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Abstract— Human spermatozoa must swim through the
female reproductive tract, where they undergo a series of
biochemical and biophysical reactions called capacitation,
a necessary step to fertilize the egg. Capacitation promotes
changes in the motility pattern. Historically, a two-dimensional
analysis has been used to classify sperm motility and clinical
fertilization studies. Nevertheless, in a natural environment
sperm motility is three-dimensional (3D). Imaging flagella
of freely swimming sperm is a difficult task due to their
high beating frequency of up to 25 Hz. Very recent studies
have described several sperm flagellum 3D beating features
(curvature, torsion, asymmetries, etc.). However, up to date, the
3D motility pattern of hyperactivated spermatozoa has not been
characterized. The main difficulty in classifying these patterns
in 3D is the lack of a ground truth reference since differences
in flagellar beat patterns are very difficult to assess visually.
Moreover, only around 10-20% of induced to capacitate
spermatozoa are truly capacitated, i.e., hyperactivated. We
used an image acquisition system that can acquire, segment, and
track spermatozoa flagella in 3D+t. In this work, we propose
an original three-dimensional feature vector formed by ellipses
describing the envelope of the 3D+t spatio-temporal flagellar
sperm motility patterns. These features allowed compressing
an unlabeled 3D+t dataset to separate hyperactivated cells
from others (capacitated from non-capacitated cells) using
unsupervised hierarchical clustering. Preliminary results
show three main clusters of flagellar motility patterns. The
first principal component of these 3D flagella measurements
correlated with 2D OpenCASA head determinations as a first
approach to validate the unsupervised classification, showing
a reasonable correlation coefficient near to 0.7.

Clinical relevance— The novelty of this work is defining a
3D+t feature-based descriptor consisting of a set of ellipses
enveloping the flagellar motion of human sperm for its unsu-
pervised classification. This is a new promising tool to determine
the viability of human sperm to fertilize the egg.

I. INTRODUCTION

Fertilization requires spermatozoa to swim through the
female tract to reach the egg. During their journey, sperm
undergoes a capacitation process involving important bio-
chemical and biophysical changes necessary to fertilize the
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egg. Clinical analysis performed in two-dimensional images
has shown that sperm induced to capacitate present different
types of motility, notably the hyperactivated one. Hyperac-
tivated motility in 2D is characterized by a high flagellar
asymmetrical amplitude bend [1]. From millions of ejacu-
lated spermatozoa, only an average of 10-20% are capac-
itated (able to fertilize), presenting hyperactivated motility
[2]. Semen analysis is the first test indicated to determine
the infertility of a couple, including the analysis of sperm
morphology, concentration, motility, and semen viscosity.
For three decades, the analysis of sperm motility has been
performed by tracking the sperm heads in 2D images. Histor-
ically, this study was carried out by experts (physiologists or
embryologists) based on their own judgement, making results
inaccurate, subjective, and irreproducible [3,4]. Computer
Assisted Semen Analysis (CASA) has become the reference
analysis system since it uses quantitative parameters to
classify sperm motility [4]. Recently, a significant effort has
been made to automate and remove subjectivity in this type
of analysis by applying machine learning and deep learning
techniques to classify sperm motility and morphology [5-
8]. However, most determinations have been based only on
the sperm head trajectory and CASA parameters from 2D
images, excluding flagellar movement. 3D imaging sperm
flagella kinematics faces important computational problems
such as acquisition, detection, segmentation, tracking, and
classification [9]. In the last years, important contributions
have arisen to solve part of these problems and to obtain
information on single sperm in 3D, particularly the de-
scription of its flagella kinematics [9-13]. Nevertheless, the
classification of 3D flagellar beating patterns of capacitated
sperm remains an open research field.
Multiple methods to classify 3D dynamic patterns have been
reported [14,15] however, the comparison between shapes
varying over time is a complicated task, especially in motion
recognition or video classification [16]. In this work, we
propose an original dynamic motility descriptor consisting
of a set of ellipses enveloping the flagella from which a set
of features are derived. This descriptor feature-based vector
allows compacting the flagellar beat information from the
acquired 3D+t data of variable size (number of points per
flagellum and acquisition time per sperm). Our experimental
dataset consisted of 100 free-swimming sperm acquired in
3D with a system as described in [9], beating during 1 to
3 seconds. The set was composed of non-capacitated sperm
(control) and sperm pharmacologically induced to capacitate,
where a fraction may be hyperactivated. It is important to

2022 44th Annual International Conference of
the IEEE Engineering in Medicine & Biology Society (EMBC)
Scottish Event Campus, Glasgow, UK, July 11-15, 2022

978-1-7281-2782-8/22/$31.00 ©2022 IEEE 488

20
22

 4
4t

h 
An

nu
al

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

of
 th

e 
IE

EE
 E

ng
in

ee
rin

g 
in

 M
ed

ic
in

e 
&

 B
io

lo
gy

 S
oc

ie
ty

 (E
M

BC
) |

 9
78

-1
-7

28
1-

27
82

-8
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
EM

BC
48

22
9.

20
22

.9
87

14
19

Authorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on September 21,2022 at 02:37:05 UTC from IEEE Xplore.  Restrictions apply. 



emphasize that our dataset is unlabeled, it is not possible to
identify visually the different beating patterns. Thanks to the
proposed dynamic flagella descriptor, we were able to use
hierarchical clustering, a simple unsupervised classification
technique, to group non-capacitated sperm, from those, truly
capacitated (hyperactivated), describing the shape and simi-
larities between the samples to cluster into distinct types of
beating.

II. MATERIALS AND METHODS

A. Biological preparations

Human spermatozoa samples were obtained from healthy
donors after a minimum abstinence of 48 hours. From the
collected samples, a 1-hour swim-up protocol was performed
to select the highly motile cells. Half of these cells were cen-
trifuged during 5 minutes and resuspended at a concentration
of 107 cells/ml in a non-capacitating solution. Capacitation
was induced in the other half of the highly motile cells by
resuspending them in a capacitation solution and incubating
them for six hours.

B. Experimental set-up

The acquisition system includes an inverted Olympus
IX71 microscope mounted on an optical table with a 60x
water immersion objective with a N.A. = 1.00 oscillating
on a piezoelectric device P-725. A servo-controller E-501
via a high current amplifier E-505 (hardware from Physik
Instrumente, MA, USA) was used to control the piezoelectric
device. The high-speed camera NAC Q1v with 8 Gigabyte
RAM (recording up to 8000 images per second of 640 x 480
pixels for 3.5 seconds) is triggered by a TTL pulse from the
servo-controller which is driven by a ramp signal from the E-
506 function generator. The temperature of the spermatozoa
samples was maintained with a thermal controller at 37◦C.

C. Dataset

Data were collected with the system described by Corkidi
et al. [9] and the segmentation process to reconstruct the
flagellum centerline as described by Hernández-Herrera et
al. [11].
The dataset consisted of 100 human spermatozoa, from
which 81 sperm underwent an in-vitro capacitation pro-
cess (induced to capacitate) and 19 were non-capacitated.
A fraction of 10-20% of sperm induced to capacitate is
expected to be hyperactivated [2]. Given a sperm i from
the dataset, the flagellum’s centerline was tracked during
T−times and described by NT−points in 3D coordinates
where {xi

tn, y
i
tn, z

i
tn} correspond to the n-th position of

the flagellum’s centerline at time point t for sperm i, t ∈
1, 2, ..., T and n ∈ 1, 2, ..., N . Due to the segmentation
process, the number of detected flagella and points per
single beat are different over time. Flagella were rotated and
translated to align with the x−axis starting from the origin.

D. Ellipse fitting

Fig. 1 shows a reconstructed flagella aligned with x−axis.
We define a flagelloid F i

l for sperm i to be the orthogonally
projected points in the interval [l, l + 1) (Fig. 2);

F i
l = (yitn, z

i
tn)|xi

tn ∈ Il,l+1 (1)

where Il,l+1 are the cutting planes of the interval [l, l+1), l ∈
{0µm, 0.2µm, . . . , 120µm}. Fig. 2 shows the fitting of an
ellipse to the points belonging to the flagelloid (1), using the
method of “Direct fit of least squares of ellipses” as described
in [17]. Doing this for each flagelloid l, a set of transverse
ellipses on the x-axis are obtained describing the motility
shape of the sperm (Fig. 3). The interval size is equal to
0.2µm, this value was determined experimentally in such a
way that each interval contains approximately three points;
ellipses are fitted only when the flagelloid has at least these
number of points and these are no collinear, to prevent that
ϵ → 1. From each ellipse we obtain four parameters:

• Semi-major axis (a)
• Semi-minor axis (b)
• Rotation angle of the ellipse (ϕ)
• Eccentricity (ϵ).

To describe the envelope of ellipse variations, we applied
simple linear regression to the cumulative sum for a, b, and
ϕ; in addition of the mean (µ) of a, b, and ϵ. Thus, having
the feature-based vector with six components:

v =[slope(cumsum(a)), slope(cumsum(b)),

slope(cumsum(ϕ)), µ(a), µ(b), µ(ϵ)].

We performed dimensionality reduction, applying Principal
Component Analysis, to three principal components (more
than 90% of the variance in the dataset). The dominant
features for each principal component are: µ(b), µ(ϵ) and
slope(cumsum(ϕ)), respectively.

Fig. 1. Representation of the segmented and tracked spermatozoon. Data
are aligned with x-axis, each line corresponds to a flagellum reconstruction
at time t and the black dots represent the first point of the flagella at each
time. The progression of swimming is from +x → 0. The color scale
represents the progression of the beat, the blue color is the initial flagella
time advancing towards the red.
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Fig. 2. Scheme to fit an ellipse to the flagelloid. The bottom subplot shows
the representation of the segmented and tracked spermatozoon from Fig. 1;
10 from 298 gray planes (only for observation purposes) corresponding to
5 intervals (0.2µm each) are shown. The upper subplot shows a zoom
of a single 0.2µm selected interval, the red dots corresponding to the
flagellum points within that interval. The right upper side shows the
orthogonal projection of the red dots forming a flagelloid (black line) with
its corresponding fitted ellipse (purple-dotted line).

E. Clustering

Our dataset contains non-capacitated sperm (control) and
induced to capacitate sperm. Concerning the latter, we know
that a small fraction should be hyperactivated (10 to 20%).
Since hyperactivated sperm are not labeled, we do not have a
priori information on the number of clusters in our database
and our dataset is small, thus we applied agglomerative
hierarchical clustering, since it allows to have a visual hint of
how the groups relate to each other. Hierarchical clustering
does not require input parameters for clustering, has low
sensitivity to outliers and does not require knowing the num-
ber of clusters. We calculate the Euclidean distance between
each pair of sperm for the three principal components to
find the dissimilarity. The proximity between objects was
carried out with an average linkage, using ‘distance’ as the
criterion for defining 3-clusters. The dendrogram allows us to
visually determine how many main groups there were. We
have defined three clusters, control cells (non-capacitated),
hyperactivated cells (truly capacitated) and as mentioned by
Mortimer et al. [4] and de Lamirande et al. [18], spermatozoa
present a transitional state conforming the third cluster.

Fig. 3. Ellipse envelope for a spermatozoon. Each ellipse corresponds to
an interval along the flagellum.

III. PRELIMINARY RESULTS

Fig. 4 shows the dissimilarity matrix of the Euclidean
distance between each pair of spermatozoa which shows how
close they are according to their feature-based descriptor.
The diagonal of the matrix is completely black since the
distance of a feature-based descriptor against itself is 0 (high
similarity), while pairs of feature-based descriptors with
higher distances are represented with white (low similarity).
Cluster 1 (green lines) contains the non-capacitated cells and
a subset of the induced to capacitate (not hiperactivated)
sperm. Cluster 2 (red lines) is constituted by sperm whose
fitted ellipses had a semi-major axis with a value larger than
(a > 5µm) compared with cluster 1, in addition ϵ → 1
(see Discussion for the interpretation). Cluster 3 (blue lines)
contains those spermatozoa that, like cluster 2, present the
semi-major axis with a value larger than cluster 1, however
the eccentricity tends to 0.7.
Hierarchical clustering formed three main groups: non-
capacitated, transitional and hyperactivated sperm (Fig. 5).
The non-capacitated motility group corresponds to cluster 1,
with the complete set of non-capacitated sperm and a subset
of induced to capacitate sperm. Sperm with a transitional
motility correspond to cluster 3 and hyperactivated cells to
cluster 2. The hierarchical clustering has a cophenetic cor-
relation coefficient of 0.7764, which is an acceptable value
implying that the original distances between the samples are
preserved. Although the clustering method presented outliers,
these were less than 5% and since we used an average
linkage, it is not affected by these outliers.
We used OpenCASA as a preliminary approach to validate
our results, with the sperm head trajectory (ALH, Amplitude
of Lateral Head Displacement). ALH (also referred as ‘head
yawing’), is the maximum head displacement from the aver-
age trajectory tracked. This measurement refers to the vigor
and amplitude of the flagellar beat. It has been observed that
high values of ALH correlate with hyperactivated motility.
OpenCASA is an open-source software that computes CASA
measurements in 2D images [19]. We projected the 3D
sperm head coordinates in x − y plane to obtain the head
trajectory. The correlation between the ALH value and the
first component of principal component analysis showed a
reasonable correlation coefficient near 0.7.
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Fig. 4. a) Dissimilarity matrix from the Euclidean distance of the three principal components between each pair of sperms, pixel intensity corresponds
to the distance value. Sperm IDs correspond to the number of the experiment, where 1-81 correspond to sperm induced to capacitate and 82-100 are the
non-capacitated ones. The dendrogram shows the hierarchical clustering with average linkage; green lines correspond to cluster 1 (4, 5, 11, 39, 49, 55, 65,
67, 74 and 77), red lines to cluster 2 (12, 24, 42 and 45) and blue lines to cluster 3. b) Clustering of flagellar motility for the dataset. The labels of the
dots correspond to the number of the experiment. Green dots correspond to cluster 1, red dots to cluster 2 and blue dots to cluster 3.

Fig. 5. Clustering diagram resulting from the proposed method. The
input data are non-capacited and induced to capacitate spermatozoa. When
clustering is applied, three main groups of motility patterns are obtained:
non-capacitated, transitional and hyperactivated.

IV. CONCLUSIONS AND DISCUSSION

The novelty of the feature-based vector that we propose
in this work encompasses the flagella beating pattern of
sperm. Thanks to the performance of these features to
describe the flagella dynamics, it was possible to use a
simple unsupervised classification technique to group non-
capacitated sperm, from those truly capacitated (hyperacti-
vated). An ellipse eccentricity close to 1, means that the
ellipse is elongated (corresponding to an asymmetric beating
pattern trend), while when eccentricity tends to 0 it is more
circular (symmetric beating pattern trend). It is known that
the beating pattern of non-capacitated spermatozoa is more
symmetric than that for hyperactivated ones [1]. Given the
previous considerations, the first cluster (Fig. 4a, green lines)
corresponds to the motility pattern of non-capacitated sperm

(control sperm + those induced that failed-to-capacitate)
given that the semi-major axis of the fitted ellipses are
smaller compared to the other clusters, in addition, the mean
eccentricity is smaller, tending to 0.5. Failed-to-capacitate
spermatozoa are those sperms that were induced to capacitate
but exhibit swimming behavior similar to those observed
from the control sperm. The trend of the spermatozoa found
in this cluster shows motility characteristics that, according
to the literature, are associated with spermatozoa that were
non-capacitated, meaning that the beat pattern of this cluster
is more symmetrical and of smaller amplitude compared
to the other groups. We consider the third cluster (Fig.
4a, blue lines) as being a transitional beating pattern from
non-capacitated to capacitated (hyperactivated) spermatozoa;
since the amplitude of the semi-major axis increases relative
to cluster 1 and the average eccentricity also increases, tend-
ing to 0.7, i.e., the flagellar beat has an increasing amplitude
and sperm begin to display an asymmetrical beat. We infer
that the second cluster (Fig. 4a, red lines) corresponds to the
hyperactivated beating pattern, since its average eccentricity
tends to 1, with a larger amplitude compared to cluster
1, implying an asymmetric motility pattern, as mentioned
previously. Furthermore, as expected, ≈12% of the induced
to capacitate spermatozoa belong to this cluster as mentioned
in [2]. It is important to point out that the whole set of non-
capacitated sperm was correctly classified in the green cluster
together with the failed-to-capacitate from the induced group.
Although this task could be thought of as a binary classifi-
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cation, the motility exhibited by sperm in a population is
heterogeneous, and a sperm induced to capacitation should
exhibit a change in the flagellar beat that is not instantaneous.
Therefore, the classification cannot be reduced to only two
classes, so adding a third class (transitional) of motility
allows us to distinguish those spermatozoa that we suppose
are undergoing a change in their flagellar beat at the time
the images were acquired.
As we mentioned before, no ground-truth exists for 3D
classification purposes, thus the correlation coefficient of
the first principal component with the ALH value for all
spermatozoa was a first approach to validate the unsupervised
classification results. Although some experiments agree with
their ALH value and clustering, the comparison with CASA
values is limited since it is based on the head movement,
while in this work, we are measuring the 3D flagellar dynam-
ics. Further analysis is required to establish a truth reference
in order to have a better way to measure the performance
of the proposed method. Actually, we are increasing the
number of experiments to balance the database with one
hundred sperm per condition to give a more robust proof
of the validity of the proposed method; these results will be
presented in an upcoming work. Our findings are promising
given that flagella hyperactivation has never been described
in 3D. They will contribute to define the parameters for the
classification of the hyperactivated motility pattern in 3D.
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