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Abstract. Convolutional Neuronal Networks (CNNs) have become a funda-
mental methodology in Computer Vision, specifically in image classification
and object detection tasks. Artificial Intelligence has focused much of its efforts
in the different research areas of CNN. Recent research has demonstrated that
providing CNNs with a priori knowledge helps them improve their performance
while reduce the number of parameters and computing time. On the other hand,
the Hermite transform is a useful mathematical tool that extracts relevant image
features useful for classification task. This paper presents a novel approach to
combine CNNs with the Hermite transform, namely, Hermite Convolutional
Networks (HCN). Furthermore, the proposed HCNs keep the advantages of
CNN while leading to a more compact deep learning model without losing a
high feature representation capacity.
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1 Introduction

One of the challenges of image classification tasks is robustness against geometric
transformations, such as rotation, deformation and scale. A large number of models and
techniques of CNNs has been developed to deal with these issues, for example models
based on attention mechanism or actively rotating filters [1], even hand-crafted filters
with no learning processes involved. Moreover, DCNNs (Deep CNNs) have emerged
as an alternative of feature extraction [10], however, these techniques derive in
expensive training and complex model parameters, without solving the problem of
geometric transformations.

Recently, a priori learning approaches have emerged as a way to help CNNs
improve their performance by using mathematical transformations based on HVS
(Human Visual System), such is the case of the Gabor CNN (GCNs) [2].

In [2] Gabor Orientation Filters (GoF) were proposed as the result of a new process
called Modulation. This paper is inspired on the same idea, but instead of Gabor
transform, we introduce the Hermite transform, which is also a human perception
relevant image representation model [3, 4].
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1.1 CNN Using Mathematical Transforms

Some important models of CNN’s based on mathematical transforms have been
described in the literature:

(1) Scattering Networks [5, 6]: This kind of architecture uses a wavelet scattering
based on the expression of receptive fields in CNNs. The wavelets are another
way to introduce mathematical transforms in an CNN.

(2) Oriented Response Networks (ORN): In [1] ORN resembles a hierarchical ori-
entation encoder using Actively Rotation filters in order to discriminate structures.

(3) Gabor filters: Two approaches; the first one as a pre-processing model in order to
improve the accuracy of CNNs [7], or by applying the Gabor filters in the 1st

convolutional layer instead of using random filter kernels.

The second approach; modulating the learned convolution filters using the Gabor
filters [2]. This idea inspires this paper.

1.2 Motivation

In [2], it was demonstrated that after the training process in an Alex Net architecture
[8], the learned filters resemble very much Gabor filters oriented towards different
directions, which are known to be good detectors of image structures, such as edges.

This idea is of great importance, since it suggests that the convolutional stages of a
CNN aim at learning primitive image features, that we have known for years, to be
relevant for image analysis and characterization, i.e., edges, lines, corners. These
features can be obtained by designing appropriate filters for this task. Nevertheless, the
learned filters behave like original Gabor filters after several epochs of training.

Recent research use Gabor filters in the convolution layers, for example; in [9],
Gabor filters are used in the first or second convolution layers as a feature extractor
such as a pre-processing stage in a CNN [10].

From the point of view of image processing this transform has been widely used in
image segmentation, classification and texture detection.

In this paper, we introduce the Hermite transform as a model for building CNNs.
The HT has the following characteristics:

• It allows multiscale analysis
• It is useful to perform directional analysis
• Its filter functions are based on Gaussian derivatives, which in turn are good

detectors of image primitives, such as edges, lines, corners, etc.
• The HT allows perfect reconstruction and is shift invariant.

We present this work as a novel attempt to improve the feature extractor and
performance of a CNN, taking advantage of Hermite transform and its benefits.
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1.3 Contributions

We propose to use Hermite filters in a CNN basic architecture in such a way that the
number of parameters is reduced and on the other hand, robustness of orientation and
scale changes are enhanced.

Based on the idea given by [2], we will use the HT to generate a modulation
process and a modified convolutional process to improve the performance of a CNN.

Therefore, the contributions of this papers are:

• The first attempt to incorporate Hermite filters into a CNN architecture in the state
of the art.

• Prove the advantages of using a mathematical transform based on HVS in com-
parison to traditional methods.

• Develop modulation and modified convolutional processes that can be easily
extended to more complex architectures like ResNet or Wide Residue Network
(WRN) in the near future.

2 Related Work

2.1 Hermite Transform

The Hermite transform is defined by the analysis functions called Dn [3, 4] that
comprise a set of filters obtained from the product of Gaussian window g and the
Hermite polynomials Hn,
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where n is the polynomial order.
It is worth mentioning that the analysis functions are spatially separable and

rotationally symmetric. A straight forward extension provides the 2D expression for the
analysis functions:

Dn�m;m x; yð Þ ¼ Hn�m;m �x;�yð Þ � g2 �x;�yð Þ ð2Þ

where n� mð Þ and m are the polynomial order in x and y axes for n ¼ 0; . . .;1 and
m ¼ 0; ::; n.

The associated orthogonal polynomials are defined:
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In the case of a discrete implementation of the Hermite filters, we use parameter
N equal to the finite length of the filter that in turn is related to the scale, i.e., the
standard deviation of the Gaussian window as follows: N ¼ 2r2 (Fig. 1).
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3 The Proposed Method

Hermite Convolutional Networks (HCN) are created with the purpose of being used in
the following tasks in computer vision:

• Image Classification
• Object Detection
• Texture Discrimination
• Segmentation

During the training stage learned convolution filters are adjusted followed by
modulation process with a Hermite filter bank.

Similar to GCNs, Hermite orientation filters (HoFs) are the result of this modulation
process and are used to generate feature maps in each layer.

The three main process are:

3.1 Hermite Orientation Filters (HoFs) and Modulation Process

HoFs are obtained by element product between Hermite Filter bank (see Fig. 2) and the
learned filters in each convolutional layer. The HoFs have the size:

Cout � Cin � U � N � N

where Cout;Cin are the channel of output and input feature map respectively, and U is
the number of orientation filters of the Hermite bank selected, in this paper U ¼ 4.

Let the modulation process be:

Cn
i;n�m;m ¼ Ci;o � Dn�m;m ð4Þ

The Cn
i;n�m;m is a modulated filter of the learned filter Ci;o It is important to mention

that the scale parameter N in one convolutional network is the same for all orientation
filters in the Hermite bank but changes between layers.

During the modulation process Hermite filters adjust the kernels of the learned
filters in order to extend the properties of the transformation to the back-propagation.

Fig. 1. The image illustrates of the Hermite Filters of length N ¼ 5 especifically D2;0;D1;1;

D0;2 y�D1;1 displayed as follows:
D0;2 D1;1

D2;0 �D1;1

� �
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HoFs are defined by:

Cn
i ¼ Cn

i;0;2;C
n
i;1;1; . . .;C

n
i;2;0

n o
ð5Þ

3.2 HCN Convolution Process

The HoFs are used in this process to produce an output feature map bF , according to
equation:

bFi;n;n�m ¼
XU

j¼1
F jð Þ � C jð Þ

i;n;n�m ð6Þ

Where F is an input feature map and C j
i;nn�m is set of HoFs (Fig. 3).

3.3 Back-Propagation Process

The HoFs only affect in forward calculation in HCNs. However, the back-propagation
process updates the learned filters in each layer and the HoFs are recalculated in each
epoch.

Learned Filters
4x5x5 

Hermite filter 
bank
4, 5x5

HoFs
4x4x3x3 

Fig. 2. The modulation process of HoFs

Fig. 3. The convolution process of HoFs and Feature Map

402 L. Ledesma et al.



Ctþ 1
i;o ¼ Ct

i;o � g
@L
@Ct

i;o
ð7Þ

Where L is the loss function, in this case, cross-entropy.

4 Experiments and Implementation

The general implementation is based on [2] but is extended to support Hermite
transform, so the module of Gabor Filter Bank is substituted by Hermite Filter Bank.
The basic architecture HCN is shown in Fig. 4.

The proposed HCN architecture was evaluated with the datasets: MNIST [11, 12],
Fashion-MNIST [13] y E-MINIST [14]. We evaluated these experiments in a
GPU NVIDIA GeForce 1080 with an isolated environment in order to work with other
versions of Python and PyTorch.

Algorithm 1 Hermite Convolutional Networks (HCN)

1. Set hyper-parameters and network structure.
2. Design the Hermite filters bank given a filter

order keeping the rule: , and 
3. Start training
4. Repeat
5. Select a mini batch set of training images.
6. Produce HoFs using Eq. 4            
7. Apply Forward convolution using Eq. 6  
8. Calculate the cross-entropy and run back-propagation process using Eq. 7 
9. Update the learned filters
10. Until the maximum epoch 

5 Results

5.1 MNIST

MNIST dataset was divided in 10,000 samples for validation and 50,000 samples for
training. We evaluated different optimizers: SGD, ADAM and ADEDELTA. We used
a batch size of 128 and 50 epochs for training and testing.

Expand 4X5X5, 20 R B
N 4X5X5, 40

4X5X5, 80 4X5X5, 160

M
P
+ 
R 

B
N 

M
P
+ 
R 

B
N 

R B
N 

FC + D Output

Fig. 4. Basic architecture of the Hermite Convolutional Network (HCN) where BN: Batch
Normalization, MP: Max Pooling, FC: Fully Connect, D: Dropout, R: ReLu Activation, HC:
Hermite convolutional layer.
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In the case of ADEDELTA optimization the initial learning rate was 0.01, the
learning weight decay was set as 0.00003, these hyper-parameters were the same for
ADAM and SGD.

Based on [2], we designed filters in four orientation and sizes of 5 � 5 and 7 � 7,
we did not use 3 � 3, because it is too small to represent all the properties of Hermite
transform.

In Table 1, we show the results for MNIST using different algorithms to calculate
the gradient descent with filters 5 � 5.

We also tested different filter sizes per layer in order to find the best performance,
Table 2 shows the results for this experiment. Regarding computing time, as shown,
the best result is obtained when filter size is 5 � 5.

The architectures reported in the state of the art have more millions of parameters
and consequently need more computing time. In contrast, HCN and GCN reduce
considerably the computing time and the complexity of parameters. Moreover, the
HCN and GCN architectures are more compact in comparison with the others.

Table 1. Results (error rate and accuracy vs gradient descent algorithm)

%Accuracy/%error Gradient descent algorithm

99.51/0.49 SGD with one scale
99.46/0.54 SGD with four scales
99.42/0.58 ADAM with four scales
99.34/0.66 Adedelta with four scales

Table 2. Results (error rate and accuracy vs time and different filter sizes with SGD algorithm)

%Accuracy/%error Time Filter size per layer

99.51/0.49 9 min 30 s SGD (5, 5, 5, 5)
99.39/0.61 9 min 10 s SGD (3, 3, 3, 3)
99.31/0.58 25 min 9 s SGD (7, 7, 7, 7)
99.27/0.66 12 min 10 s SGD (3, 3, 5, 5)

Table 3. Results comparison on MNIST

% error # network stage kernel Architecture Year

0.21 5 CNN/6-layer: 784-50-100-500-
1000-10-10

Regularization of Neural Networks using
DropConnect [15]

2013

0.23 35 CNNs, 1-20-P-40-P-150-10 Multi-column Deep Neural Networks for Image
Classification [16]

2012

0.23 6-layer 784-50-100-500-1000-10-
10

APAC: Augmented PAttern Classification with
Neural Network [17]

2015

0.57 10-20-40-80 ORF4 (ORAlign) [1] 2017
0.48a 20-40-80-160 GCN4 (7 � 7) [2] 2018

0.49 10-20-40-80 HCN4 (5 � 5) 2019
aIn this case the authors reported an error of 0.42 but we were not able reproduce it.
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5.2 Fashion-MNIST and E-MNIST

Both datasets have the same number of samples as MNIST; we separated the sets into
two groups of validation and training as in the first experiment; the hyper-parameters
were the same (Fig. 5).

It was necessary to normalize the datasets before training to avoid gradient fading
problems and divergence of the CNN. In Table 3, the state-of-the-art results are shown
using the same this simple image database with their corresponding architectures and
parameters (Tables 4 and 5).

97.8

98.3

98.8

99.3

99.8

0 2.5 3 3.5 5 6 10 15 17 19 20 21 23 26 28 30 31 34 36 38 40 42 45 47 50

Accuracy / Iterations on Validation Set

SGD with four scales SGD with one scale ADAM witth four scales ADEDELTA with four scales

Fig. 5. In this graphic the x-axis is the number of iterations (x 1K) and y-axis is the accuracy for
the test set, it’s shown the performance of HCN with several algorithm gradient descent, being
SGD with one scale the best performance.

Table 4. Results (error rate and accuracy rate vs time and different filter sizes with SGD
algorithm on fashion MNIST)

%Accuracy/%error Time Filter size per layer

97.09/2.91 10 m 12 s SGD (5, 5, 5, 5)
95.01/4.99 10 m 2 s SGD (3, 3, 3, 3)
90.13/9.87 30 min 2 s SGD (7, 7, 7, 7)
97.19/2.81 14 min 14 s SGD (3, 3, 5, 5)

Table 5. Results (error rate and accuracy rate vs time and different filter sizes with SGD
algorithm on E-MNIST)

%Accuracy/%error Time Filter size per layer

99.67/0.33 9 m 50 s SGD (5, 5, 5, 5)
99.60/0.40 8 m 55 s SGD (3, 3, 3, 3)
99.41/0.59 25 min 29 s SGD (7, 7, 7, 7)
99.46/0.54 10 min 14 s SGD (3, 3, 5, 5)
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6 Conclusions

This paper presents a novel deep model incorporating Hermite filters to CNN, aiming at
improving the performance with a high feature representation capacity. The proposed
Hermite Convolutional Networks is advantageous tool for image classification. Results
show that HCN got an accuracy near to state of the art of the MNIST database with
lower number of parameters. As future work, more image databases will be tested on
HCN, such as ImageNet and CIFAR-10. Furthermore, new hybrid architectures, e.g.
similar to ResNet, will be developed in order to tackle more complex problems.
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