel,  interpo- 
lation  functions  with  fourth-order convergence  rates  can be 
derived. 

As an example,  suppose  the  condition that  the  interpolation 
function  must be differentiable is removed.  Then  a piecewise 
cubic Lagrange interpolation  polynomial has a kernel  which 
satisfies  the  remaining  conditions,  and  the  interpolation  func- 
tion  has  a 0(h4) convergence  rate [4, p, 281. Because the 
piecewise cubic Lagrange interpolation  function is not con- 
tinuously  differentiable, the  interpolation  function will have 
sharp edges at  the sample  points.  Normally,  this is not  a de- 
sirable effect,  and  therefore it is useful tQ require the  inter- 
polation  function to have a  continuous derivative. 

Cubic  splines are twice  continuously  differentiable, but, as 
previously mentioned,  the  interpolation  kernel is not zero  for 
,nonzero  integers. The cubic  spline  interpolation  function is a 
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O(h4) approximation to the  interpolated  function [4,  pp. 

The  convergence  rate  can also be increased to O(h4) by  in- 
creasing the length  of the interval over which  the  interpolation 
kernel is not zero. Consider the  interpolation  kernel  which is 
composed  of piecewise cubic  polynomials on  the subintervals 
(- 3,  - 2), (- 2, - l ) ,  (- 1 ,  0), (0, l ) ,  ( 1 ,  2), and (2,  3). Outside 
the interval (- 3,3) ,  let  the  interpolation kernel be zero. If the 
interpolation  kernel is symmetric then  it  must have the  form 

57-58]. 

3 < 151. 

If  the  interpolation  kernel is continuous  and differentiable, 
and if u(0) = 1 and u(n) = 0 when n is a nonzero integer, then 
ten  independent  equations  can  be  derived  for  the  unknown 
coefficients in (32). These  equations are 

1 =Dl  

O=Al +B1  +C1  +Dl 

O=Az +B2  +C2 t D 2  

0 = 8A2 + 4B2 + 2C2 t Dz 

0 = 8A3 t 4B3 t 2C3 t D3 

O =  27A3 + 9B3 -I- 3C3 t 0 3  

-c1 =c1 

3A1 + 2B1 t C1 =3A2 +  2B2 + Cz 

12A2 t 4B2 t C, = 12A3 + 4B3 t C3 

27A3  6B3 + C3 = 0. 

Since  there are twelve coefficients, two  additional  constraints 
must be imposed.  If, as in  the derivation of the  cubic  con- 
volution  interpolation kernel, the  interpolation  function is re- 
quired to  match  the  Taylor series expansion  of  the  sampled 
function for as many  terms as possible, then a unique  solution 
can be obtained. When Az  =-7 /12  and A3 = 1/12, the  inter- 
polation  function is a O(h4) approximation to  the sampled 
function.  The  interpolation  kernel  for  this case  is 

o <  I s 1  < 1 

- 7 1 ~ 1 ~ / 1 2 t 3 1 ~ 1 ~ -   5 9 ( ~ 1 / 1 2 t  15/6 l < l ~ 1 < 2  

l ~ 1 ~ / 1 2 - 2 1 ~ 1 ~ / 3 + 2 1 1 ~ 1 / 1 2 -  3 / 2   2 < 1 ~ 1 < 3  
# (S) = 

3 < I S [ .  

Fourth-order convergence is the  highest  order of conver- 
gence that can be achieved  with piecewise cubic  polynomials. 
To match  the  next  higher  order  terms in the Taylor series ex- 
pansion, s4 terms are needed  in the  interpolation  function. 

The  above  interpolation  function achieves fourth-order ac- 
curacy  by  increasing  the  number of sample  points  used  for 
each  interpolation  point.  Six  sample  points are needed for 
each point of interpolation  compared to four for cubic  con- 
volution.  Since fourth- order  accuracy is the  ultimate  accuracy 
possible  with piecewise cubic  polynomials, it immediately fol- 
lows that  no  further increase  in  accuracy  can be gained  by in- 
creasing the  length of the  interpolation  kernel;  higher  order 
convergence rates require higher order piecewise polynomials. 

SUMMARY 
The  cubic  convolution  interpolation  function is  derived from 

a set  of  conditions  imposed  on  the  interpolation kernel. The 
cubic  convolution  interpolation  kernel is composed of piece- 
wise cubic  polynomials  defined  on the  unit subintervals be- 
tween - 2 and t 2 .  The  kernel is required to be symmetric, con- 
tinuous,  and have a  continuous first derivative. It is further 
required  for the  interpolation  kernel to be zero  for all nonzero 
integers and  one  when  its  argument is zero. This  condition  has 
an important  computational significance-namely, that  the 
interpolation coefficients become  simply the sampled  data 
points. Finally, the cubic  convolution  interpolation  function 
must agree with  the  Taylor series expansion  of the  function 
being  interpolated  for as many  terms as possible. The  inter- 
polation  kernel  derived  from  these  conditions is unique  and 
results in  a  third-order  approximation. 

The  cubic  convolution  interpolation  function is more ac- 
curate  than  the  nearest-neighbor  algorithm  or linear inter- 
polation  method.  Although  not as accurate as a  cubic spline 
approximation,  cubic  convolution  interpolation  can be per- 
formed  much  more efficiently. 
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