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ABSTRACT 

 
In this paper we propose a semi-automatic method to segment the fetal cerebellum in ultrasound images. The 
method is based on an active shape model which includes profiles of Hermite features. In order to fit the shape 
model we used a PCA of Hermite features. This model was tested on ultrasound images of the fetal brain taken 
from 20 pregnant women with gestational weeks varying from 18 to 24. Segmentation results compared to 
manual annotation show a mean Hausdorff distance of 6.85 mm using a conventional active shape model trained 
with gray profiles, and a mean Hausdorff distance of 5.67 mm using Hermite profiles. We conclude that the 
Hermite profile model is more robust in segmenting fetal cerebellum in ultrasound images. 
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1. INTRODUCTION 
 
Ultrasound images are used frequently for the morphological and biometric analysis of fetal brain structures 
(ventricular atrium, cerebellum, cisterna magna, etc.) for purposes of evaluation of the fetal development [1] 
[2], but sometimes manual segmentation of these structures is very time consuming for studies which have a 
large amount of data. This is a reason to develop automatic methods that help in segmentation tasks. However, 
the automatic or semi-automatic segmentation in ultrasound images is challenging because the image quality is 
substantially degraded by the speckle patterns [3], [4], [5], [6], [7] [8]. An approach that has been widely used 
to improve the segmentation in ultrasound images is based in the use statistical shape models. These models 
have gained great popularity because they incorporate expert shape knowledge from annotations on the image 
data. A particular case of statistical shape model is the active shape model [9]. These models have demonstrated 
that the resulting segmentation improves with the integration of a priori information of shape and appearance 
(grey level models) in the training set. On the other hand, the image texture is valuable information used among 
other things in the segmentation tasks and in this respect, the Hermite transform have demonstrated be able to 
detect image texture and in this study our PCA model has been able to detect organ boundaries based on textures 
edges. In this paper, we report an active shape model that uses an image texture model based on the steered 
Hermite transform for the improved automatic segmentation of the fetal cerebellum, as reported in the following 
sections.  
 
 

2. ACTIVE SHAPE MODEL (ASM) 
 

In an ASM, the shape knowledge of the object is integrated within a compact form using a statistical model 
trained with examples [9] [10]. This model contains the information of mean shape and its variations thus 
ensuring that the resulting segmentation is a coherent shape with respect to the training set.  
  
Each example in the training set is stored in a 2𝑛 shape vector 𝒙 = (𝑥', 𝑦', … , 𝑥+, 𝑦+)-. After, all examples are 
translated, scaled and rotated in order to align them. The mean shape is computed as 
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where 𝑁 is the number of examples.  
 
For each example in the training set we calculate its deviation from the mean, 𝑑𝒙𝒊, where 

𝒅𝒙𝒊 = 𝒙𝒊 − 𝒙 (2) 
 
Considering the deviation, we compute the 2𝑛×2𝑛 covariance matrix, S, using   
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With the covariance matrix, we obtain the modes of variation of the points of the shape that will allow us to 
approximate new shapes x of the model 
 

𝒙 = 𝒙 + 𝑷𝒔𝒃𝒔 (4) 
 
where 𝒙 is the mean shape, 𝑷𝒔 = 𝒑𝟏	𝒑𝟐 …𝒑𝒕  contains the t eigenvectors of the covariance matrix and 𝒃𝒔 =
(𝑏'	𝑏C … 𝑏D)- is a vector of weights of the shape representation. The variation of the ith parameter, 𝑏2, is defined 
by the eigenvalues l2. These variations are limited to 𝑏2 = ±3 𝜆2 to ensure that the generated shapes are similar 
to those of the training set.  
 
We build a Point Distribution Model (PDM) of the cerebellum and we use the principal modes of variation that 
comprise at least 90% of the shape information. In figure 1 we show examples of the fetal cerebellum with its 
respective manual annotation and some modes of variation of the cerebellum. 
 

  

  
 

Figure 1. Training set images. a) Example shapes of a fetal cerebellum; b) Six modes of shape 
variation from training set in blue points and the mean shape in red points. 

 
For the adjustment stage is necessary to sample gray level profiles which are normal to each landmark in the 
object, afterwards these profiles are stored to create a training set of gray levels. In figure 2 we can see an 
example of gray profiles acquired from a fetal cerebellum ultrasound image.  
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a) b) 

Figure 2. Acquisition of gray profile. a) Normal profile in each landmark. b) Gray level profiles. Each 
row is a gray level profile and correspond to each landmark of the cerebellum.  

 
We can observe that the cerebellum is a structure with a semi-defined shape (see figures 1 and 2). 
 
Finally, in order to fit the ASM within the set of landmarks, gray level profiles are compared with their 
respective training gray level profiles until the minimal error is found. 
 
 

3. HERMITE TRANSFORM 
 
The Hermite transform (HT) belongs to the family of polynomial transforms and is used because it incorporates 

Gaussian derivatives as basis functions which resemble the response of receptive fields of the human visual 

system in its first stages [11] [12] [13] [14]. The below equation shows the definition of these functions: 

𝐷+ 𝑥 =
−1 +

2+𝑛!
1

𝜎 𝜋
𝐻+

𝑥
𝜎 exp

−𝑥C

𝜎C  

 

 
(5) 

where 𝑛 indicates the order of the polynomial and 𝜎 the spread of the Gaussian window. 

The resulting Hermite functions satisfy the property of separability, so the 2D model is straight forward defined 

as 𝐷+PQ,Q 𝑥, 𝑦 = 𝐷+PQ 𝑥 𝐷Q(𝑦). The HT expands the input 2D signal into a set of polynomial coefficients 

that represent a description of relevant information such as edges, lines, textures, etc. 

The discrete implementation is obtained by convolving the input image with the set of Hermite analysis filters 

defined by 

𝐿+PQ,Q 𝑥S, 𝑦S = 𝐼 𝑥, 𝑦 𝐷+PQ,Q(𝑥S − 𝑥, 𝑦S − 𝑦)𝑑𝑥𝑑𝑦
U

PU

, 
 
(6) 

for 𝑛 = 0,1, … ,∞ and 𝑚 = 0,… , 𝑛. This definition is known as the Cartesian HT. 

Another representation of the HT is the steered Hermite transform (SHT). The steering property is useful to 

adapt local orientation content according to a criterion of maximum oriented energy, then achieving compaction 

[4]. The next equations show hot to obtain the SHT: 

𝐿+PQ,QY 𝑥S, 𝑦S = 𝐿+PZ,Z 𝑥S, 𝑦S 𝑅+PZ,Z(𝜃)
+

Z3S

, 
 
(7) 
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(8) 

where 𝑅+PQ,Q(𝜃) are known as the cartesian angular functions, which indicate the direction of maximum 
oriented energy at all window positions. 
The SHT has been previously used on applications, such as, medical organ segmentation and texture analysis 
offering good results [15] [16] [17] [18] [19] [20]. 
 
In the figure 3 we show up to second order of the steered Hermite coefficients of the fetal cerebellum. 

 
 
 
 

 

Figure 3. Coefficients up to second order of the steered Hermite transform using a fetal cerebellum image 
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4. PROPOSED METHOD 
 
Our method is a variation of the original ASM; the idea that we propose is basically to use Hermite feature 
profiles instead of gray level profiles. Furthermore, in order to fit the ASM to the training data, we use a 
Principal Component Analysis (PCA) of the Hermite features instead of the mean gray. The steps of the 
proposed method are described below. 
First, we build the PDM of the cerebellum as we explained in section 2. Then we obtain the steered Hermite 
coefficients up to second order of the training images (see figure 3) and for our case only we use the first three 
coefficients (L00, L10 and L20) to build the Hermite feature profiles. In figure 4 we present a scheme of the 
construction of these profiles. 
 

 
 
 

 
 
 
 

 
 

 
 

 
 

 
 
 
 
 
 

 
 
 

 
 
 
 
 

 
 

 
 

Figure 4. Building of the Hermite’s vector 𝑉𝐻 for the point i in the image j. 
 
In figure 4 we show the construction of the Hermite vector 𝑉𝐻e2 = 𝑉fSS; 𝑉f'S; 𝑉fCS  by concatenation of the 
data of the profiles of the Hermite coefficients for point i, where 𝑉fSS, 𝑉f'S and 𝑉fCS are the Hermite feature 
profiles acquired of the steered Hermite coefficients L00, L10 and L20 respectively, 𝑗 = 1…𝑛 is the image number 
of the training set and 𝑖 = 1…𝑁 is the point number of the shape model of the cerebellum. If the previous 
process is repeated for the same point i in all images of the training set we will obtain their corresponding 
Hermite vectors 𝑉𝐻'2 , 𝑉𝐻C2 ,…,	𝑉𝐻+2  (see figure 5). 
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Figure 5. Construction of the Hermite vector 𝑉𝐻2	for the point i considering all images of the training set. 
 
 
With the information contained in 𝑉𝐻2  is possible to compute the Hermite feature mean 𝜇 𝑉𝐻2  and the 

covariance matrix 𝑉𝐻2  in the point i, as well as its corresponding PCA.  
 
If the process presented in figures 4 and 5 is applied to each landmark (1…N) of the cerebellum model we 
obtain a PCA for each of them. Finally, using the PCA information in each landmark we propose the next 
fitting function:  
 

𝑓noe = 𝑃𝑇rst2 − 𝑃𝑇u+uv2wxy2  
 

(9) 

where 𝑃𝑇rst2  is the Hermite profile obtained from PCA and  𝑃𝑇u+uv2wxy2  is the Hermite profile obtained from 
the input image in the point i.  
 

5. TESTS AND RESULTS  
 

The proposal was evaluated on 20 different ultrasound images taken of 20 different ultrasound volumes acquired 
in an axial plane by a Voluson 730 Expert from General Electric. The volumes were obtained with informed 
consent of patients at the National Institute of Perinatology in Mexico City. An expert perinatologist realized 
the manual annotation of the cerebellum.  
Both the original ASM and our proposed ASM was evaluated on the training set using the leave-one-out 
methodology. 19 images were used for training with validation on the image that was left out. This process was 
repeated 20 times. The Hausdorff distance was used to measure the accuracy of the semi-automatic 
segmentation of the both methods against manual expert annotations.   
In the original ASM we used smoothed images to reduce the speckle pattern present in the images. We used a 
Gaussian filter with standard deviation (σ) equal to 2.  
For both methods (original ASM and proposed ASM) the segmentation was performed on the full image size, 
with the same initialization (mean shape of the cerebellum located in the center of the structure), and the 
adjustment process was limited to 40 iterations. The results are shown in table 1.   
 

Table 1. Segmentation results 

Segmented image Hausdorff distance 
(original ASM) [mm] 

Hausdorff distance 
(proposed ASM) [mm] 

1 6.17 3.84 
2 5.08 5.10 
3 8.57 6.38 
4 10.02 9.16 
5 9.05 7.03 

   
Image 1 Image 2 Image n 

𝑉𝐻'2  𝑉𝐻C2  𝑉𝐻+2  

𝑉𝐻2 = z𝑉𝐻'2 , 𝑉𝐻C2 , … , 𝑉𝐻+2 { 

…  
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6 6.02 8.86 
7 7.23 5.62 
8 4.98 4.60 
9 8.20 5.33 

10 7.67 3.90 
11 5.54 5.40 
12 8.63 6.00 
13 5.23 5.51 
14 4.46 4.37 
15 4.50 5.71 
16 6.53 3.93 
17 6.47 4.45 
18 5.85 4.99 
19 8.86 6.71 
20 7.87 6.51 

Mean 6.85 5.67 
Standard deviation 1.67 1.47 

 
 
In figure 6 we show the three best results (image 1, image 10 and image 16) and the worst result (image 4) for 
the proposed ASM.  
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a. 	 a. b. c. 

Figure 6. Results of a cerebellum segmentation obtained with 40 iterations. (a) Initial shape (green line) and manual annotation (red 
line), b) Comparison between final segmentation of the original ASM (yellow line) and manual annotation (red line), (c) Comparison 
between final segmentation of our proposed ASM (cyan line) and manual annotation (red line).         

 
 

6. DISCUSSION AND CONCLUSIONS 
 
As reflected in Table 1, our ASM proposed method presents good results for the segmentation of fetal 
cerebellum in ultrasound images. Some examples of these results are presented in the figure 6, where we can 
see that in the first three cases (row) the segmentation given by our method (column 3, cyan line) is very similar 
to the manual annotation (red line), in contrast to the results of the original ASM.  
The worst result in both methods was the case of image 4, however we can observe that the result given for our 
method (cyan line) is closer to the cerebellum edges (upper and lower lobe) than the original ASM result.  
In the fitting stage, our method was more stable than the original ASM, the reason is because the images of the 
Hermite coefficients presented more information of the cerebellum edges than a smoothed image with a 
Gaussian filter. 
As consequence of the previous point, in our proposed method we observed that if the cerebellum has defined 
edges then there is a higher probability of correct segmentation of the cerebellum. 
Considering the mean Hausdorff distance of the original ASM (6.85 mm) and the proposed ASM (5.67 mm), 
we conclude that our proposed ASM keeps a closer resemblance with the manual expert annotation. 
We also conclude that the steered Hermite transform is an efficient ultrasound image descriptor that allows a 
better adjustment of the shape model to the cerebellum. 
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