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Abstract: Heart diseases are the most important causes of death in the world and over the years, the
study of cardiac movement has been carried out mainly in two dimensions, however, it is important to
consider that the deformations due to the movement of the heart occur in a three-dimensional space.
The 3D + t analysis allows to describe most of the motions of the heart, for example, the twisting
motion that takes place on every beat cycle that allows us identifying abnormalities of the heart
walls. Therefore, it is necessary to develop algorithms that help specialists understand the cardiac
movement. In this work, we developed a new approach to determine the cardiac movement in
three dimensions using a differential optical flow approach in which we use the steered Hermite
transform (SHT) which allows us to decompose cardiac volumes taking advantage of it as a model of
the human vision system (HVS). Our proposal was tested in complete cardiac computed tomography
(CT) volumes ( 3D + t), as well as its respective left ventricular segmentation. The robustness to
noise was tested with good results. The evaluation of the results was carried out through errors in
forwarding reconstruction, from the volume at time t to time t + 1 using the optical flow obtained
(interpolation errors). The parameters were tuned extensively. In the case of the 2D algorithm, the
interpolation errors and normalized interpolation errors are very close and below the values reported
in ground truth flows. In the case of the 3D algorithm, the results were compared with another similar
method in 3D and the interpolation errors remained below 0.1. These results of interpolation errors
for complete cardiac volumes and the left ventricle are shown graphically for clarity. Finally, a series
of graphs are observed where the characteristic of contraction and dilation of the left ventricle is
evident through the representation of the 3D optical flow.

Keywords: bio-inspired computing; motion estimation; optical flow; differential method; steered
hermite transform; cardiac CT imaging; algorithms

1. Introduction

Cardiovascular diseases (CVDs) take the lives of 17.9 million people every year, 31% of all
global deaths, this represents the number one cause of death globally, more people die annually
from CVDs than from any other cause [1]. Heart diseases as myocardial infarction, ischemia or
hypertrophy can be characterized by analyzing the dynamics of the heart. During the cardiac cycle
(contraction “systole” and relaxation “diastole” of the heart), the motion wall estimation can be used to
recognize those pathologies. The acquisition of cardiac volumes has allowed quantifying relevant left
ventricular (LV) parameters such as its volume, strain, twist, and desynchrony [2]. Nowadays, there are
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diagnostic imaging techniques to characterize cardiac anatomy and function, as such echocardiography,
cardiac Magnetic Resonance Imaging (MRI), cardiac Computed Tomography (CT), cardiac Positron
Emission Tomography (PET), and coronary angiography [3]. Where the cardiac CT technique has
certain advantages with respect other: a higher resolution that ultrasound, it is more accessible than
MRI and it is a non-invasive a fast imaging option [4]. Cardiac CT allows acquiring three-dimensional
morphological images, with motion artifacts minimizes, and showing the heart chambers and the
coronary arteries at different planes [5]. It is then possible to acquire good quality cardiac CT data of
the heartbeats. Images are acquired overall cardiac cycles to produce the final volume image. Due to
the complexity of the heart motion, it is still hard for the physician to estimate the 3D motion during
the exam, thus, it is necessary to develop computational analysis tools to aid in the diagnosis process.

The human heart is a complex organ in terms of anatomy and physiology, the estimation of its
movement is an important task to understand its mechanism and to assist in the medical diagnosis.
Different image processing techniques can be applied to calculate and to observe the motion of
the heart, for example, the optical flow estimation is a method used in those situations where the
correspondence between the pixels, within an image sequence, is required. The optical flow methods
compute an approximation to the 2D motion in an image sequence from spatiotemporal patterns of
image intensity [6]. Over the years, state-of-the-art algorithms for optical flow can be summarized in
Nagel [7] who identified the common rigorous restrictions [8–10], as well as smoothing restrictions for
the optical flow solution [7,11,12]. On the other hand, Barron et al. [6], categorized the optical flow
in four groups: differential techniques [7–9,11,13,14], region-based matching [15,16], energy-based
methods [17,18] and phase-based techniques [19]. Sun et al. [20] suggested that there have been
few changes in the typical formulation given by Horn and Schunck [11]. Most of research work
on optical flow has been carried out in 2D + t. Many of them claim to be 3D, but they really are
2D + t. Some of them, use 2D projections to obtain a 3D representation, in applications such as
tracking traffic [21], in methods used for quantitative motion estimation of biological structures in
light microscope [22], estimation of 3D geometry and 3D motion using spatiotemporal gradients [23]
or emotion recognition from 3D videos [24]. 2D optical flow estimation has been used in the heart
analysis to identify patients with some diseases, recent works using 2D optical flow cover topics such
as motion estimation in cardiac fluorescence imaging [25], and as the automatic localization of the
heart from cine MRI [26]. Some optical flow methods have used image models inspired by nature,
for example Gabor filters [18,19,27–30]. The optical flow is fundamentally different than tracking
because a complete set of correspondences between the pixel levels in an image (or volume) is obtained.
The optical flow is used to calculate dense trajectories, provides more freedom and information about
the data in which the movement is being estimated, a priori models are not needed and even more,
it can also be used to develop deformable based-model tracking algorithms.

The Hermite transform (HT) has been an image model used to describe the local constraints of
the Horn and Schunck approach. Liu et al. [27] derived a six-parameter non-affine optical flow model,
which is solved with high-order Hermite polynomial filtered data. In [28], Silvan et al. showed that
through a linear mapping of 3D Hermite coefficients by specific projection functions, we could obtain
the Hermite transform coefficients of local projections. Furthermore, Moya et al. [29] used the steered
Hermite coefficients like local motion restrictions, found in current methods, to define a differential
estimation method.

One disadvantage of the 2D cardiac movement analysis is that it is constrained by
geometry-dependent reference directions of deformation (i.e., radial, circumferential, and longitudinal).
In this sense, a 3D cardiac movement analysis may overcome such limitations by referencing the
intrinsic directions of deformation [31]. Thus, to identify altered ventricular function in patients with
CVD, a 3D left ventricular (LV) deformation analysis is more suitable since it represents contributions
from counter-directional, helically arranged fibers shortening and thickening throughout the cardiac
cycle [32]. Research on the measurement of cardiac motion has been commonly made in 2D + t [33] but
this analysis should be done in 3D+ t to enable us to describe the true motions of the heart, for example,
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the twisting motion that takes place on every beat cycle. Compared to the 2D analysis, the 3D analysis
has not received much attention, although there are currently working groups analyzing optical flow
in 3D mainly using ultrasound images.

About the estimation of 3D optical flow in general, some works have similarities with at least
one of the aspects of this article, thereby, in [34] they use a 3D model of the human body and motion
captured data to synthesize flow fields and train a convolutional neural network (CNN) to estimate
human flow fields from pairs of images. In [35] a steerable filter-based algorithm is formulated, in its
simplest form, for estimating 3D flow in sequences of volumetric or point-cloud data.

In [36] they present an approach for real-time respiratory motion estimation in image-guided
interventions by employing contrast-invariant feature descriptors. Yoon et al. [37] presented a method
for motion estimation applied to cone-beam CT, their work uses an energy functional, which includes
as terms: a data fidelity, a regularization term, and the optical flow restriction. On the other hand,
Jungwon et al. [38] used the optical flow estimation to calculate the local motion, allowing a 3D
segmentation extension. Their model includes a shape distortion over time term, allowing segmenting
and tracking the lung nodules. In [39], an implementation based on the optical flow algorithm from
Farnebäck (2003) is used to create 3D freehand ultrasound but with reconstructions from 2D without
external tracking, using deep learning.

Several methods have been used to estimate the optical flow of the endocardial wall motion [40].
In [41], a global anatomically constrained affine optical flow tracking was used to track the end-diastole
left ventricle surface throughout the cardiac cycle. For [42], this approach first performs 3D
segmentation at the end-diastolic frame and then performs tracking over the cardiac cycle using
both global (optical flow) and local (block matching) methods. In [43] they claim to have a method for
detecting cardiac flow in echocardiography where the sampling planes representing the mitral inflow
tract and the left ventricle outflow tract are traced by fusing information from multiple cues, including
optical flow, boundary detection, and motion prior. Duan et al. [44], evaluate a correlation-based optical
flow algorithm for tracking endocardial surfaces on three-dimensional ultrasound data, also in [45]
they built a truly 3D mathematical phantom of cardiac tissue and blood in order to validate the optical
flow for quantification of myocardial deformations. Leung et al. [46] track left ventricular borders
in 3D echocardiographic sequences by combining differential optical flow with statistical modeling.
Zhiang et al. [47] developed an optical flow algorithm based on Thirion’s diffusing model [48], also
known as the “demons” algorithm and also described an atlas-based geometry pipeline for constructing
three-dimensional cubic Hermite finite element meshes of the human heart.

In Table 1 we summarized some of the most recent optical flow motion methods used to extract
the motion estimation, either using a 2D + t or 3D + t model, and the differences with the proposed
method. In some cases, a 2D optical flow is initially estimated to map it onto a 3D optical flow.

The present article is an extension of our previous work published in [49]. In that work,
we proposed the three-dimensional optical flow estimation using the 3D steered Hermite transform
and we compared our approach with the 3D Horn-Schunck method. In contrast, the current work is
compared with a multiresolution Horn and Schunck approach reported by Sun et al. [20], moreover,
in this work, we perform a depth analysis about the optimal parameters of the method proposed
and we focused the Section 5.2.1 to analyzed the 3D optical flow estimation of the left ventricle, first,
showing its 3D segmentation and showing the advantages of our approach compared with the 3D
version of the method of Sun et al. [20], and then, showing the 3D motion of the left ventricle in
different cardiac cycle and a whole cardiac cycle, highlighting the corresponding contraction and
relaxation movements present in each phase of the cardiac cycle. It should be mentioned that similar
2D algorithms using the Hermite transform have already been presented in [29,33] but with the main
disadvantage of consuming a lot of computing time.
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Table 1. 2D/3D + t optical flow estimation approaches.

Paper OF Model
(2D/ 3D + t ) Method Application Evaluation Metric

Proposed method 3D
Using the 3D Steered
Hermite Transform

Left ventricle
CT sequences

Interpolation
errors in 3D

Ranjan et al. [34] 3D
A 3D model human

body and a CNN
Estimate human

flow fields End point error

Alexiadis et al. [35] 2D
Minimizing

a cost functional
3D flow

estimation
Mean angular error
on synthetic images

Queiros et al. [41] 3D
Anatomically affine

optical flow
Left ventricle

tracking
Distance and
Dice metrics

Patil et al. [24] 2D Farnebäck
Emotion

recognition
Accuracy

of 6 emotions

Saleh et al. [26] 2D Lucas-Kanade
Heart

Localization
Accuracy

on localizing

Baghaie et al. [30] 2D
Gabor, Schmid and

steerable filters
2D flow

estimation

Angular and
interpolation

errors

Rodriguez et al. [25] 2D Horn & Schunck
Cardiac motion

estimation
Mean square

error

Revising the algorithm from 2D to 3D is not a trivial problem, on top of the additional and
necessary computational complexity, and the importance of describing the 3D cardiac movement.
We have to describe (based on [50]) and calculate a second local orientation angle from the 3D cartesian
coefficients of Hermite to obtain the 3D steered coefficients of Hermite (SHT3D). The data used in this
work require a sensitivity analysis of its parameters and a way to validate the results because there
aren’t annotated volumes. Robust noise tests and calculation of interpolation errors of the volumes
used had been carried out. Left ventricular analysis has been of great importance for this article. In this
way, the results of the optical flow and the segmentation of such cardiac structure were evaluated.

Figure 1 shows an overview of the proposed method according to the procedures explained in
the next sections.

Our approach uses a three-dimensional (3D + t), that is, it uses the data of the cardiac volumes in
a three-dimensional space (x, y, z), which change over time during the entire cardiac cycle; a modified
version of Sun et al. [20], which, in contradistinction of Horn and Schunck’s approach [11], uses an
incremental multiresolution technique to estimate large displacements, where the optical flow at a
coarse level is extrapolated to warp the second image at a finer level, combined with the optical flow
based on the Hermite transform proposed by Moya et al. [29], that uses the several constraints found
in the more accurate optical flow methods. The rest of the paper is organized as follows: Section 2
describes the 3D Hermite transform, Section 3 develops the proposal to obtain 3D optical flow, Section 5
presents the experimental results and discussion of this work, Section 6 is about the results obtained,
and finally, Section 7 concludes the paper and presents future work.
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Figure 1. Overview of the proposed method.

2. The 3D Hermite Transform

The Hermite transform is a bio-inspired image model, it simulates some of the more relevant
properties of the early vision of the human vision system (HVS): the local processing [51] and the
Gaussian derivative model of the receptive fields [50,52,53]. The SHT provides a very efficient
representation of oriented patterns which enables an adaptation to local orientation content at each
window position over the image, indicating the direction of the two-dimensional pattern. The Hermite
transform uses functions that are derivatives of Gaussians, which have wide applications in the field of
computer vision and are a bio-inspired model of the human vision system. In this work, the Hermite
transform serves as a theoretical framework to carry out the estimation of cardiac movement in
our approach.

Gaussian windows in two dimensions have the property of being rotationally symmetric and
spatially separable. Gaussian windows separated by twice the standard deviation, are a good model
found for the receptive fields of perception found in psychological experiments [51]. According to the
psychophysical model of HVS [52,54], through Gaussian windows, we can decompose an image into
several orthogonal polynomials.

An interesting special case of 2D polynomial transforms arises when we have a window function
which is separable i.e., v(x, y) = v(x)v(y)

For a perceptual standpoint and according to the scale-space theory, we will use a Gaussian
window (Figure 2)

v(x, y) =
1

σ
√

π
exp

(
−
(
x2 + y2)

2σ2

)
(1)

The direct Hermite transform in 3D (HT3D), is a particular case of the proposal of Martens [50,53],
where a signal is localized by an analysis window and this information is expanded using polynomials
orthogonal to the window. Polynomials that are orthogonal with respect to the Gaussian window
function are defined by [55], so we would use the window:

v(x, y, z) =
1√

σ
√

π
exp

(
−
(
x2 + y2 + z2)

2σ2

)
(2)
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Figure 2. Gaussian window v(x, y).

Physiological experiments consider using overlapping Gaussian windows separated by twice the
standard deviation σ which are isotropic and that’s why we can establish that σ = σx = σy = σz in
accordance with the overlapping receptive fields of the human visual system [51].

The Hermite cartesian coefficients, Ll,m−l,n−m, are obtained by convolution of the original signal
L(x, y, z) with the analysis filters Dl,m−l,n−m(x, y, z) followed by subsampling on a three-dimensional
mesh S using Equation (3):

Ll,m−l,n−m(x0, y0, z0) = L(x, y, z)⊗ Dl,m−l,n−m(x, y, z), (3)

where l, (m − l) and (n − m) denote the analysis order in x, y and z directions, respectively;
l = 0, 1, . . . , m; m = 0, 1, . . . , n; n = 0, 1, . . . , N; N is the maximum order of the expansion that is
related to the size of a cubic window ofM×M×M, where N ≤ 2 ∗ (M− 1). For large values ofM
the discrete cubic kernel reduces to the 3D Gaussian window.

The three-dimensional Hermite filters can be represented by:

Dl,m−l,n−m(x, y, z) = Gl.m−l,n−m (−x,−y,−z) v2 (−x,−y,−z) (4)

wich are separable because the Gaussian window is rotationally symmetric

Dl,m−l,n−m(x, y, z) = Dl(x)Dm−l(y)Dn−m(z) (5)

and those can be computed by:

Dl(x) =
(−1)l
√

2l l!

1
σ
√

π
Hl

(
x
σ

)
exp

(
− x2

σ2

)
(6)

Gl,m−l,n−m(x, y, z) are a family of polynomials defined as:

Gl,m−l,n−m(x, y, z) =
1√

2nl!(m− l)!(n−m)!
Hl

( x
σ

)
Hm−l

( y
σ

)
Hn−m

( z
σ

)
(7)

where Hl represents the generalized Hermite polynomials given by Rodrigues’ formula [56]

Hl(x) = (−1)l exp(x2)
dl

dxl exp
(
−x2

)
(8)

The recovery process of the original image (inverse Hermite transform in 3D - IHT3D) consists of
interpolating the Hermite coefficients through the proper synthesis filters:

L̂(x, y, z) =
N

∑
n=0

n

∑
m=0

m

∑
l=0

∑
(x0,y0,z0)∈S

Ll,m−l,n−m (x0, y0, z0) Pl,m−l,n−m(x− x0, y− y0, z− z0) (9)
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where Pl,m−l,n−m(x, y, z) can be determined by:

Pl,m−l,n−m(x, y, z) =
Gl,m−l,n−m(x, y, z)v2(x, y, z)
∑

(x0,y0,z0)∈S
v2(x− x0, y− y0, z− z0)

(10)

for l = 0, ..., m; m = 0, ..., n and n = 0, ..., N.
From Equation (9), instead of to recover the original volume we obtain an approximation of the

original signal L̂(x, y, z), where the quality of this reconstruction improves by increasing the maximum
order of the expansion N, i.e., the size of the cubic windowM [50]. In terms of the artifacts in the
approximated volume L̂(x, y, z), small values of the cubic windows causes “speckles”, while high
values result in Gibbs-phenomenon-like artifacts such as ringing and blur [57].

Thus, to determined the maximum order or the expansion N and in consequence the size of the
cubic windowM, in [57] van Dijk and Martens determined that using an expansion of the Hermite
transform equal to 3, the reconstructed 2D image will contain the most quantity of AC energy (84%)
according to Parseval’s theorem. In general, with N ≥ 3 we can obtain a good reconstruction and with
much greater values we will obtain a perfect reconstruction of the image.

3D Steered Hermite Transform

The Steered Hermite transform (SHT) is a variant of the HT that adapts to the local orientation
of the image [57], it uses rotated filters which are represented as a linear combination of basis
filters [58]. The orientation property of these steered Hermite filters is due to the symmetric-radial
form of the Gaussian window, thus they can saw as the response of directional derivatives of the
Gaussian function.

On the other hand, the SHT describes local 1D patterns in images into a smaller number of
coefficients that represent the profile of the pattern perpendicular to its orientation [57].

By projecting the 3D Cartesian Hermite coefficients towards the local orientation angles θ and φ

(Figure 3), we obtain the Steered Hermite transform in 3D (SHT3D) as shown in Equation (11):

ll,m−l,n−m,θ,φ(x0, y0, z0) =
n

∑
m=0

m

∑
l=0

(
Ll,m−l,n−m (x0, y0, z0) · gl,m−l (θ) · gm,n−m (φ)

)
(11)

where ll,m−l,n−m,θ,φ(x0, y0, z0) are the 3D steered Hermite coefficients. And

gj,k−j(ϕ) =

√√√√( k
j

)(
cosj (ϕ) sink−j (ϕ)

)
(12)

is the cartesian angular function that expresses the directional selectivity of the filter.
To calculate the direction of maximum energy we used the coefficients from Equation (3) and the

phase of the gradient given by Equations (13) and (14):

θ = arctan
(

L010

L100

)
(13)

φ = arctan


√
(L100)

2 + (L010)
2

L001

 (14)

where [L1,0,0, L0,1,0, L0,0,1] (x, y, z)> are a good approximation of the 3D gradient through the Cartesian
Hermite coefficients.



Sensors 2020, 20, 595 8 of 31

x

y

z

x´
y´

z´

q

f

x

y

z

Figure 3. Cartesian coordinates (continuous line), steered coordinates (dotted line) and the angles θ

and φ.

In order to graphically represent the indexes of the 3D Cartesian Hermite coefficients, Figure 4
shows the distribution of order two (N = 2) in each direction, in this case 27 coefficients are obtained
for each voxel of a volume.

Figure 4. Distribution of the index of Cartesian Hermite coefficients of a second-order voxel.

Figure 5 shows an example of some 3D Steered Hermite coefficients for the left ventricle of a
cardiac CT volume, according to Equation (11) , where we can see the steered coefficients l000, l100, l010

and l001.

Figure 5. Ensemble of some Steered Hermite coefficients of a cardiac CT volume.
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3. Optical Flow using the Hermite Transform

One of the main disadvantages of the classic method of Horn and Schunck [11] is its low accuracy,
and because of this, we use a modified version of the method proposed by Sun et al. [20], that
solves such obstacle using a multiresolution approach to estimate large displacements. In addition,
this modified version is combined using the Hermite Transform with the advantage that it is based on
a visual biological model of the images. Consequently, the local constraints of Horn and Schunck are
defined using the zero order Hermite coefficient, and the Steered Hermite coefficients are used as high
order local descriptors of the visual characteristics of the volumes.

Model

Our approach is based on the multiresolution Horn and Schunck approach reported by
Sun et al. [20], it uses the SHT3D to expand the constant intensity constraint and adds the Steered
Hermite coefficients constraint as shown in Equation (15):[

L0 (x + w)− L0 (x)

]
+ γ

[
N

∑
n=1

ln,θ,φ (x + w)−
N

∑
n=1

ln,θ,φ (x)

]
= 0 (15)

where L (x) is a volume sequence, with x = (x, y, z, t)T representing the voxel location within a domain
V; w := (u, v, w, 1)T is a vector that defines the displacement u, v and w of each voxel at position
(x, y, z) from time t to time (t + 1) in the directions x, y and z respectively; and γ is a weight parameter
that controls the contribution of the high order descriptors. Using the HT optical flow restriction of
Equation (15) we defined an energy functional that includes a smooth term to overcome the aperture
problem [11] as follows:

E =

∫
V

[L0(x)0 − L0(x + w + dw)1

]2

+

γ

[
N

∑
n=1

{
ln,θ,φ(x)0 − ln,θ,φ(x + w + dw)1

}]2

+

α

∣∣∣∣∣∇ (w + dw)

∣∣∣∣∣
2
 dx

(16)

where α is the weight value of the smoothness term that can get information from neighbors in regions
where the intensity gradient is zero (uniform regions of flow).

To simplify the notation L000 (x) = L0 (x), L∗(x)∗ is the Cartesian Hermite coefficient ∗ at time t
and L∗(x)1 is the Cartesian Hermite coefficient ∗ at time t + 1.

Considering linear displacements, the constant intensity term of Equation (15) can be expanded
by a Taylor series as shown:

L0(x)0 − L0(x + w + dw)1 ≈L0(x)0 − L0(x + w)1−

du
∂L0(x + w)1

∂x
− dv

∂L0(x + w)1
∂y

− dw
∂L0(x + w)1

∂z

(17)

A particular 1D cartesian Hermite coefficient can be obtained with the inner product between the
signal located by the Gaussian window and the corresponding Hermite polynomial as follows [29]:

Lk =
〈

L(x), Hk

( x
σ

)〉
(18)

Therefore, the spatial derivatives of the Hermite coefficients can be expressed as:

Lk =
∂kL(x)

∂kx
(19)
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for example, we can get the following simplified derivatives for x:

L100 (x + w) = L100(x)w =
∂L000(x + w)1

∂x
(20)

ln,θ,φ,(m+1)(x)w =
∂ln,θ,φ(x + w)1

∂x
(21)

also, we can define the temporal differences as:

L0(x)t = L0(x + w)1 − L0(x)0 (22)

ln,θ,φ(x)t = ln,θ,φ(x)1 − ln,θ,φ(x + w)0 (23)

then (17) can be written as

L0(x)0 − L0(x + w + dw)1 ≈ −
[

L0(x)t + duL100(x)w + dvL010(x)w + dwL001(x)w

]
(24)

Finally, we can redefine the 3D Horn-Hermite optical flow (HOF3D) functional from Equation (16)
as:

E (w) =

∫
V

(
−
[

L0(x)t + duL100(x)w + dvL010(x)w + dwL001(x)w

]2

−γ
N

∑
n=1

[
ln,θ,φ(x)t + du ln,θ,φ,(m+1)(x)w + dv ln,θ,φ,(n+1)(x)w + dw ln,θ,φ,(l+1)(x)w

]2

+ α
∣∣∣∇ (w + dw)

∣∣∣2) dx (25)

Minimizing E (w) with respect to u, v and w we obtain the following equation system:

− 2
(

L0(x)t + duL100(x)w + dvL010(x)w + dwL001(x)w

)
L100(x)w

− 2γ
N

∑
n=1

(
ln,θ,φ(x)t + du ln,θ,φ,(m+1)(x)w + dv ln,θ,φ,(n+1)(x)w + dw ln,θ,φ,(l+1)(x)w

)
ln,θ,φ,(m+1)(x)w

+ 2α
∣∣∣∇ (u + du)

∣∣∣ = 0 (26)

− 2
(

L0(x)t + duL100(x)w + dvL010(x)w + dwL001(x)w

)
L010(x)w

− 2γ
N

∑
n=1

(
ln,θ,φ(x)t + du ln,θ,φ,(m+1)(x)w + dv ln,θ,φ,(n+1)(x)w + dw ln,θ,φ,(l+1)(x)w

)
ln,θ,φ,(n+1)(x)w

+ 2α
∣∣∣∇ (v + dv)

∣∣∣ = 0 (27)

− 2
(

L0(x)t + duL100(x)w + dvL010(x)w + dwL001(x)w

)
L001(x)w

− 2γ
N

∑
n=1

(
ln,θ,φ(x)t + du ln,θ,φ,(m+1)(x)w + dv ln,θ,φ,(n+1)(x)w + dw ln,θ,φ,(l+1)(x)w

)
ln,θ,φ,(l+1)(x)w

+ 2α
∣∣∣∇ (w + dw)

∣∣∣ = 0 (28)

Rewriting the equation system of (26), (27) and (28) in matrix form we get: A1 A2 A3

A4 A5 A6

A7 A8 A9


 du

dv
dw

 =

 b1

b2

b3

 (29)
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where

A1 = L2
100(x)w + γ

N
∑

n=1
l2
n,θ,φ,(m+1)(x)w

A2 = L100(x)wL010(x)w + γ
N
∑

n=1
ln,θ,φ,(m+1)(x)w · ln,θ,φ,(n+1)(x)w

A3 = L100(x)wL001(x)w + γ
N
∑

n=1
ln,θ,φ,(n+1)(x)w · ln,θ,φ,(l+1)(x)w

b1 = L0(x)tL100(x)w + γ
N
∑

n=1
ln,θ,φ(x)t · ln,θ,φ,(m+1)(x)w − α

∣∣∣∇ (u + du)
∣∣∣

A4 = L010(x)wL100(x)w + γ
N
∑

n=1
ln,θ,φ,(n+1)(x)w · ln,θ,φ,(m+1)(x)w

A5 = L2
010(x)w + γ

N
∑

n=1
l2
n,θ,φ,(n+1)(x)w

A6 = L010(x)wL001(x)w + γ
N
∑

n=1
ln,θ,φ,(m+1)(x)w · ln,θ,φ,(l+1)(x)w

b2 = L0(x)tL010(x)w + γ
N
∑

n=1
ln,θ,φ(x)t · ln,θ,φ,(n+1)(x)w − α

∣∣∣∇ (v + dv)
∣∣∣

A7 = L001(x)wL100(x)w + γ
N
∑

n=1
ln,θ,φ,(l+1)(x)w · ln,θ,φ,(m+1)(x)w

A8 = L001(x)wL010(x)w + γ
N
∑

n=1
ln,θ,φ,(l+1)(x)w · ln,θ,φ,(n+1)(x)w

A9 = L2
001(x)w + γ

N
∑

n=1
l2
n,θ,φ,(l+1)(x)w

b3 = L0(x)tL001(x)w + γ
N
∑

n=1
ln,θ,φ(x)t · ln,θ,φ,(l+1)(x)w − α

∣∣∣∇ (w + dw)
∣∣∣

Finally, in each lower-resolution level, the increment dw is estimated and, w is updated in the
next high-resolution level.

In this work, we take advantage of the characteristics of the Hermite multiresolution transform,
which makes it possible to improve spatial frequency locations and facilitate the analysis of local
orientations at different scales [59,60]. Likewise, the HOF3D functional of Equation (25) can calculate
small displacements du, dv, dw and propagate the solution to higher resolution levels. For each
resolution level, an iterative method for solving linear equations was carried out.

4. Materials and Overview of the Method

4.1. Dataset Description

The dataset used in this work consists of two cardiac computed tomography studies (3D + t). The
CT volumes were obtained in a 16-slice tomograph (at 120 kVp @ 900 mA) built with 128 detectors.
The dimensions of each volume are 512× 512× 10 at 12 bits per pixel. The clinical protocol starts
by injected a contrast agent to the patient and the study is carried out in synchrony with the
electrocardiogram (ECG) signal. A cardiac CT volume used is shown in Figure 6.

It should be noted that the acquisition of cardiac images are performed in connection with the
electrocardiogram and are acquired with the patient in respiratory apnea to avoid artifice by movement.

4.2. Ethical Approval

The Research Committee of Engineering Faculty of Universidad Nacional Autonóma de México
approved this research protocol. This study was conducted in accordance with the Declaration of
Helsinki.
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Figure 6. Cardiac CT images, slices and volume.

4.3. Overview of the Method

In Figure 7 we show an overview of our proposal. First, we have the cardiac volume slices,
belonging to two consecutive steps of the cardiac cycle considered, which make up volume 1 and
volume 2 respectively; for each volume, we obtain a multiresolution expansion related to the coefficients
of the steered Hermite transform. Such coefficients are used to carry out the calculation of the optical
flow within the mentioned HOF3D approach. Once the vector field belonging to the optical flow over
the whole cardiac volume was obtained, we used the portion of the volume related to the segmented
left ventricle to finally obtain only the masked vectors with this part of the cardiac volume.

OPTICAL FLOW APPROACH

SLICES OF VOLUME 1

SLICES OF VOLUME 2

VOLUME 1

VOLUME 2

OPTICAL FLOW OVER THE 
ENTIRE HEART

OPTICAL FLOW OF THE LEFT 
VENTRICLE

STEERED HERMITE 
COEFFICIENTS  VOLUME 1

STEERED HERMITE 
COEFFICIENTS VOLUME 2

MULTI-RESOLUTION 
EXPANSION

MULTI-RESOLUTION 
EXPANSION

LEFT VENTRICLE 
SEGMENTATION

Figure 7. Procedure to implement the HOF3D approach.
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5. Experiments and Results

This section presents the results of the estimation of the optical flow with the proposed method.
In our previous work [49], we use some synthetic volumes to check the expected results, in this
work, dozens of cardiac volumes corresponding to medical CT images, as well as their respective
segmentation of the left ventricle, were used.

The section is divided into two stages, a validation stage and a stage of 3D optical flow results
of the left ventricle. In the first stage, we performed a validation of our approach, where the
optimal parameters both in the Hermite transform and the 3D optical flow proposal were determined.
Then, the optical flow results in 2D were compared with a set of images ground-truth and a pair
of algorithms of optical flow. The optical flow results in 3D were compared with the modified and
multiresolution method of Horn and Schunck [20]. Next, an analysis of robustness to noise was
performed. In the second stage, the 3D optical flow results in the left ventricle, which was previously
segmented, are shown and the corresponding errors of interpolation are evaluated.

The results obtained on a PC Intel(R) Core(TM) i7-4710HQ CPU running at 2.50 GHz with 16 GB
of RAM have an algorithm time-consuming of 4.8 h on 4 cores, nevertheless, this can be reduced to
an average of 4.5 min with parallel computing and additional cores. The optical flow in our method
has good scalability, close to linear speedup, which allows us to significantly reduce processing time.
The results concerning processing time are consistent with those reported in [61]. They tested two
differential algorithms, Lucas-Kanade and Horn-Schunck in 3D + t, as we have also done.

5.1. Validation

In absence of a 3D motion ground-truth in CT images, which is used to evaluate the accuracy
of the optical flow estimation, we validate our proposal in two different ways, first, by calculating a
forward reconstruction using the volume L (x, t) at time t and the 3D optical flow obtained and
second, comparing our 2D approach with other methods and using a 2D dataset with known
ground-truth. In both cases, we used the interpolation error, which is defined as the root mean-square
(RMS) difference between the known volume L (x, t + 1) at time t + 1 and the reconstructed volume
LGT (x, t + 1), is calculated [6,19] as we showed in the Equation (30):

IE3D =

[
1
M ∑

x

(
L(x, t + 1)− LGT (x, t + 1)

)2
] 1

2

(30)

where M is the number of voxels.
We also computed a second measure of interpolation performance, the normalized interpolation

error between an interpolated volume L(x, t + 1) and a ground-truth volume LGT (x, t + 1), which is
given as in [62]:

NE3D =

 1
M ∑

x

(
L(x, t + 1)− LGT (x, t + 1)

)2

∥∥∥∇LGT (x, t + 1)
∥∥∥2

+ ε


1
2

(31)

that represents a gradient-normalized RMS error, where ε is a scaling constant (e.g., ε = 1).
The interpolation errors are useful to know how good the calculation of the optical flow is

when there is no available ground truth flow, the normalized interpolation error has the additional
advantage of being normalized with respect to the magnitudes of the intensity changes that the volume
of the reference.

5.1.1. Hermite Transform Parameter Tuning

Although the constants, values and weight parameters are difficult to select, in Section 2,
we present which are the suitable values to the cubic window and in consequence, the maximum
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expansion order N of the Hermite transform, thus, experimentally found that we achieved a good
estimation of optical flow results (NE3D < 0.1) and avoiding blur artifacts for our dataset with: a
cubic window of 5× 5× 5 pixels, i.e., a maximum expansion order of N = 4 for the SHT and 5 levels
of multiresolution decomposition for the SHT. Below these values, we would obtain errors 2.5 to
3 times larger than those reported. It should be noted that this strategy allows us to handle large
displacements, which occur from one step to another in a cardiac cycle. On the other hand, the number
of iterations greater than 50 is the one that gives us the required numerical convergence according to
our tests.

5.1.2. Optical Flow Parameter Sensitivity Analysis

As a first experiment, we perform a parameter sensitivity analysis to find the best values.
Weight parameter γ of the HOF3D functional Equation (16) is used to weigh the contribution of
the high order Hermite coefficients in those regions where the intensity does not remain constant
from one volume to another. On the other hand, the softness parameter α can help recover the
motion information from their neighbors in those regions where the gradient is zero, e.g., intensity
homogeneous regions. It is carried out through averages from structures with high frequencies,
e.g., edges and textures. Large values of α give us a smoother flow but this is relatively less important
at locations with high image gradients than elsewhere.

For determining the values of the smoothness weight α and the weight parameter γ , first we
compute the 3D optical flow over the cardiac CT sequences and then we analyze the behavior of the
Interpolation Error (IE) and Normalized Interpolation Error (NE) metrics.

From Figure 8, the curves show that the best results for IE and NE are for α ≥ 10 and γ ≥ 100
(bottom of the mesh).

(a) (b)

Figure 8. Interpolation Error (a) and Normalized Interpolation Error (b), for parameter sensitivity
analysis.

5.1.3. 2D Interpolation Errors

As we mentioned before, because we do not have a set of 3D optical flow to compare our results,
as second experiment, we evaluate the performance of our 2D proposal, through a collection of
well-known images. These images and their respective ground-truth optical flows can be found
through [63], which still have great use and relevance today. They defined sequences with non-rigid
movements where the optical flow was determined following a hidden fluorescent texture.

Table 2 shows the calculation of the interpolation error (Equation (30)) but in 2D. We choose a set of
five data. HOF2D is the Horn-Hermite optical flow in 2D approach. We compare our HOF2D algorithm,
along with another pair of algorithms and the ground-truth flows provided in [63]. The parameters
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used for HOF2D are the same as those described in Sections 5.1.1 and 5.1.2, N = 4, 5 levels of
multiresolution decomposition for the SHT in 2D, α ≥ 10 and γ ≥ 100, except that the necessary
iterations, which can range from 20, to provide the best results. The best results are highlighted in bold
and, although our approach is not always the best, it is close to the best results in each case.

Table 2. Interpolation Error Calculation.

Ground Truth Images Ground Truth Flow Horn-Schunck [64] Farnebäck [64] HOF2D

dimetrodon 2.641 8.589 3.127 2.865
groove2 10.439 23.492 8.831 10.353
groove3 19.401 32.351 15.703 17.460
urban3 9.870 17.727 9.489 8.122
venus 8.813 20.659 5.847 8.835

With the same set of data and algorithms as Table 2, Table 3 presents the calculation of the
normalized interpolation error in 2D based on (Equation (31)) . The best performances are highlighted
in bold and most of them are in the HOF2D column. We must remember that the normalized
interpolation error is is a weighted RMS average of the pixels, wich use the image gradient as a weight
factor. The normalized interpolation error compensates for the difference between the interpolation
errors and the flow obtained because it gives less weight to the discontinuous regions and more weight
to the regions without texture.

Table 3. Normal Interpolation Error Calculation.

Ground Truth Images Ground Truth Flow Horn-Schunck [64] Farnebäck [64] HOF2D

dimetrodon 0.207 0.546 0.382 0.270
groove2 0.418 0.860 0.385 0.329
groove3 0.990 1.622 0.626 0.532
urban3 2.325 2.452 1.342 0.700
venus 0.801 1.376 0.434 0.348

5.1.4. 3D Interpolation Errors

To evaluate the accuracy of the HOF3D method, we compared it with the 3D variant of the
method of Sun et al. [20] We calculated the corresponding interpolation errors (IE and NE) using both
proposals. Figure 9 presents a diagram of the steps to calculate the interpolation errors.

VOLUME AT TIME t+1

VOLUME AT TIME t

OPTICAL FLOW INTERPOLATED VOLUME

OPTICAL FLOW 
METHOD

INTERPOLATION

INTERPOLATION ERROR

INTERPOLATION ERROR 
DISPLAY

Figure 9. Steps to calculate and visualize the Interpolation Error.
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Figure 10 shows a cardiac CT volume where we can observe the original volume (Figure 10a),
the interpolated volume (Figure 10b), the difference between the original volume and its interpolated
result (Figure 10c) using the 3D variant of the method of Sun et al. [20]. The results were compared
with a modified version of the Sun method in 3D and for different noise levels. Both algorithms used
were optimized and the evaluation of the results was carried out by means of a forward reconstruction,
from the volume at time t to time t + 1, through the 3D optical flow obtained. The interpolation error
display is a visualization of the terms within the summation in Equation (31).

(a) Original Volume (b) Volume Interpolated using the Horn
and Schunck method

(c) Error between Original and Interpolated Volumes using
the Horn and Schunck method

Figure 10. A cardiac CT volume showing the original volume, the interpolated volume using the
3D variant of the method of Sun et al. [20] and the error between the original volume and its
interpolated result.

On the other hand, in order to compare our method, in Figure 11 we show the same cardiac CT
volume as in Figure 10 where, again, we can observe the original volume (Figure 11a), the interpolated
volume (Figure 11b), the difference between the original volume and its interpolated result (Figure 11c)
using our HOF3D method.

In Figure 12, we show the interpolation errors obtained using the Sun et al. [20] and the HOF3D
methods through the whole cardiac cycle (0% to 90%) for two CT sequences. In both sequences, we can
observe the beginning of the increase in the interpolation error from 20% to 30%, when the contraction
movement occurs and from 50% to 60% of the cardiac cycle, in full dilation movement. This is where
we have a couple of cardiac movements of greater magnitude.

We can observe in the plots of Figure 12, both for the interpolation error and the normalized
interpolation error, that even in each of the stages of the complete cardiac cycle, the HOF3D method
gives better results and lower errors are obtained.
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(a) Original Volume (b) Volume Interpolated using the
HOF3D method

(c) Error between Original and Interpolated Volumes
using HOF3D method

Figure 11. A cardiac CT volume showing the original volume, the Interpolated Volume using the
HOF3D method and the error between the original volume and its interpolated result.
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(a) Interpolation Error
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(b) Normalized Interpolation Error

Figure 12. Interpolation Error and Normalized Interpolation Error. For the 3D Horn-Schunck
(red dashed line) and Hermite Optical Flow in 3D (blue solid line) methods. From sequences of
cardiac CT volumes.
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5.1.5. Robustness to Noise

As final experiment, we carried out an analysis of robustness to noise of the proposed method.
For this, we added Gaussian noise, with different standard deviations (σn = 0, 5, 10, 15, 20, 30) and zero
mean, to the cardiac volumes. In Figure 13 we can see one of the volumes used for the test, with three
different values of σn.

(a) Volume without noise (b) Volume with noise, (σn = 10) (c) Volume with noise, (σn = 30)

Figure 13. Volume with pseudo-random noise.

Table 4 shows the interpolation error and the normalized interpolation error for the noise levels
given for the HOF3D method, using optimized parameters α = 10, γ = 100 and N = 4. We can observe
that although the standard deviation of the introduced noise grows, the interpolation error and the
normalized interpolation error remain small, this is because the coefficient of order 0 of the Hermite
transform L000 (x) (Equations (3), (11) and (16)), contains a smoothed version of the original volume
and this DC coefficient allows to reduce any component of high-frequency noise, additionally, in our
approach, the steered Hermite coefficients use Gaussian derivatives, which incorporate information
from neighboring voxels in the structure of cardiac volumes, which makes the proposed algorithm
more robust to this type of noise [13,65]. By the other hand, it should be noted that although the errors
are low, the addition of noise represents an increase in the interpolation error of 71.4% and for the
normalized interpolation error of 80%, comparing one test without noise and the other test with noise
of σn = 30.

Table 4. Interpolation Error and Normalized Interpolation Error computed for a cardiac volume with
several standard deviations σn of Gaussian noise.

Gaussian Noise (σn) Interpolation Error Normalized Interpolation Error

0 0.03190 0.01696
5 0.03499 0.01954
10 0.03778 0.02168
15 0.04295 0.02563
20 0.04597 0.02779
30 0.05468 0.03387

5.2. 3D Optical Flow Results

In this section, we show the 3D optical flow estimation computed on CT volumes for a whole
cardiac cycle. For descriptive purposes, only some representative parts of such a cardiac cycle are
shown. In most cases, the display of the magnitudes of the optical flows was exaggerated in order to
observe the qualitative characteristics of the movements.

Figure 14 shows the results of a 3D Optical flow of two cardiac CT volumes computed at
phases 20-30% (when a contraction movement occurs) using the HOF3D method. Figure 14a,b
show two phases of the cardiac cycle of volume (for better viewing a cut of that volume was made).
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Figure 14c,d show the same phases of volume along with the three-dimensional optical flow field.
Finally, Figure 14e,f illustrate only the optical flow.

(a) Volume - 20% (b) Volume - 30%

(c) Volume and Optical Flow - 20% (d) Volume and Optical Flow - 30%

(e) Only Optical Flow - 20% (f) Only Optical Flow - 30%

Figure 14. Results of 3D Optical Flow of a segmented cardiac CT volume computed at phases 20–30%.

Figure 15 presents the results of a 3D Optical flow of two cardiac CT volumes computed at phases
50–60% (when a dilation movement occurs) using the HOF3D method. Figure 15a,b show two phases
of the cardiac cycle of volume (for better viewing a cut that volume was made). Figure 15c,d show the
same phases of volume along with the three-dimensional optical flow field. Also, Figure 15e,f present
only the optical flow.
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(a) Volume - 50% (b) Volume - 60%

(c) Volume and Optical Flow - 50% (d) Volume and Optical Flow - 60%

(e) Only Optical Flow - 50% (f) Only Optical Flow - 60%

Figure 15. Results of 3D Optical Flow of a segmented cardiac CT volume computed at phases 50–60%.

5.2.1. 3D Optical Flow Estimation of the Left Ventricle

The importance of the study of the left ventricle has been established extensively. The left ventricle
adapts, for example, to arterial hypertension and this leads to the development of different geometric
patterns [66]. For a better understanding of some diseases, the movement of the left ventricle has
been studied during the cardiac cycle in normal subjects and patients with coronary arterial disease,
mitral stenosis or atrial septal defect [67]. Works describing the global and local movement have
been presented, focusing mainly on the left ventricle [68]. To present the optical flow estimation of
the left ventricle, first, a segmentation of it is required. We use the level sets method of Osher and
Sethian [69]. This method is a powerful, suitable and flexible approach to segmentation of CT volumes
where there aren’t well-defined boundaries. The level sets method was applied to the CT volumes
using the Seg3D tool [70]. For this tool, a seed volume is used to find similar regions to the original
one. Then, the segmented region will be expanded to surrounding pixels that match the statistics of
the original seeded area. The spread may also be retracted in some instances if the seeded areas do not
match certain criteria (edge weight and threshold range). Until the convergence, the algorithm will be
expanded (or contracted) to the segmented region.

Figure 16 shows an example of the segmentations obtained (colored region) in the context of their
location within the whole cardiac volume.
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Figure 16. A whole cardiac volume and its left ventricle segmented.

Similarly to the work done in Section 5.1.4, and if we focus on the phase where a contraction
movement occurs for the left ventricle, we can observe the interpolation error for a left ventricle
segmented showing the original volume in Figure 17a, the interpolated volume using the 3D variant of
the method of Sun et al. [20] are in Figure 17b, the error between the original volume and this
interpolated result, in Figure 17d. Also, the optical flow is calculated by the HOF3D method.
Then, the interpolation of the left ventricle is obtained, which is shown in Figure 17c. The difference
between the original volume and that interpolated volume can be observed in Figure 17e.

(a) Original LV- 30%

(b) LV Interpolated using the 3D method of Sun et al. [20] (c) LV Interpolated using the HOF3D method

(d) Error using the 3D method of Sun et al. [20] (e) Error using the HOF3D method

Figure 17. Interpolation Errors for the left ventricle at 30%.
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Another example of interest, where there is more interpolation error, is the 60% of cardiac phase,
it is also when a dilatation movement occurs for the left ventricle. We can observe the interpolation
error for a left ventricle segmented for the original volume in Figure 18a, the interpolated volume
using the 3D method of Sun et al. [20] in Figure 18b, the error between the original volume and
this interpolated result in Figure 18d. Also, the optical flow is calculated by the HOF3D method.
Then, the interpolation of the left ventricle is obtained and shown in Figure 18c. The difference
between the original volume and that interpolated volume can be observed in Figure 18e.

(a) Original LV- 60%

(b)LV Interpolated using the 3D method of Sun et al. [20] (c) LV Interpolated using the HOF3D
method

(d) Error using the 3D method of Sun et al. [20] (e) Error using the HOF3D method

Figure 18. Interpolation Errors for the left ventricle at 60%.

Figure 19 contains the results of the normalized interpolation error with the Sun et al. [20]
method. In Figure 19a we present a set of volumes from 30% to 70% of the cardiac cycle, in Figure 19b,
the interpolated volumes corresponding to each stage of the cardiac cycle are shown. Figure 19c
graphically displays the normalized interpolation error for the volumes of sections a and b respectively.

Figure 20 contains the results of the normalized interpolation error with the HOF3D method.
Figure 20a presents a set of volumes from 30% to 70% of the cardiac cycle, Figure 20b shows the
interpolated volumes corresponding to each stage of the cardiac cycle. Figure 20c graphically displays
the normalized interpolation error for the volumes of sections a and b respectively.
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(a) Original Volumes

(b) Interpolated Volumes

(c) Normalized Interpolation Error

Figure 19. Left Ventricle from 30% to 70% of the cardiac cycle and the results with 3D method of
Sun et al. [20].

(a) Original Volumes

(b) Interpolated Volumes

(c) Normalized Interpolation Error (HOF3D method)

Figure 20. Left Ventricle from 30% to 70% of the cardiac cycle and the results with HOF3D method.
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Figures 21 and 22 present the results of a 3D Optical flow of two segmented cardiac CT volumes,
showing a contraction and relaxation movement respectively using the HOF3D method. Figure 21a,c
are two phases of the segmented cardiac cycle of volume computed at phases 20–30%, the same way as
Figure 22a,c but in phases 40–50%. Figure 21b,d, Figure 22b,d show only their respective optical flows.

(a) volume - 20% (b) Only flow - 20%

(c) volume - 30% (d) Only flow - 30%

Figure 21. Results of 3D Optical Flow of a segmented cardiac CT volume (left ventricle) computed at
phases 20–30% (contraction movement).

(a) volume - 40% (b) Only flow - 40%

(c) volume - 50% (d) Only flow - 50%

Figure 22. Results of 3D Optical Flow of a segmented cardiac CT volume (left ventricle) computed at
phases 40–50% (relaxation movement).
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Figure 23 contains the results corresponding to the optical flow calculated with the HOF3D
method. We can observe a set of left ventricle volumes from 10% to 100% of the cardiac cycle.

(a) 10–20% (b) 20–30% (c) 30–40% (d) 40–50% (e) 50–60%

(f) 60–70% (g) 70–80% (h) 80–90% (i) 90–100%

Figure 23. Results of 3D Optical Flow of a segmented cardiac CT volume (left ventricle–short axis).

6. Discussion

In this section we will talk about the results obtained, their interpretation and the level of
relevance reached.

In the first group of results (Figures 14 and 15), the entire cardiac volume and its respective
calculated optical flows can be observed in context. The best way to display this 3D flow has been
attempted. Despite a large number of 3D arrows of different sizes, it is possible to observe either the
contraction pattern (Figure 14) or the expansion pattern (Figure 15). The optical flow is shown using of
Paraview [71,72] whose style of representing the vectors of the optical flow is similar to the previous
works in [73] and recently in [74].

We focused on estimating the movement in one of the most important structural parts of
the heart, the left ventricle. To achieve this goal we have segmented that heart region, which is
shown in Figure 16. We can see examples in [75,76] of the deployment of the three-dimensional
vectors of the obtained optical flow. However, in all the remaining figures within the set of results
obtained, rather than deploying the obtained optical flow vectors, we decided to show graphically,
a measure of the performance achieved in the estimation of cardiac movement, specifically in the left
ventricle. The relevance of the figures thus represented is that the errors obtained can be observed
graphically, first in the interpolated volumes (Figures 17 and 18, items b and c), where we can compare
a similar and known method with the proposed one. In the same figures mentioned, the interpolation
error is observed through of a three-dimensional representation that matches the analyzed volumes
(Figures 17 and 18, items d and e). In those figures, the biggest errors are the ones represented in red
and the smallest tend to blue.

We observe a more extensive sequence of of the cardiac cycle (five phases) in order to provide
greater clarity. In this selection of phases of the cardiac cycle we can observe the movement of
contraction and dilatation in the left ventricle. In Figures 19 and 20 in part a, we observe the original
volumes. In Figures 19 and 20 part b, we see the interpolated volumes with a comparison between
the two methods. In Figures 19 and 20 item c, we see a graphical representation of the normalized
interpolation error.

Finally, Figures 21 and 22 present more explicitly the segmented left ventricle and their respective
optical flows during the contraction and relaxation movements. Figure 23 shows the segmented
volumes from the short view concerning all phases of the cardiac cycle (from 10% to 100%).
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Motion vectors were exaggerated for clarity. In the field of medical images, and in addition to
the cardiac movement, this approach can be used with benefit in pulmonary movement. In general,
in applications where we have three-dimensional data, such as cardiac and pulmonary medical images,
stereoscopic images and video, 3D meteorological data, volumes formed by point clouds in general.
Where we want to characterize how they evolve over time. For future work, there is a great margin
of opportunity to improve the times in the calculations of the Hermite transform, for which a faster
version was not used. For the energy functional used, some other local and global characteristics can
be incorporated that allow us to further reduce the uncertainties obtained.

7. Conclusions

In this paper, we have proposed a method to estimate the optical flow completely in 3D + t,
that is, in a three-dimensional space (x, y, z) plus time, because the analysis of two-dimensional motion
restricts all possible deformations in the different directions of reference (i.e., radial, circumferential
and longitudinal). Therefore, the three-dimensional motion analysis can overcome such limitations by
describing better all directions of deformations.

Our approximation of motion estimation has included the well-known differential method of
Horn and Schunck with the additional information provided by the coefficients of the Steered Hermite
transform used within the restriction terms of the function to be minimized. The Steered Hermite
transform is a model that incorporates some important properties of the first stages of the human visual
system, such as the overlapping Gaussian receptive fields, the Gaussian derivative model of early
vision [52], and a multiresolution analysis [60,77]. This proposed algorithm is more robust to noise due
to the advantage represented by the analysis of the spatial scale provided by the Hermite transform
itself that can be determined for objects at different spatial dimensions. Additionally, and due to the
calculation of high order Gaussian derivatives, the estimation of the movement can be improved by
including structures related to them.

We evaluated the results obtained using two measurements on the interpolation errors, with these
errors we also adjusted the most appropriate parameters in the different cardiac sets considered.
We observed that interpolation errors increased around the phases where movements occur most
rapidly (the contraction phase). We were able to verify that the proposed method (HOF3D) has lower
interpolation errors compared to the modified 3D method of Sun et al. [20].

We isolated the three-dimensional flow vectors corresponding to the left ventricle, over the
entire cardiac cycle. We calculated the interpolation errors obtained with our method, comparing
the results with the other method already mentioned. The results were plotted graphically, showing
that the largest errors were colored in red, as shown in the figures. Again, our method has minor
interpolation errors.

Our proposal also aims to contribute to a better understanding of cardiac movements and,
with this, to make feasible the detection of some possible diseases. We consider that because the cardiac
organ is immersed in a three-dimensional space, the best way to represent its movements should be
in the same three-dimensional space. Future work may focus on recognizing the cardiac movement
patterns related to the vectors obtained in our three-dimensional optical flow approximation.
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The following abbreviations are used in this manuscript:

3D + t Three-dimensional space plus time
2D + t Two-dimensional space plus time
HT Hermite transform
SHT Steered Hermite transform
HVS Human vision system
CT Computed tomography
CVD Cardiovascular diseases
LV Left ventricular
MRI Magnetic resonance imaging
HT3D Hermite transform in 3D
IHT3D Inverse Hermite transform in 3D
SHT3D Steered Hermite transform in 3D
HOF3D Horn-Hermite optical flow in 3D
ECG Electrocardiography
IE Interpolation error
NE Normalized interpolation error
CNN Convolutional Neural Network
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