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Preface 
 

Nowadays it is hard to find areas of human activity and development that have not 
profited from or contributed to remote sensing. Natural, physical and social activities 
find in remote sensing a common ground for interaction and development. From the 
end-user point of view, Earth science, geography, planning, resource management, 
public policy design, environmental studies, and health, are some of the areas whose 
recent development has been triggered and motivated by remote sensing. From the 
technological point of view, remote sensing would not be possible without the 
advancement of basic as well as applied research in areas like physics, space technology, 
telecommunications, computer science and engineering. This dual conception of remote 
sensing brought us to the idea of preparing two different books. The present one is 
devoted to new techniques for data processing, sensors and platforms, while the 
accompanying book is meant to display recent advances in remote sensing applications. 

From a strict perspective, remote sensing consists of collecting data from an object or 
phenomenon without making physical contact. In practice, most of the time we refer to 
satellite or aircraft-mounted sensors that use some sort of electromagnetic radiation to 
gather geospatial information from land, oceans and atmosphere. The growing 
diversity of human activity has motivated the design of new sensors and platforms as 
well as the development of new methodologies that can process the enormous amount 
of information that is being generated daily. Collected information, however, 
represents only a footprint of the object or the phenomenon we are interested in. In 
order for the end-user to be able to interpret and use this information, the data has to 
be processed so that it does not longer represent a digital number, but a physical-
related value. Among the tasks that usually must be carried out on this data, we find 
several numerical corrections and calibrations: geometrical, digital elevation, 
atmospheric, radiometric, etc. Moreover, depending on the end-user application, data 
may need to be filtered, compressed, transmitted, fused, classified, interpolated, etc. 
The problem is even more complex when we think of the variety of sensors and 
satellites that have been designed and launched. We are talking about a large diversity 
that includes passive or active sensors; panchromatic, multispectral or hyperspectral 
sensors; all of them with spatial resolutions that range from a couple of centimeters to 
several kilometers, to mention a few examples. In summary, different methodologies 
and techniques for data processing must be designed and customized according, not 
only to the specific application, but also to the sensor and satellite characteristics. 



X Preface 
 

We do not intend this book to cover all aspects of remote sensing techniques and 
platforms, since it would be an impossible task for a single volume. Instead, we have 
collected a number of high-quality, original and representative contributions in those 
areas. The first part of the book is devoted to new methodologies and techniques for 
data processing in remote sensing. The reader will find interesting contributions in 
forest characterization, data fusion, surface slopes statistical properties, multichannel 
and Markovian classification, road feature extraction, miscalibration correction, 
barometric pressure measurements, wireless sensors networks and lineament 
visualization. The second part of the book gathers chapters related to new sensors and 
platforms for remote sensing, including the new COMS satellite, hyperspectral remote 
sensing, mobile LIDAR for atmospheric remote sensing, SNR improvements in 
LIDAR, a smart station for data reception, terahertz radiation propagation, HF data 
transmission for very remote sensing, hardware image compression, wireless 
communications for underground sensors, and cold gas propulsion for remote sensing 
satellites. 

I wish to express my deepest gratitude to all authors who have contributed to this 
book. Without their strong commitment this book would not have become such a 
valuable piece of information. I am also thankful to InTech editorial team who has 
provided the opportunity to publish this book. 

 
Boris Escalante-Ramírez 

National Autonomous University of México,  
Faculty of Engineering, Mexico City,  

Mexico 
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Characterizing Forest Structure by Means of
Remote Sensing: A Review

Hooman Latifi
Dept. of Remote Sensing and Landscape Information Systems, University of Freiburg

Germany

1. Introduction

1.1 Forest structural attributes

Forest management comprises of a wide range of planning stages and activities which are
highly variable according to the goals and strategies being pursued. Furthermore, those
activities often include a requirement for description of condition and dynamics of forests
(Koch et al., 2009). Forest ecosystems are often required to be described by a set of general
characteristics including composition, function, and structure (Franklin, 1986). Composition
is described by presence or dominance of woody species or by relative indices of biodiversity.
Forest functional characteristics are related to issues like types and rates of processes such
as carbon sequestration. Apart from them, the physical characteristics of forests are essential
to be expressed. This description is often accomplished under the general concept of forest
structure. However, the entire above-mentioned characteristics are required for timber
management/procurement practices, as well as for mapping forests into smaller units or
compartments.

The definition by (Oliver & Larson, 1996) can be referred to as one of the basic ones,
in which forest structure is defined as ’the physical and temporal distribution of trees
in a forest stand’. This definition encompasses a set of indicators including species
distribution, vertical and horizontal spatial patterns, tree size, tree age and/or combinations
of them. Yet, a more geometrical representation of forest stand was previously presented
by e.g. (Franklin, 1986) or later by (Kimmins, 1996). They defined stand structure as the
vertical and horizontal association of stand elements. Despite the differences between the
above-mentioned definitions, they were later used as basis to derive further representative
structural indicators which are mainly derived based on the metrics such as diameter at breast
height (DBH). The reason is the straightforwardness and (approximately) unbiasedness of its
measurement in terrestrial surveys (Stone & Porter, 1998). The interest in applying geometric
derivations e.g. standing volume and aboveground biomass was later accomplished thanks
to the progresses in computational facilities and simulation techniques. Those attributes are
still of great importance to describe forest stand structure. Nevertheless, (McElhinny et al.,
2005) stated that the structural, functional and compositional attributes of a stand are highly
interdependent and thus cannot be easily divided to such main categories, since the attributes
from either of the groups can be considered as alternatives to each other. Thus a new category
was created, according to which the structural attributes were in a group comprising of
measures such as abundance (e.g. dead wood volume), size variation (e.g. variation in DBH)
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and spatial variation (e.g. variation of distance to a nearest neighbour (Table 1) (McElhinny
et al., 2005).

Though canopy cover i.e. the vertical projection of tree crowns is often referred to as an
attribute characterizing the distribution of forest biomass, there are further attributes such
as basal area, standing timber volume and the height of overstory which are considered as the
more representative descriptors of forest biomass. Moreover, a combination of those attributes
(especially in accordance with species composition) is also reported by e.g. (Davey, 1984) to
represent the biomass and vertical complexity of the stands.

Forest stand element Structural attribute
Foliage Foliage height diversity

Number of strata
Foliage density within different strata

Canopy cover Canopy cover
Gap size classes
Average gap size and the proportion of canopy in gaps
Proportion of crowns with dead and broken tops

Tree diameter Diameter at Breast Height (DBH)
standard deviation of DBH
Diameter distribution
Number of large trees

Tree height Height of overstorey
Standard deviation of tree height
Height classes richness

Tree spacing Clark - Evans and Cox indices, percentage of trees in clusters
Stem count per ha

Stand biomass Stand basal area
Standing volume
Biomass

Tree species Species diversity and/or richness
Relative abundance of key species

Overstorey vegetation Shrub height
Shrub cover
Total understorey cover
Understorey richness
Saplings (shade tolerant) per ha

Dead wood Number, volume or basal area of stags
Volume of coarse woody debris
Log volume by decay or diameter classes
Coefficient of variation of log density

Table 1. Broadly-investigated forest structural attributes, grouped under the stand element
under description (after (McElhinny et al., 2005).

In addition, stem count has also been reported as an important indicator of e.g. felled
logs or trees with hollows, since they offer potential habitats for the wildlife ((Acker et al.,
1998), (McElhinny et al., 2005)). Thus, the frequency of larger stems is considered of more
significance as a descriptor of stand structure, as it can mainly characterize the older and
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mature stems within the overstory of the stands. This attribute (stem count of older trees) has
been already studied by e.g. (Van Den Meersschaut & Vandekerkhove, 1998) as a structural
feature to distinguish the old-growth stands from the early stages of succession. Although
some studies combined stem count with measures of diameter distribution e.g. (Tyrrell &
Crow, 1994), some studies e.g. (Uuttera et al., 1997) did not suggest diameter distribution to
be essentially helpful for describing forest structure, as comparing the diameter distributions
from different stands bears some degree of sophistication.

All in all, the structural features of forest stands, as stated above, are entirely considered
to be useful when describing the horizontal and vertical complexity of the forested areas.
However, a relatively limited number of those attributes have been attempted to be
modelled by means of remote sensing. Only a few studies have focused on other spatially-
meaningful characteristics such as gaps or coarse woody debris e.g. (Pesonen et al., 2008)
which have been almost entirely conducted across Scandinavian boreal forests, where the
homogenous composition, single-story stands (consisting mainly of coniferous species) and
topographically-gentle landscape minimise the problems of characterizing more complex
descriptors of forest structure.

Since earth observation data has been applied for forestry applications, the majority of
modelling tasks have been accomplished by focusing on standing timber volume, stand
height, aboveground biomass (AGB), stem count, and diameter distribution as structural
attributes. Whereas some compositional characteristics such as species richness/abundance
have also been considered as forest structural attributes (Table 1), this article will not review
their related literature, as they follow, in the scope of remote sensing, entirely different
methodological strategies and thus require separate review studies with more concentration
on pixel-based analysis and spectrometry.

Estimation of AGB in forest is obviously of a great importance. The rationale is
straightforward: As the available stocks of fossil fuels gradually diminish and the
environmental effects of climate change increasingly emerge, a wide range of stakeholders
including political, economical and industrial sectors endeavour to adjust to the consequences
and adapt the existing energy supply to the ongoing developments. To this aim, a vital step
is the assessment of the potential renewable energy sources such as biomass. Germany can be
referred as an example, in which approximately 17 million ha of farmland and 11 million ha
of forest are potentially reported to be available as bioenergy sources (BMU, 2009). Moreover,
according to the results of the German National Forest Inventory, around 1.0 to 1.5 percent of
the country’s primary energy demand (20 and 25 million m3) in 2006 was supplied by timber
products. The current models even confirm that an additional 12 to 19 million m3 year−1 of
timber can be sustainably used for energy production. This can in turn justify the necessity of
an efficient monitoring system for assessing the potential biomass resources in regional and
local levels.

1.2 Remote sensing for retrieval of forest attributes

In Recent years the general interest in forests and the environmental-related issues has
exceedingly increased. This, together with the ongoing technological developments such
as improved data acquisition and computing techniques, has fostered progresses in forest
monitoring processes, where the assessment of environmental processes has been enabled to
be carried out by means of advanced methods such as intensive modelling and simulations
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(Guo, 2005). As described above, assessment and mapping of forest attributes have followed
a similar progress as an essential prerequisite for forest management practices.

Information within each forest management unit (e.g. sample plots or segments characterising
forest stands) often includes attributes that are measured using direct measurement
(e.g. field-based surveys) and indirect measurement (e.g. mathematical derivations and
modelled/simulated data). Detailed ground-based survey of each unit is reported by e.g.
(LeMay & Temesgen, 2005) to be unlikely, particularly in large-area surveys dealing with
limited financial resources or in the inventory of small areas, when those areas are under
private ownerships. Such areas are usually associated with financial problems for regular
plot-based surveys. However, the plot-based inventory data are considered as being essential
as representatives of the current forest inventory or as model inputs to project the future
conditions. In order to overcome the mentioned limitations in regular terrestrial surveys,
one approach is to combine field measurements with airborne and spaceborne remotely-
sensed data to retrieve the required information. This can in turn offer combined practical
applications of the field data that represent the detailed information on the ground supported
by those data which represent the spatial, spectral and temporal merits of satellite or airborne
sensors (Figure 1).

Based on this potential cost-effective implications, a range of applications have been
developed which enable one to pursue different natural resource planning objectives
including retrieval of forest structural attributes. Amongst the most important international
forest mapping projects using earth observation data, GMES (Global Monitoring for
Environment and Security), TREES (Tropical Ecosystem Environment Observation by
Satellite) and FRA (Forest Resource Assessment) can be highlighted (Koch, 2010). Depending
on the specific application, the required level of details and especially the required
accuracy of output information, variety of remotely sensed data sources can be potentially
applied including a wide range of optical data (broadband multispectral and narrowband
hyperspectral imagery), Radio Detection and Ranging (RADAR) and recently Light Detection
and Ranging (LiDAR) data. Each one of those data sources has been proved to bear potentials
and advantages for forestry applications. Whereas LiDAR instruments facilitate collecting
detailed information which accurately captures the three-dimensional structure of the earth
surface, RADAR data enable one to overcome common atmospheric and shadow effects which
often occur in forested areas. Broadband optical data is able to reflect the general spectral
responses of natural and manmade objects including vegetation cover over a big scene, while
imaging spectroscopy data has been shown to provide a rich source of spectral information
for various applications e.g. tree species classification.

Compared to other sources of data, LiDAR data has been successfully validated for studying
the structure of forested areas. Laser altimetry is an active remote sensing technology that
determines ranges by taking the product of the speed of light and the time required for an
emitted laser to travel to a target object. The elapsed time from when a laser is emitted
from a sensor and intercepts an object can be measured using either pulsed ranging (where
the travel time of a laser pulse from a sensor to a target object is recorded) or continuous
wave ranging (where the phase change in a transmitted sinusoidal signal produced by a
continuously emitting laser is converted into travel time) (Wehr & Lohr, 1999). LiDAR is
capable of providing both horizontal and vertical information with the horizontal and vertical
sampling. The quality of sampling depends on the type of LiDAR system used and on
whether it is discrete return or full waveform LiDAR system (Lim et al., 2003).
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1.3 Modelling issues

When the aim is to assess the forest attributes by means of remote sensing data, one may
note, again, the importance of estimating forest biomass. (Koch, 2010) states that three main
factors of forest height, forest closure and forest type are the most meaningful descriptors
for AGB. Remote sensing-derived information from the above-mentioned sources will enable
one to successfully assess those three factors which can in turn result in reasonable estimation
of forest AGB. By using those auxiliary data as descriptors of forest structure (e.g. AGB),
Statistical methods are used to model the forest stand attributes in different scales including
regional, stand and individual tree levels. So far, the modelling process has been mostly
accomplished by means of parametric regression modelling of the response attributes.

Parametric models generally come with strong assumptions of distributions for the
parameters and variables which sometimes may not be met by the data. The application
of those models is normally subjected to the scientific, technological, and logistic conditions
which constrain their application in many cases (Cabaravdic, 2007). A parametric fitting
can yield highly biased models resulted from the possible misspecification of the unknown
density function (e.g. (Härdle, 1990)). Nevertheless, those modelling procedures have been
widely used for building models of forest stand and single tree attributes by several studies
(e.g.(Næsset, 2002), (Breidenbach et al., 2008), (Korhonen et al., 2008), and (Straub et al., 2009)).

In contrast, the so called âĂIJnonparametric methodsâĂİ allow for more flexibility in using
the unknown regression relationships. (Härdle, 1990) and (Härdle et al., 2004) discussed four
main motivations to start with nonparametric models: 1)they provide flexibility to explore
the relationships between the predictor and response variables, 2)they enable predictions
which are independent from reference to a fixed parametric model, 3)they can help to find
false observations by studying the influence of isolated points, and 4) they can be considered
as versatile methods for imputing missing values or interpolations between neighbouring
predictor values. However, they require larger sample sizes than parametric counterparts, as
the underlying data in a nonparametric approach simultaneously serves as the model input.

The nonparametric methods include a wide range of model-fitting approaches such as
smoothing methods (e.g. kernel smoothing, k-nearest neighbour, splines and orthogonal
series estimators), Generalized Additive Models (GAMs) and models based on classification
and regression trees (CARTs). The k-nearest neighbour (k-NN) method is known as a group
of mostly-applied nonparametric methods. In k-NN method, the value of the response
variable(s) of interest on a specific target unit is modelled as a weighted average of the
values of the most similar observation(s) in its neighbourhood. The neighbour(s) are defined
within an n-dimensional feature space consisted of potentially-relevant predictor variables.
The chosen neighbour(s) are selected based on a criterion which quantifies and measures
the similarity from a database of previously measured observations (Maltamo & Eerikäinen,
2001). In the context of forest inventory, the k-NN method was first introduced in the late
1980’s (Kilkki & Päivinen, 1987), applied later for the prediction of standing timber volume
by e.g. (Tomppo, 1993) and was later examined in a handful of studies to predict forest
stand and individual tree attributes. As stated by e.g. (Haapanen et al., 2004), the k-NN
method has been further developed for modelling forest variables and is now operational
in Scandinavian countries e.g. in Finnish National Forest Inventory (NFI). It was further
integrated as a part of Forest Inventory and Analysis (FIA) program in the Unites States
(see (McRoberts & Tomppo, 2007)). The method couples field-based inventory and auxiliary
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data (e.g. from remote sensing sources) to produce digital layers of measured forest or land
use attributes ((Haapanen et al., 2004)). Following the promising results in Scandinavian
landscapes achieved by the application of nonparametric methods in prediction/classification
of continuous and categorical forest attributes by means of remotely sensed data, the method
have recently received a great deal of attention in other parts of the world e.g. in central
Europe (Latifi et al., 2011), as the method could be potentially integrated as a cost effective
alternative within the regional and national forest inventories.

Apart from the forest inventories conducted in larger scales, the k-NN method has been
applied in the context of so-called small-scale forest inventory, in which the accurate and
unbiased inventory of small datasets is of major interest. The term ’small area ’ commonly
denotes a small geographical area, but may also be used to describe a small domain, i.e.
a small subpopulation in a large geographical area (Ghosh & Rao, 1994). Sample survey
data of a small area or subpopulation can be used to derive reliable estimates of totals and
means for large areas or domains. However, the usual direct survey estimators based on
the sampled data are often likely to return erroneous outcomes due to the improperly small
sample size. This is more crucial in regional forest inventories, where the sample size is
typically small since e.g. the overall sample size in a survey is commonly determined to
provide specific accuracy at a much higher level of aggregation than that of small areas. In
central European forestry context, a small-area domain is of fundamental importance, since
the occurrence of multiple forest ownership systems are historically well-established and still
frequently occur. This variation bears, in turn, various forest areas which are connected with
different requirements in terms of financial and technological resources for forest inventory.
In such situations, high expenses are associated with the regular terrestrial surveys (Stoffels,
2009) and the integration of remote sensing and modelling is thus a motivation to reduce the
costs. For example, aerial survey with large footprint ALS flights is reported to generate costs
to the amount of 1Euro per ha in Germany (Nothdurft et al., 2009). Therefore, an effective
strategy of forest inventory should mainly focus on the inventory of such small forest datasets
using all the available infrastructures and potentially attainable technological means. The goal
should be set to producing reliable (i.e. sufficiently accurate), general (i.e. reproducible) and
(approximately) unbiased models of prominent forest attributes which support providing an
up-to-date and continuous information database within the bigger framework of periodical
state-wide forest inventory system.

However, some issues are crucially required to be taken into consideration, before a remote
sensing-supported modelling task of forest attributes can be commenced. These include:

1.3.1 Data combination issues

Remote sensing data provides a valuable source of information to the forest modelling
process. The advanced use of 2 and 3D data in both single-tree and area-based approaches
of attributes retrieval would offer valuable potentials to characterize the (inherently) 3D
structure of the forest stands (particularly vertical structure such as mean or top height). The
data combination is specific to the objectives being set within the case study, as well as to the
level of details which is required by the analyst. As such, different data including broadband
optical (both medium and high spatial resolution), hyperspectral, LiDAR (height as well as
intensity), and RADAR data can be combined or fused to reach those goals.

9Characterizing Forest Structure by Means of Remote Sensing: A Review
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1.3.2 The configuration of models

Depending on what modelling scheme is aimed to be used to retrieve the response forest
attributes, a set of parameters are necessary to be set prior to modelling. These parameters
can therefore greatly affect issues such as modelling errors and the retrieved values. In
case of parametric regression, the underlying distribution of the data, the type of model in
use (e.g. Ordinary Least Squares (OLS) or logarithmic models) and model parameters are
crucial to be mentioned (see e.g.(Straub & Koch, 2011)). In nonparametric methods, issues
like the selection of smoothing parameter for smoothing methods (e.g. (Wood, 2006)), size of
neighbourhood for k-NN models, and number of trees per response variable for CART-based
methods are necessary to be optimally set. Specifically in terms of k-NN models, the main
difference amongst the various approaches is how the distance to the most similar element(s)
is measured, which in turn depends on how the similarity is quantified within the feature
space formed by the multiple predictors. This causes the main difference amongst the diverse
distance measures which work based on k-NN approach including the well-known Euclidean
and Mahalanobis distances. The neighbourhood size (known also as the number of NNs
or k) can be set to any number from 1 to n (the total number of reference units). The
single neighbour can, however, contribute to producing more realistic predictions in small
datasets, while avoiding major prediction biases in cases where the responses follow skewed
(or non-Gaussian) distributions (Hudak et al., 2008). However, one may note that using
multiple neighbours would apparently yield more accurate results through averaging values
from multiple response units.

1.3.3 Screening the feature space of candidate predictors

When dealing with datasets associated with numerous independent variables, one aim is
to reduce the dimensionality of the feature space. Even though heuristic approaches may
often be used to deal with highly-correlated variable sets, application of appropriate variable
screening methods has recently become an important issue in modelling context. In variable
screening, the main objective is to optimize the efficiency of models by achieving a certain
performance level with maximum degree of freedom (Latifi et al., 2010). When building
models in small scale geographical domains using several (and often strongly inter-correlated)
remote sensing metrics, one would most probably come up with the question of how the most
relevant information could be extracted from the enormous information content stored in the
dataset. This is of major importance when the aim is to build parsimonious models being
valid not only across the underlying region of parameterization, but also in further domains
which show the (relatively) similar conditions. It also plays a crucial role in k-NN modelling
approaches, since the majority of those methods lack an effective built-in scheme for feature
space screening. The performances of different deterministic (e.g. forward, backward and
stepwise selection methods) and stochastic (e.g. genetic algorithm) have been investigated in
various studies available in the literature.

2. Remote sensing for modelling forest structure

2.1 Forest attribute modelling using optical data

Due to the lack of required 3D information for characterisation of vertical structure of forest
stands, the pure use of multispectral optical remote sensing for forest structure has severe
limitations. (Koch, 2010) addresses this issue and states that those data sources have been
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mainly employed to differentiate amongst e.g. rough biomass classes which show clear
distinctions. For example, Simple linear, multiple, and nonlinear regression models were
tested by (Rahman et al., 2007) to classify different levels of forest succession in such as
primary and secondary forests, where optical band reflectance and vegetation indices from
Enhanced Thematic Mapper (ETM+) data were used as predictors. The use of dummy
variables was reported to improve the accuracy of forest attribute estimation by ca. 0.3 of
R2 (best R2 = 0.542 with 10-13 dummy predictors). In an earlier attempt in central Europe,
(Vohland et al., 2007) performed parametric classification for a German test site based on
a TM image, where 8 forest types were identified with an overall accuracy of 87.5 %. The
Linear Spectral Mixture Analysis (endmember method) was also used to predict stem count,
in that the fractions extracted from the spectra were linearly regressed with stem count as
response variable. This different approach was also reported to introduce an improved
calibration of large-scale forest attribute assessment. Although using parametric approaches,
the methodology was (truly) stated to be also helpful in case of using nonparametric
approaches. Regarding the observed linear correlations between the response variable of
interest (stem count) and spectral indices, this assertion seems to be realistic. The usefulness of
Landsat-derived features to model forest attributes (species richness and biodiversity indices)
has also been discussed and confirmed by (Mohammadi & Shataee, 2010), in which they
reported some positive potentials of multiple regressions (adjusted R2=0.59 for richness and
R2=0.459 for reciprocal of simpson index) in temperate forests of northern Iran.

Attempts toward establishing correlations amongst regional-scale multispectral remote
sensing and forest structural attributes in larger scale dates back to some early attempts
in the early 1990’s, amongst which e.g. (Iverson et al., 1994) can be highlighted. Their
empirical regressions between percent forest cover and Advanced Very High Resolution
Radiometer (AVHRR) spectral signatures was used based on Landsat-scale smaller calibration
centres. Extrapolating forest cover for much bigger scales (state-scale) using AVHRR data
resulted in high correlations (r=0.89 to 0.96) between county cover estimates. Those attempts
to produce large-scale maps of forest attributes continued up to some later studies e.g.
(Muukkonen & Heiskanen, 2007) and (Päivinen et al., 2009). Whereas regression modelling
of AGB using Adavanced Spaceborne Thermal Emission and Radiometer (ASTER) and
Moderate Resolution Imaging Spectrometer (MODIS) data was pursued in the former study
(relative Root Mean Square Error (RMSE)% = 9.9), the latter used AVHRR pixel values
which were applied to be regressed with the standing volume to produce European-scale
growing stock maps. (Gebreslasie et al., 2010) can be noted as a very recent effort to
parametrically model the forest structure in local scale, in which the visible and shortwave
infrared ASTER features (original bands and vegetation indices) were investigated to build
stepwise regressions of standing volume, basal area, stem count and tree height in Eucalyptus
plantations. Whereas the spectral data was acknowledged to be an insufficient material to
be solely used for modelling (R2= 0.51, 0.67, 0.65, and 0.52 for standing volume, basal area,
stem count and tree height, respectively), integrating age and site index data as predictors
showed to notably enhance the models by 42 %, 20.2%, 16.8%, and 42.2% of R2. The sole
application of multispectral data, regardless of the scale within which the data have been
used, seems not to fulfil the practical requirements for accurate regression modelling of forest
attributes. Except some very few reports showing highly-correlated spectral indices with stem
volume (approximate R2= 0.95 for multiple linear regression using SPOT and AVHRR data
in provincial level reported by (Gonzalez-Alonso et al., 2006)), most of other reports state
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moderate correlations. However, the majority of the studies have acknowledged the potentials
in using such spectral data for regression modelling of forest structural attributes.

In context of nonparametric methods, as documented earlier, the initial introduction of k-NN
methods to forestry context commenced in the late 1980’s and early 1990 ’s, as a number
of preliminary studies were carried out in the Nordic region. The method was initially in
use only based on field measurements (Tomppo, 1991) and was later adapted for prediction
of stem volume using spaceborne images. At that time, the most feasible satellite image
data included Landsat Thematic Mapper (TM) and SPOT images, from which mainly TM
and, to a minor extent, SPOT data were employed (Tomppo, 1993). The reported results
have confirmed the suitability of the method based on remote sensing data. The method
was further developed through various experiences. The further Finnish experiences with
pure optical data include a range of studies in which the k-NN method was attempted to be
adapted to practical applications in wood and timber industry. Amongst them, (Tommola
et al., 1999) used k-NN method as a tool for wood procurement planning to estimate the
characteristics of cutting areas in Finland. They found it to be a useful tool compared to the
traditional inventory method. (Tomppo et al., 2001) utilized the approach to estimate/classify
growth, main tree species, and forest type by means of multispectral TM data in China. The
authors found the method to be helpful in classifying tree types and stand ages, though the
stand-level predictions were reported to underestimate the growing stock.

As mentioned above, k-NN estimators include a range of distance-weighting approaches such
as conventional distances (Euclidean and Mahalanobis) and Most Similar Neighbour (MSN)
method. Due to the importance of those methods in the context of spatial modelling, a brief
verbal explanation of those distance metrics seems to be essential: In general, the distance
between the target units with a vector of predictor variables to any neighbouring unit having
the multi-dimensional vector of predictors can be measured by a distance function, in which
the weight matrix of predictors plays a central role to weight the predictors according to their
predictive power. Whereas this weight matrix turns to be a multi-dimensional identity matrix
(in the Euclidian distance) or the inverse of the covariance matrix of the predictor variables (in
the Mahalanobis distance), the MSN inference uses canonical correlation analysis to produce
a weighting matrix used to select neighbours from reference units. That is, according to
(Crookston et al., 2002), the weight matrix is filled with the linear product of the squared
canonical coefficients and their canonical correlation coefficients. The MSN method was
described by e.g. (Maltamo & Eerikäinen, 2001) as a closely- related method to the basic
k-NN based on Euclidean distance, whereas the main difference is that the coefficients of the
variables in the distance function are searched using canonical correlations in MSN. Thus, one
should bear in mind that a linear correlation between response(s) and predictor(s) can play
a key role in the MSN method. The majority of attempts to construct MSN models of forest
structure made use of 3D LiDAR data, either alone or in combination with spectral metrics.
Therefore, the literature regarding MSN modelling will further be reviewed in the LiDAR
section.

To the best of author’s knowledge, Efforts to bring the analytical features of k-NN method to
the US NFI system (called Forest Inventory and Analysis, FIA) were accomplished by studies
such as (Franco-Lopez et al., 2001) who used the method to simultaneously predict basal area,
volume and cover types based on FIA field inventory data and TM features. They truly
mentioned a common small-scale problem (i.e. the critical performance of k-NN methods
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in case of small datasets) and acknowledged that ”The key to success is the access to (enough)
ground samples to cover all variations in tree size and stand density for each cover type”.

(Katila, 2002) integrated TM and forest inventory data to model forest parameters including
landuse classes. The results were verified using the Leave-one-Out (LOO) cross validation
(Efron & Tibshirani, 1993) on the pixel level. The method was assessed to be statistically
straightforward comparing to the conventional landcover estimation. (Hölmstrom, 2002) used
a set of panchromatic aerial photos and field based information from 255 circular sample
plots measured within the boreal forests of Sweden. Stem volume and age were modelled
and validated, through which 14 % and 17 % of prediction errors (RMSE) for volume and
age of the trees were observed, respectively. The k-NN method was thus proposed for stand
level applications. However, they highlighted the importance of sufficient and representative
reference material and the considerations in selecting the number of neighbours in small
datasets as potential drawbacks.

The application of RADAR data in forest assessments has been reported to be associated
with some major constraints due to signal saturation (Imhoff, 1995) which can also occur
in optical images when the forest canopy is fully closed (Holmström & Fransson, 2003).
However, RADAR reflectance has been reported to be linearly related to standwise stem
volume (Fransson et al., 2000). Therefore, multispectral data has been combined, though
in relatively few experiences, with active data from RADAR platforms for retrieval of forest
attributes. For example, (Holmström & Fransson, 2003) tested the fusion of optical SPOT-4
and airborne CARABAS-II VHF Synthetic Aperture RADAR (SAR) datasets to estimate forest
variables in Spruce/Pine stands. The single use of each data was compared to the combined
use, and the combined data was expectedly assessed to surpass the single one for modelling
stem volume and age (RMSE=37 m3ha−1 of combined set compared to RMSE=50 m3ha−1 of
the best single-data models). The relationship between the reference target units was reported
to be ”substantially strengthened” when using the two data sources in combination. Later on,
(Thessler et al., 2008) investigated the joint application of multispectral and RADAR data in
an alternative workflow to the one explained above, in that they applied TM-derived features
combined with predictors extracted from the Digital Elevation Model (DEM) of a shuttle
RADAR data to classify the tropical forest types in Costa Rica. Some cover type classes were
consequently merged to aggregate the classes and improve the results, which led to the overall
accuracy of 91 % from the segmented image data based on k-NN classification. (Treuhaft
et al., 2003) combined C-band SAR interferometry with Leaf Area Index (LAI) extracted from
hyperspectral data to estimate AGB. They introduced their resulted ’forest canopy leaf area
density’ to be a representative for AGB of forest.

Though the conventional k-NN models of stand-scale forest attributes have been positively
supported in the studies like those mentioned above, some other studies e.g. (Finley
et al., 2003) acknowledge that the analysts may face the challenge of compromising between
increased mapping efficiency and a loss of information accuracy. This is particularly the case
when dealing with the question of selecting the optimal number of neighbours (also known
as k). Different neighbourhood sizes have been studies in several works ((Franco-Lopez
et al., 2001), (Haapanen et al., 2004),(Holmström & Fransson, 2003), (Packalén & Maltamo,
2006), (Packalén & Maltamo, 2007), (Finley & McRoberts, 2008) and (Vauhkonen et al., 2010)),
in some of which the optimum number of k were discussed ((Franco-Lopez et al., 2001),
(Haapanen et al., 2004), (Finley & McRoberts, 2008)). Whereas the above- mentioned studies
reported an improved accuracy of k-NN predictions along with the increment of k (up to a
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limited number varying amongst the studies), some acknowledge that increasing k leads to a
stronger shift of the predictions towards the sample mean which could cause serious biases,
particularly in cases where the distribution of observations is skewed ((Hudak et al., 2008),
(Latifi et al., 2010)). However, the choice of neighbourhood size is an arbitrary issue in which
the expertise of the analyst (e.g. the prior knowledge on the properties and variance of the
population) plays a functional role. By using multiple k for imputation, the majority of studies
carried out within the framework of FIA program in US (characterized by a cluster sampling
design using 4 subplots in each cluster) have shown to yield relatively high accuracies. The
study of (Haapanen et al., 2004) can be exemplified, in which three classes of forest, non-forest
and water were classified by a conventional k-NN approach (Euclidean distance) and ETM+
features as predictors. They increased the neighbourhood size up to 10 neighbours, which
caused an enhancement of overall accuracy up to the use of 4th neighbour, a sudden drop,
and a consequent improvement up to k=8. The Majority of other studies in this realm have
reported the improvement of accuracy along with increment in the neighbourhood size.
Some studies noticed that the selection of other parameters such as weighting distances also
depends on the choice of image dates and other associated data ((Franco-Lopez et al., 2001),
(Finley & McRoberts, 2008)). (Mäkelä & Pekkarinen, 2004) made a relatively preliminary
effort to use field data of stand volume from an inventoried area to make predictions in a
neighbouring region which was considered to suffer from lack of field data. However, their
poor accuracy yielded from the estimation led them to assess the method as an inappropriate
one for stand level predictions. Yet, some of their best volume estimates were reported to be
useful for the stands where no (or few) field information is available. In a study conducted in a
central Europe, (Stümer, 2004) developed a k-NN application in Germany to model and map
basal area (i.e. metric data) and deadwood (i.e. categorical data) using TM, hyperspectral,
and field datasets as predictors. The best results showed the RMSE between 35 % and 67 %
(for TM data) and 65 % and 67 % (for hyperspectral data). As for the deadwood, the accuracy
ranged between 60 % and 73 % (for TM) and 60 % and 63 % (for hyperspectral). The two data
sets were separately assessed, in which no combinations were tested.

Using various configurations of k-NN methods, (LeMay & Temesgen, 2005) compared some
combinations (e.g. varying number of neighbours) to predict basal area and standing volume
in Canadian forests. They reported MSN method (even in a single-neighbour setting) as the
most accurate approach compared to the Euclidean distance models based on 3 neighbours.
In a relatively similar study in Bosnian forests in Europe, (Cabaravdic, 2007) also achieved
relatively accurate k-NN estimates of growing stock using TM-extracted features and a broad
range of field survey information. In terms of the configuration, k=5 and Mahalanobis distance
were assessed to be optimal for growing stock models. (Kutzer, 2008) tested the selected
bands in visible and infrared domain of multispectral ASTER image together with a set of
terrestrial data to differentiate the landuse types and the Non Wood Forest Products in Ghana.
The results were assessed, though with some exceptions, to be promising for application as a
practical forest monitoring tool within the study area.

The majority of forest-related studies using k-NN method have been conducted with the aim
of modelling continuous attributes of forest structure, whereas little attention has been paid to
predicting categorical forest variables such as site quality or vegetation type. One of the few
attempts to introduce such new potentials to the remote sensing society was carried out by
(Tomppo et al., 2009), in which TM-derived spectral features were used to predict site fertility,
species dominance and coniferous/deciduous dominance as categorical responses across
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selected test sites in Finland and Italy. Despite the moderate accuracy obtained out of the
sole analysis of spectral data (e.g. max. Kappa statistics of approximately 0.65 and relatively
higher Kappa values of species dominance compared to soil fertility), this study highlighted
the importance of how an efficient strategy for feature space screening can contribute to
reducing the prediction errors in k-NN models. Whereas the majority of pearlier studies
used deterministic approaches (e.g. stepwise methods) to prune the candidate predictors, this
study (which followed an earlier attempt by (Tomppo & Halme, 2004) used an evolutionary
Genetic Algorithm (GA) to screen the feature space which reduced the modelling errors in
slight rates. The idea of using GA was further applied for a number of LiDAR-supported
forest modelling studies by e.g. (Latifi et al., 2010) and (Latifi et al., 2011).

2.2 LiDAR-based models of forest structural attributes

Height information from airborne laser scanner data has been validated to provide the most
accurate input data related to the topography of land surface as well as to the structure
of forested areas. Whereas (Lim et al., 2003), (Hyyppä et al., 2008) and (Koch, 2010)
provide comprehensive reviews on the background and history of LiDAR data application
in forest inventories, this section focuses on the methodological background concerning pure
LiDAR-based models of forest structure.

LiDAR instruments include three main categories of profiling, discrete return, and waveform
devices. Profiling devices record one return at low densities along a narrow swath (Evans
et al., 2009) and were mainly used in the earlier studies such as (Nelson et al., 1988). Later,
discrete-return (Pulse form) laser scanners enabled to use LiDAR in remote sensing where
scanning over large areas was needed (Næsset, 2004). Such devices collect multiple returns
(often three to five returns) based on intensity of the emitted laser energy from the earth
surface. In terms of waveform data, the devices digitize the total amount of emitted energy
in intervals and therefore are able to characterize the distribution of emitted laser from the
objects. Although small footprint waveform sensors are most commonly available, they are
reported to be computationally intensive and thus associated with restrictions when used in
fine-scale (i.e. high resolution) environmental applications (Evans et al., 2009). They provide
data featuring high point densities and enable one to broader representation of the surface and
forest canopy. The importance of using pulse form data for studies concerning forest structure
is already stated in the relevant literature e.g. (Sexton et al., 2009).

LiDAR data can be used in two main approaches to retrieve forest structural attributes.
In ”area-based methods”, the statistical metrics and other nonphysical distribution-related
features of LiDAR height measurements are extracted either from the laser point clouds or
from a rasterized representation of laser hits. They are then used to predict forest attributes
e.g. mean tree height, mean DBH, basal area, volume and AGB at an area-level such as
the plot or stand level (Yu et al., 2010). This method enables one to retrieve canopy height
information by means of a relatively coarse resolution LiDAR data e.g. satellite or airborne
data featuring <5 measurements per m2 e.g. (Korhonen et al., 2008), (Jochem et al., 2011),
though data with higher point density can also be used to derive the metrics at an aggregated
level (e.g. (Maltamo, Eerikäinen, Packalén & Hyyppä, 2006) (Heurich & Thoma, 2008), (Straub
et al., 2009) and (Latifi et al., 2010)). A key to success in area-based methods, when the metrics
are extracted from a rasterized form of LiDAR data such as normalized Digital Surface Model
(nDSM), has been stated to be the quality of extracted Digital Terrain Model (DTM) and Digital
Surface Model (DSM) (Hyyppä et al., 2008).

15Characterizing Forest Structure by Means of Remote Sensing: A Review



14 Will-be-set-by-IN-TECH

The focus in the so called ”Single tree-based methods” is on the recognition of individual
trees. Here, the tree attributes e.g. tree height, crown dimensions and species information are
measured. The measured attributes can further be applied to retrieve other attributes such as
DBH, standing volume and AGB by means of various modelling approaches (Yu et al., 2010).
The retrieved attributes are either presented as single-tree attributes or can be aggregated into
a higher level e.g. stand or sample plot level.

In some earlier studies, one of the main goals in applying 3D data was to facilitate an
accurate estimation of stand height, in which correlating the laser-derived height information
to those measured in the field was of major interest. This often yielded notably promising
results which strongly supported the accuracy of LiDAR instruments for precise height
measurements. For example, (Maltamo, Hyyppä & Malinen, 2006) used airborne laser
data to retrieve crown height information i.e. basal area, mean diameter and height at
both tree and plot levels using linear regression methods in Finland. The results indicated
the superiority of LiDAR-based attributes over the field-based ones in area-level, though a
contrasting result was reported in single-tree level. Better result was hypothesized to be
achieved when data with higher point density would be obtained with large swaths. The
roughly similar result was later reported by (Maltamo, Eerikäinen, Packalén & Hyyppä,
2006), in which the plot-level stem volume estimates calculated from field assessments were
reported to be less accurate than the methods in which volume had been predicted by
LiDAR measures.(Maltamo et al., 2010) further studied different methods including regression
models to retrieve crown height information. Regardless of the differences amongst the
methods, they all yielded RMSEs between 1.0 and 1.5 m in predicting crown height.

Application of laser scanner data to enhance volume and AGB models dates back to some
preliminary experiments in 1980 ’s e.g. (MacLean & Krabill, 1986), (Nelson et al., 1988) which
demonstrated the usefulness of LiDAR-extracted canopy profiles to improve stem volume and
AGB estimates (e.g.R2=0.72 to 0.92 achieved in regression analysis by (MacLean & Krabill,
1986)). In the recent years, except some cases, the investigations on further developments in
the retrieval of model-derived volume and AGB attributes has considerably grown. (Heurich
& Thoma, 2008) built linear models to predict plot-level stem volume, height, and stem count
in Bavarian National Park, where they reported RMSE% =5, 10 and 60 for LiDAR-estimated
height, volume and stem count, respectively. The forest areas were stratified into three main
deciduous, coniferous, and mixed strata. Despite achieving relatively accurate results in their
models, they acknowledged that factors such as occurrence of deadwoods and complexities
in forest structure constrain the achievement of better results. As stated earlier, derivation
of model-based estimates of stem volume (in different assortments) have recently formed a
major field of research in LiDAR-related studies. The Sawlogs can be exemplified as vital
timber assortments in Nordic forest utilization context. Therefore, the accurate estimation
of their volume can lead to an added value in forest management. (Korhonen et al., 2008)
studied this by using parametric models, in that they used LiDAR canopy height metrics
i.e. percentiles to make linear models of sawlog volume, which yielded relatively favourable
accuracies (RMSE%=9.1 and 18 for theoretical and factual volumes). In other examples,
regression modelling of individual trees using the multi-return, pulse-form LiDAR metrics
has been reported to be accurate for standing volume (R2=0.77) (Dalponte et al., 2009) as well
as for AGB (Max. R2=0.71) (Jochem et al., 2011).

In terms of the type of metrics extracted from laser scanner data, one important issue cannot be
neglected: In addition to height metrics, the LiDAR intensity data is reported to contain some
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information in infrared domain which may potentially share some values to the modelling of
forest attributes e.g. (Boyd & Hill, 2007), especially when dealing with species-specific models
(Koch, 2010). Regardless of some exceptions e.g. (Vauhkonen et al., 2010),(Latifi et al., 2010),
most of the pure LiDAR-based models of forest attributes solely made use of height metrics
as input variables for modelling.

Using nonparametric methods greatly contributed to the studies aiming at retrieval of forest
attributes by means of LiDAR metrics. Those methods have been applied in various scales,
using numerous metrics, and combined, in some cases, with additional methods for screening
the high-dimensional feature space or for estimating the prediction variance. (Falkowski et al.,
2010) evaluated k-NN imputation models to predict individual tree-level height, diameter
at breast height, and species in northeastern Oregon in USA. Topographic variables were
added to LiDAR-extracted height percentiles and other descriptive statistics to accomplish the
task. Whereas 5 and 16 m3ha1 of RMSE were achieved for basal area and volume estimates,
occurrence of small trees or the dense understory showed to be the main source of prediction
errors. Similarly, promising results have been reported by e.g.(Nothdurft et al., 2009) in central
Europe for area-based models of stem volume using LiDAR height metrics (approximately 20
% ofRMSE for MSN models of stem volume in Germany).

(Hudak et al., 2008) compared different imputation methods to impute a range of forest
inventory attributes in plot level using height metrics from LiDAR data and additional
topographical attributes in Idaho, USA. They found the Random Forest (RF) to be superior to
other imputation methods such as MSN, Euclidean distance and Mahalanobis distance. They
used the selected RF outputs for final wall-to-wall mapping of forest structural attributes at
pixel level. The dominance of RF model was further confirmed by studies such as (Latifi et al.,
2010) and (Breidenbach, Nothdurft & Kändler, 2010) and led to a wider application of RF as
a leading nonparametric method in combination with LiDAR metrics e.g. (Yu et al., 2011).
The RF method (Breiman, 2001) works based on ensembles of CARTs for resampled predictor
variable sets. It starts with evolving bootstrap samples from the original data. It then grows,
for each bootstrap sample, an unpruned regression tree. The best splits are chosen from the
randomly sampled variables at each node or the trees. The new predictions are then made
by aggregating the predictions of the total number of trees. That is, the mode votes (the most
frequent values) from the total trees will be the predicted value of the respective variable
((Liaw & Wiener, 2002), (Latifi et al., 2011)). Though the former studies e.g. (Hudak et al.,
2008) and (Vauhkonen et al., 2010) have shown that the RF approach generally surpasses other
imputation methods including MSN, (Breidenbach, Nothdurft & Kändler, 2010) reported an
approximately similar performance of RF and MSN, as their study yielded e.g. the RMSE of
32.41 % (for MSN) and 32.81 % (for RF) when predicting the total standing timber volume by
averaging k=8.

In addition to those stated above, the nonparametric methods were also tested to predict
further structural characteristics of forest stands e.g. diameter distributions by the sole use
of laser scanner data (e.g. (Maltamo et al., 2009)), yielding some potentials towards further
application of 3D topographic remote sensing for forest monitoring.

2.3 Combining LiDAR and optical data for modelling

As explained earlier, the application of ALS-extracted metrics (height and intensity features)
has been validated as a being helpful and thus required for most practices regarding forest
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inventory. This is because the data has previously been proved to be potentially applicable
in several environmental and natural resource planning tasks, particularly where the vertical
structure of the respective phenomena is dealt with. Nevertheless, the use of multi-sensorial
data may enable one to make use of advanced methods of data analysis and thus overcome
some problems faced by using single datasets (Koch, 2010). The use of multispectral data
can contribute to the analysis of vegetation cover by adding spectral information from visible
and infrared domains. In this way, the information required for species-specific tasks will
be provided by the spectral data, while the LiDAR data contributes an enormous amount of
information in terms of 3D structural attributes (see e.g. (Packalén & Maltamo, 2007), (Heinzel
et al., 2008), (Straub et al., 2009)).

When combining spectral and LiDAR data, the parametric models have been quite rarely used
for predicting forest attributes. In contrast, relatively more studies were carried out using
combined data made use of nonparametric methods (especially MSN and RF), probably as
the models are generally assumed as rather ’distribution-free methods’ which can potentially
be applied regardless of the underlying distribution of the population. A further reason could
be the ability of more advanced methods such as MSN and RF to handle high-dimensional
feature spaces. However, examples of the joint use of spectral and laser scanner data for
parametric modelling can be e.g. (Fransson et al., 2004) and (Hudak et al., 2006), in both
of which the magnitude of candidate predictors were notably less than those making use of
nonparametric methods. (Fransson et al., 2004) built regression models to predict stem volume
using SPOT5 data aided by TopEye laser scanner data in Swedish coniferous landscapes. The
SPOT5 data was used to develop features including multi-spectral bands, ditto squared, and
the band ratios. LiDAR- derived features included height and forest density measures at
stand level. The single as well as combined datasets were tested, from which the combined
use of laser height data with the spectral features surpassed the individual use of the datasets.
Later on,(Hudak et al., 2006) linearly regressed basal area and tree density on 26 predictors
derived from height/intensity of LiDAR and Advanced Land Imager (ALI) multispectral
data. They found laser height (to a higher extent) added by laser intensity metrics as most
relevant predictors of both responses (The LiDAR-dominated models explained around 90 %
of variance for both response variables).

In terms of applying conventional distance-based k-NN methods, (McInerney et al., 2010)
can be referred who combined airborne laser scanner and spaceborne Indian Remote Sensing
(IRS) multispectral data to model stand canopy height using k-NN method. They apparently
reported laser height data as the major means of canopy height retrieval, and achieved a
relative RMSE between 28 and 31 %. (Maltamo, Malinen, Packalén, Suvanto & Kangas,
2006) applied a k-MSN (MSN using multiple k) method to combine the LiDAR data with
aerial images and terrestrial stand information in Finland. The laser-based models were
reported to outperform aerial photography in stand volume estimation, and the combination
improved the models at plot and stand levels. (Wallerman & Holmgren, 2007) have also
highlighted the combined application of predictive features derived from optical (SPOT) and
laser (TopEye) data, according to which the combined dataset yielded the mean standing
volume and stem density models with RMSE = 20% and RMSE = 22%, respectively.
Combining satellite-based (TM) spectral features with laser metrics was also carried out by
(Latifi et al., 2010) who reported that TM-extracted metrics can be used as alternatives to those
derived from aerial photography for area-based models. Using k-MSN approach, (Packalén
& Maltamo, 2006) conducted a survey to achieve species-specific stand information using sets
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of aerial photography and ALS data. The procedure consisted of two methods including 1)
simultaneous k-MSN estimation and 2) a two- phase prediction (prediction of the responses
using regression analysis of ALS data and then allocation of the variables using a fuzzy
classification approach). The k-MSN achieved better results than the fuzzy classifications.
Although the study still proposed some further developments of the predictor variables from
both datasets, the results were assessed satisfactory in cases of Norway spruce (Picea abies
L.) and Scots pine (Pinus sylvestris L.). Soon after, (Packalén & Maltamo, 2007) made stand
level models of volume and height using the similar dataset as before. A set of Haralick
textural features(Haralick, 1979) from the optical data were additionally combined with the
calculated ALS height features to produce predictive models. Accuracy of the predicted
responses was finally found to be comparable to stand-level field assessments, though the
attributes of conifers were estimated more accurately than those from the deciduous stands.
In a further study by those authors, (Packalén & Maltamo, 2008) made use of the similar data
to develop k-MSN models of diameter distribution by tree species. Based on the results of
growing stock estimation in the previous research work(s), two approaches were compared
including 1) field-based modelling using the Weibull distribution and 2) k-MSN prediction,
in which the latter was assessed to outperform the former method. Nevertheless, the need
to have more comprehensive reference field data (i.e. a common small-scale problem) to
cover the spectral variations of the remote sensing data was highlighted as a major concern
which supports those already acknowledged by precedent studies. (Nothdurft et al., 2009)
represents an attempt towards solving this, in which bootstrap-simulated prediction errors of
MSN inferences of volume based on sole use of LiDAR height metrics were smaller than those
of design-based sampling.

Few studies e.g. (Straub et al., 2010) and (Latifi et al., 2011) compared parametric and
nonparametric methods for forest attribute estimation in presence of both LiDAR and
multispectral datasets. Whereas the former study compared Ordinary Least Squares (OLS)
regression and a yield table-estimated stem volume with that from Euclidean distance-based
k-NN method, the latter made a comparison between RF and OLS outputs. Nevertheless,
both studies made relatively similar conclusions, in that they stated that using nonparametric
methods cannot b expected to remarkably contribute to the improvement of forest attribute
estimates. Besides, it supports (Yu et al., 2011)who also tested pure LiDAR metrics and
achieved a similar performance of RF and OLS in a single tree scale. The rationale behind
this is that non-parametric imputations do not share the same mix of error components as
regression predictions. Imputation errors are often greater than regression errors because the
errors do not result from a least-squares minimisation, but from selection of a most similar
element in a pool of neighbouring observations (Stage & Crookston, 2007). However, K-NN
methods (especially in single- neighbour setting) yield predictions with similar variance
structure to that of the observations (Moeur & Stage, 1995), and are thus advantageous over
the higher accuracies achievable by the use of OLS (Hudak et al., 2008).

The selection of proper predictor variables for a k-NN model (i.e. an absent element of
conventional k-NN approaches) is a time-consuming task which and needs to be automated.
(Packalén & Maltamo, 2007) used an iterative cost- minimizing variable selection algorithm
which aimed at minimizing the weighted average of the relative RMSE. In contrast, studies
like (Hudak et al., 2008) and (Straub et al., 2009)applied stepwise selection methods, where
the former study based its stepwise iteration on the Gini index of variable importance used by
(Breiman, 2001) as a built-in feature in RF. As such, other variable screening methods such as

19Characterizing Forest Structure by Means of Remote Sensing: A Review



18 Will-be-set-by-IN-TECH

parametric univariate correlation analysis (Breidenbach, Næsset, Lien, Gobakken & Solberg,
2010), Built-in schemes of RF such as stepwise iterative method (Vauhkonen et al., 2010)
and forward selection (Breidenbach, Nothdurft & Kändler, 2010)were also used to complete
this task in the recent literature. Each of those screening methods has been reported to be
satisfying in terms of reducing the dimensionality of the feature space, though no rationale
(e.g. comparison to other methods) has been presented. (Latifi et al., 2010) used a GA on
categorised response variables to optimise the high-dimensional feature space formed by
numerous correlated predictors. Even though this GA prototype was evaluated to efficiently
reduce the relative RMSE of standing volume and AGB compared to the stepwise selection
of predictors, the method was reported to produce unstable subsets attributed to strong
correlations amongst the predictors. By using a Tau-squared index on continuous responses,
GA was later shown to yield stable parsimonious variable subsets (Latifi et al., 2011). GA is a
search algorithm which works via numerous solutions and generations and thus explores the
entire possible combinations of candidate predictor variables. It provides the consequent NN
models with the optimum range of refined, pre-processed feature space formed of relevant
(and uncorrelated) remote sensing descriptors and is shown to be able to be adjusted to the
k-NN modelling approaches (e.g. (Tomppo & Halme, 2004)). In this context, fitness functions
to optimise continuous responses are preferable for regression scenarios. Those functions
can even be linear as long as no highly non-linear trend/prediction is observed in the entire
underlying dataset.

In a review by (Koch, 2010), the importance of combined use of laser and optical data for such
purposes was highlighted. She stated that combining the altimetric height information with
physical values derived from laser intensity is appropriate for modelling forest structure. As
3D data has already been shown to be plausible for AGB modelling, and due to the expected
future technical innovations of those data for biomass assessments, it is assumed that it will
further play a prominent role in major forest monitoring tasks e.g. those related to AGB
modelling.

3. Conclusion

Amongst the available active/passive remote sensing instruments, information derived from
laser scanner (especially the height information) is definitely of major importance for studies
regarding forest structure. According to (Koch, 2010), the significance of using LiDAR data for
biomass assessment has been confirmed by variety of investigations which repeatedly showed
comparatively higher performance of those data. However, the use of LiDAR intensity data
is still limited. The intensity data has been shown to be able to add useful complementary
information to LiDAR height data for forest attribute modelling (e.g. (Hudak et al., 2006)). Yet,
a direct physical connection between those intensity metrics and forest structure still cannot
be drawn. The reason for this complication is stated to be the dependency of intensity on a
range of factors affecting reflected laser data including range, incidence angle, bidirectional
reflectance function effects, and transmission of atmosphere (Hyyppä et al., 2008).

Apart from few exceptional studies which reported the incapability of spectral data for
explaining the variation beyond the variation that could be explained by laser metrics
(Hudak et al., 2008), adding spectral information to pure LiDAR-based models has been
confirmed to be useful, as they provide continuous information over long time series and are
spectrally sensitive for differentiating tree species. The ability of multispectral data, even in
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regional-scale spatial resolution such as Landsat images, has been constantly approved to bear
practical values when combined with laser scanner data ((Fransson et al., 2004), (McInerney
et al., 2010)) and even as an alternative to aerial photography for area-based applications
(Latifi et al., 2010). Furthermore, image spectroscopy data showed positive potentials for
forest modelling ((Foster et al., 2002), (Schlerf et al., 2005)) and could potentially complement
LiDAR-based models. However, one should bear in mind that the experimental results of
surveys is by no means an eventual justification for the small- scale end users to take the
acquisition of (relatively) expensive airborne hyperspectral data for granted.

In terms of various modelling methods used, both parametric and nonparametric modelling
categories were frequently employed to describe the forest structural attributes. However,
the latter approaches received more attention during the recent years to be run for high
dimensional predictor datasets as well as for simultaneous predictions. The k-NN methods
(especially MSN and RF) have been successfully coupled with LiDAR information and thus
caused a rapid increase in the number of research projects during recent years. As it was
shown here, much work has been done on area-based methods e.g. stand and plot levels,
whereas single-tree approaches still lack some research, mainly due to high computational
requirements and the need for high resolution data.

In terms of handling predictor feature space induced by remote sensing features, some
examples were previously referred. Whereas studies such as (Breidenbach, Nothdurft &
Kändler, 2010)made the general necessity of variable screening in k-NN context questionable,
some other studies acknowledge the requirement to selecting an effective strategy of pruning
of predictor dataset (e.g. (Hudak et al., 2008), (Latifi et al., 2010)) and showed some decisive
influences on the outcomes of the forest attribute models. The proper pruning of predictor
feature space has been proved to help producing robust models (Latifi & Koch, 2011).
Reducing the sensitivity of models has been also shown to greatly contribute to increasing
the robustness of the models. Using resampling methods e.g. bootstrapping to reproduce
the underlying population (e.g. (Nothdurft et al., 2009),(Breidenbach, Nothdurft & Kändler,
2010), and (Latifi et al., 2011) increases the potential and robustness of applying nonparametric
models in small-scale forest inventory, where the shortage of reference data for validating the
models is a major constraint. Robust models enable the analyst to apply them under other
natural growing conditions except of the underlying test site, and can thus open up new
operational applications for the yielded models (e.g. (Koch, 2010)).

Along with the rapid advancements in launching the active/passive remote sensing
instruments, the general access to high resolution products (particularly to laser scanner
data) at reasonable costs is increasing. Therefore, the efforts towards thorough description
of tree and forest stand structure are currently following a boosting trend all over the world.
However, it is necessary to emphasize, again, that much care should be taken in terms
of producing valid and robust results, as well as to get the best out of the available data
and modelling facilities. Whereas the rapid and accurate modelling of standing volume,
biomass and tree density is still important, some remaining open areas of research still require
further research. These include, for example, efforts towards advanced classification tasks
(especially on single-tree level or in complicated mixed stands), modelling understory and
regenerations (e.g. important for intermediate silvicultural practices), and modelling rare and
ecologically-valuable populations.
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Stage, A. R. & Crookston, N. L. (2007). Partitioning error components for accuracy-assessment
of near- neighbor methods of imputation, Forest Science 53(1): 62?72.

Stümer, W. . D. (2004). Kombination vor terrestischen Aufnahmen und Fernerkundungsdaten mit
Hilfe der kNN-Methode zur Klassifizierung und Kartierung von Wäldern, PhD thesis,
Fakultät für Forst-, Geo- und Hydrowissenschaften der Technischen Universität
Dresden.

Stoffels, J. (2009). Einsatz einer lokal adaptiven Klassifikationsstrategie zur satellitengestützten
Waldinventur in einem heterogenen Mittelgebirgsraum., PhD thesis, Faculty of
Geography/Geesciences, University of Trier.

Stone, J. & Porter, J. (1998). What is forest stand structure and how to measure it?, Northwest
Science 72(2): 25–26.

Straub, C., Dees, M., Weinacker, H. & Koch, B. (2009). Using airborne laser scanner data
and cir orthophotos to estimate the stem volume of forest stands, Photogrammetrie,
Fernerkundung, GeoInformation 3/2009: 277–287.

Straub, C. & Koch, B. (2011). Estimating single tree stem volume of pinus sylvestris
using airborne laser scanner and multispectral line scanner data, Remote Sensing
3(5): 929–944.

26 Remote Sensing – Advanced Techniques and Platforms



Characterizing Forest Structure by Means of Remote Sensing: A Review 25

Straub, C., Weinacker, H. & Koch, B. (2010). A comparison of different methods for
forest resource estimation using information from airborne laser scanning and cir
orthophotos, European Journal of Forest Research 129: 1069–1080.

Thessler, S., Sesnie, S., Bendana, Z., Ruokolainen, K., Tomppo, E. & Finegan, B. (2008). Using
k-nn and discriminant analyses to classify rain forest types in a landsat tm image
over northern costa rica, Remote Sensing of Environment 112: 2485– 2494.

Tommola, M., Tynkkynen, M., Lemmetty, J., Herstela, P. & Sikanen, L. (1999). Estimating the
characteristics of a marked stand using k-nearest- neighbour regression, Journal of
Forest Engineering pp. 75–81.

Tomppo, E. (1991). Satellite image-based national forest inventory of finland, International
Archives of Photogrammetry and Remote Sensing 28 (7-1): 419Ű 424.
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Treuhaft, R. N., Asner, G. P. & Law, B. E. (2003). Structure-based forest biomass from fusion of
radar and hyperspectral observations, Geophysical Research Letters 30(9): 1472.

Tyrrell, L. & Crow, T. (1994). Structural characteristics of old-growth hemlock-hardwood
forests in relation to age, Ecology 75(2): 370–386.

Uuttera, J., Maltamo, M. & Hotanen, J. (1997). The structure of forest stands in virgin
and managed peat-lands: a comparison between finnish and russian keralia, Forest
Ecology and Management 96: 125–138.

Van Den Meersschaut, D. & Vandekerkhove, K. (1998). Development of a standscale forest
biodiversity index based on the state forest inventory, in M. Hansen & T. Burk (eds),
Integrated Tools for Natural Resources Inventories in the 21st Century, USDA, Boise,
Idaho, USA, pp. 340–34.

Vauhkonen, J., Korpela, I., Maltamo, M. & Tokola, T. (2010). Imputation of single-tree
attributes using airborne laser scanning-based height, intensity, and alpha shape
metrics, Remote Sensing of Environment 114: 1263–1276.

Vohland, M., Stoffels, J., Hau, C. & Schüler, G. (2007). Remote sensing techniques for
forest parameter assessment: Multispectral classification and linear spectral mixture
analysis, Silva Fennica 41(3): 441–456.

Wallerman, J. & Holmgren, J. (2007). Estimating field-plot data of forest stands using airborne
laser scanning and spot hrg data, Remote Sensing of Environment 110: 501–508.

Wehr, A. & Lohr, O. (1999). Airborne laser scanningŮan introduction and overview, ISPRS
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1. Introduction 
For many years, panchromatic aerial photographs have been the main source of remote 
sensing data for detailed inventories of urban areas. Traditionally, building extraction relies 
mainly on manual photo-interpretation which is an expensive process, especially when a 
large amount of data must be processed (Ameri, 2000). The characterization of a given object 
bases on its visible information, such as: shape (external form, outline, or configuration), 
size, patterns (spatial arrangement of an object into distinctive forms), shadow (indicates the 
outlines, length, and is useful to measure height, or slopes of the terrain), tone (color or 
brightness of an object, smoothness of the surface, etc.) (Ridd 1995). Automated assessment 
of urban surface characteristics has been investigated due to the high costs of visual 
interpretation. Most of those studies used multispectral satellite imagery of medium to low 
spatial resolution (Landsat-TM, SPOT-HRV, IRS-LISS, ALI and CHRIS-PROBA) and were 
based on common image-analysis techniques (e.g. maximum likelihood (ML) classification, 
principal components analysis (PCA) or spectral indices (Richards and Jia 1999)). The 
problems of limited spatial resolution over urban areas have been overcome with the wider 
availability of space-borne systems, which characterized by large swath and high spatial and 
temporal resolutions (e.g. Worl-View2). However, the limits on spectral information of non-
vegetative material render their exact identification difficult. In this regard, the 
hyperspectral remote sensing (HRS) technology, using data from airborne sensors (e.g. 
AVIRIS, GER, DAIS, HyMap, AISA-Dual), has opened up a new frontier for surface 
differentiation of homogeneous material based on spectral characteristics (Heiden et al. 
2007). This capability also offers the potential to extract quantitative information on 
biochemical, geochemical and chemical parameters of the targets in question (Roessner et al. 
1998). 

The most common approach to characterizing urban environments from remote sensing 
imagery is land-use classification, i.e. assigning all pixels in the image to mutually exclusive 
classes, such as residential, industrial, recreational, etc. (Ridd 1995, Price 1998). In contrast, 
mapping the urban environment in terms of its physical components preserves the 
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heterogeneity of urban land cover better than traditional land-use classification (Jensen & 
Cowen, 1999), characterizes urban land cover independent of analyst-imposed definitions 
and more accurately captures changes with time (Rashed et al. 2001). 

Hyperspectral thermal infrared (TIR) remote sensing has rapidly advanced with the 
development of airborne systems and follows years of laboratory studies (Hunt & Vincent 
1968, Conel 1969, Vincent & Thomson 1972, Logan et al. 1975, Salisbury et al. 1987). The 
radiance emitted from a surface in thermal infrared (4-13μm) is a function of its temperature 
and emissivity. Emittance and reflectance are complex processes that depend not only on 
the absorption coefficient of materials but also on their reflective index, physical state and 
temperature. Most urban built environment studies are taking into account both 
temperature and emissivity variations, since these relate to the targets identification, 
mapping and monitoring and provide a mean for practical application.  

The hyperspectral thermal imagery provides the ability for mapping and monitoring 
temperatures related to the man-made materials. The urban heat island (UHI) has been one 
of the most studied and the best-known phenomena of urban climate investigated by 
thermal imagery (Carlson et al., 1981; Vukovich, 1983; Kidder & Wu, 1987; Roth et al., 1989; 
Nichol, 1996). The preliminary studies have reported similarities between spatial patterns of 
air temperature and remotely sensed surface temperature (Henry et al., 1989; Nichol 1994), 
whereas progress studies suggest significant differences, including the time of day and 
season of maximum UHI development and the relationship between land use and UHI 
intensity (Roth et al., 1989). The recent high-resolution airborne systems determine the 
thermal performance of the building that can be used to identify heating and cooling loss 
due to poor construction, missing or inadequate insulation and moisture intrusion. 

The spectral (reflective and thermal) characteristics of the urban surfaces are known to be 
rather complex as they are composed of many materials. Given the high degree of spatial 
and spectral heterogeneity within various artificial and natural land cover categories, the 
application of remote sensing technology to mapping built urban environments requires 
specific attention to both 3-D and spectral domains (Segl et al. 2003). Segl confirms that 
profiling hyperspectral TIR can successfully identify and discriminate a variety of silicates 
and carbonates, as well as variations in the chemistry of some silicates. The integration of 
VNIR-SWIR and TIR results can provide useful information to remove possible ambiguous 
interpretations in unmixed sub-pixel surfaces and materials. The image interpretation is 
based on the thematic categories (Roessner et al. 2001), which are defined by the rules of 
urban mapping and land-uses.  

The ultimate aim in photogrammetry in generating an urban landscape model is to show the 
objects in an urban area in 3-D (Juan et al. 2007). As the most permanent features in the 
urban environment, an accurate extraction of buildings and roads is significant for urban 
planning and cartographic mapping. Acquisition and integration of data for the built urban 
environment has always been a challenge due to the high cost and heterogeneous nature of 
the data sets (Wang 2008). Thus, over the last few years, LiDAR (LIght Detection And 
Ranging) has been widely applied in the field of photogrammetry and urban 3-D analysis 
(Tao 2001, Zhou 2004). Airborne LiDAR technique provides geo-referenced 3-D dense points 
(“cloud”) measured roughly perpendicular to the direction of flight over a reflective surface 
on the ground. This system integrates three basic data-collection tools: a laser scanner, a 
global positioning system (GPS) and an inertial measuring unit (IMU). The position and 
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altitude of it determined by GPS/INS, therefore, the raw data are collected in the GPS 
reference system WGS 84. 

Generally, 3-D urban built environment models are created using CAD (computer-aided 
design) tools. There have been many successful projects which have produced detailed and 
realistic 3-D models for a diverse range of cities (Dodge et al. 1998, Bulmer 2001, Jepson et al. 
2001). These city models were created with accurate building models compiled with 
orthophotographs and exhibited an impressive, realistic urban environment (Chan et al. 
1998). However, the creation of 3-D city models using CAD tools and orthophotographs 
faces some challenges: it is time-consuming and expensive. 

The analysis of InSAR (Interferometric Synthetic Aperture Radar) and SAR (Synthetic 
Aperture Radar) data for urban built targets has several important benefits, such as the 
ability to adopt numerical tools, and the ability to provide results resembling the real-world 
situation. In addition, a relation can be found between target geometry and the measured 
scattering, and according to target-scattering properties, height-retrieval algorithms can be 
developed. The limitation of this method is that the targets in urban models have to be as 
detailed as possible; otherwise the results obtained in the modeled environment will be not 
reliable (Margarit et al. 2007). 

The use of 3-D high-spatial-resolution applications in urban built environments is a 
mainstay of architecture and engineering practice. However, engineering practices are 
increasingly incorporating different data sets and alternative dissemination systems. 
Understanding, modeling and forecasting the trends in urban environments are important 
to recognize and assess the impact of urbanization for resource managers and urban 
planners. Many applications are suitable sources of reliable information on the multiple 
facets of the urban environment (Jensen & Cowen 1999, Donnay et al. 2001, Herold et al. 
2003). These models have provided simulations of urban dynamics and an understanding of 
the patterns and processes associated with urbanization (Herold et al. 2005). However, the 
complexity of urban systems makes it difficult to adequately address changes using a single 
data type or analysis approach (Allen & Lu 2003). 

This chapter presents techniques for data fusion and data registration. The ability to include an 
accurate and realistic 3-D position, quantitative spectral information, thermal properties and 
temporal changes provides a near-real-time monitoring system for photogrammetric and 
urban planning purposes. The method is focusing on registration of multi-sensor and multi-
temporal information for 3-D urban environment monitoring applications. Generally, data 
registration is a critical pre-processing procedure in all remote-sensing applications that 
utilizes multiple sensors inputs, including multi-sensor data fusion, temporal change 
detection, and data mosaicking. The main objective of this research is a fully controlled, near-
real-time, natural and realistic monitoring system for an urban environment. This task led us 
first to combine the image-processing and map-matching procedures, and then to incorporate 
remote sensing and GIS tools into an integrative method for data fusion and registration. To 
support this new data model, traditional spatial databases were extended to support 5-D data.  

This chapter is organized as follows. Section 2 describes the materials and methods, which 
are implemented in the 3-D urban environment model presented in Section 3. Section 4 
addresses to the generic 3-D urban application, which involves data fusion and contextual 
information of the environment.  
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2. Materials and methods 
2.1 Study area 

Two separate datasets were utilized in this study. The first dataset was acquired over the 
suburban Mediterranean area on 10 Oct 2006 at 03h37 UTC and at 11h20 UTC. This area 
combines natural and engineered terrains (average elevation of 560m above sea level), a hill 
in the north of the studied polygon area and a valley in the center. The entire scene consists 
of rows of terraced houses located at the center of the image. The neighborhood consists of 
cottage houses (two and three floors) with tile roofs, flat white-colored concrete roofs and 
balconies, asphalt roads and parking lots, planted and natural vegetation, gravel paths and 
bare brown forest soil. The height of large buildings ranges from 8 to 16 m. A group of tall 
pine trees with various heights and shapes are located on the streets and the Mediterranean 
forest can be found in the corner of the scene.  

The second dataset was acquired over urban settlement, on 15 Aug 2007 at 02h54 UTC and 
at 12h30 UTC. This area combines natural, agriculture and engineered terrains (average 
elevation of 30m above sea level). The urban settlement consists of houses (two and three 
floors) and public buildings (schools and municipalities buildings) with flat concrete, 
asphalt or whitewash roofing, asphalt roads and parking lots, planted and natural 
vegetation, gravel paths, bare brown reddish Mediterranean and agriculture soils, 
greenhouses and whitewash henhouse roofing. The height of large buildings ranges from 3 
to 21 m. 

2.2 Data-acquisition systems 

The research combines airborne and ground data collected from different platforms and 
different operated systems. The collected imagery data were validated and compared to the 
ground truth in situ measurements collected during the campaigns.  

The first airborne platform carries AISA-Dual hyperspectral system. The airborne imaging 
spectrometer AISA-Dual (Specim Ltd.) is a dual hyperspectral pushbroom system, which 
combines the Aisa EAGLE (VNIR region) and Aisa HAWK (SWIR region) sensors. For the 
selected campaigns, the sensor simultaneously acquired images in 198 contiguous spectral 
bands, covering the 0.4 to 2.5 µm spectral region with bandwidths of ~10 nm for Aisa 
EAGLE and ~5 nm for Aisa HAWK. The sensor altitude was 10,000 ft, providing a 1.6 m 
spatial resolution for 286 pixels in the cross-track direction. A standard AISA-Dual data set 
is a 3-D data cube in a non-earth coordinate system (raw matrix geometry).  

The second airborne platform carries hyperspectral TIR system, which is a line-scanner with 
28 spectral bands in the thermal ranges 3-5 μm and 8-13 μm. It has 328 pixels in the cross-
track direction and hundreds of pixels in the along-track direction with a spatial resolution 
of 1.4m.  

The third airborne platform carries the LiDAR system. This system operates at 1500 nm 
wavelength with a 165 kHz laser repetition rate and 100 Hz scanning rate and provides a 
spatial/footprint resolution of 0.5 m and an accuracy of 0.1 m. The scanner has a multi-pulse 
system that could record up to five different returns, but in this study, only the first return 
was recorded and analyzed.  



Fusion of Optical and Thermal Imagery and LiDAR Data for  
Application to 3-D Urban Environment and Structure Monitoring 33 

The ground spectral camera HS (Specim Ltd.) is a pushbroom scan camera that integrate 
ImSpector imaging spectrograph and an area monochrome camera. The camera's sensitive 
high speed interlaced CCD (Charge-Coupled Device) detector simultaneously acquires 
images in 850 contiguous spectral bands and covers the 0.4 to 1 µm spectral region with 
bandwidths of 2.8 nm. The spatial resolution is 1600 pixels in the cross-track direction, and 
the frame rate is 33 fps with adjustable spectral sampling.  

The ground truth reflectance data were measured for the calibration/validation targets by 
the ASD "FieldSpec Pro" (ASD.Inc, Boulder, CO) VNIR-SWIR spectrometer. Internally 
averaged scans were 100 ms each. The wavelength-dependent signal-to-noise ratio (S/N) is 
estimated by taking repeat measurements of a Spectralon white-reference panel over a 10-
min interval and analyzing the spectral variation across this period. For each sample, three 
spectral replicates were acquired and the average was used as the representative spectrum. 
The ground truth thermal data were collected by a thermometer and thermocouples 
installed within calibration/validation targets (water bodies) and a thermal radiometer 
infrared camera (FLIR Systems, Inc.).  

2.3 Data processing 

This research integrates multi-sensor (airborne sensor, ground camera and field devises) 
and multi-temporal information into fully operational monitoring application. The aim of 
this sub-paragraph is to present several techniques for imagery and LiDAR data processing.  

The classification approaches for airborne and ground hyperspectral imagery are firstly 
presented. The radiance measured by these sensors strongly depends on the atmospheric 
conditions, which might bias the results of material identification/classification algorithms 
that rely on hyperspectral image data. The desire to relate imagery data to intrinsic surface 
properties has led to the development of atmospheric correction algorithms that attempt to 
recover surface reflectance or emission from at-sensor radiance. Secondly, the LiDAR data 
are processed by applying the surface-based clustering methods.  

2.3.1 Hyperspectral airborne and ground imagery 

Accurate spectral reflectance information is a key factor in retrieving correct thematic 
results. In general, the quality of HRS sensors varies from very high to moderate (and even 
very poor) in terms of signal-to-noise ratio, radiometric accuracy and sensor stability. 
Instability of the sensors' radiometric performance (stripes, saturation, etc.) might be caused 
by either known or unknown factors encountered during sensor transport, installation 
and/or even data acquisition. As part of data pre-processing, these distortions have to be 
assessed and quantified for each mission.  

A full-chain atmospheric calibration SVC (supervised vicarious calibration) method (Brook 
& Ben-Dor 2011a) is applied to extract reflectance information from hyperspectral imagery. 
This method is based on a mission-by-mission approach, followed by a unique vicarious 
calibration site. In this study, the acquired AISA-Dual and HS images were subjected to the 
SVC method, which includes two radiometric recalibration techniques (F1 and F2) and two 
atmospheric correction approaches (F3 and F4). The atmospheric correction incorporate 
deshadow algorithm, which is applied o the map provided by the boresight ratio band 
(Brook & Ben-Dor 2011b).  
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The hyperspectral reflectance images are subjected to the data processing stage, which is 
operated in four steps (Figure 1). First step is a general coarse classification. Each “pure” pixel 
is assigned to a class in order to predefine the threshold of the probabilistic output of a support 
vector machine (SVM) algorithm, or remains unclassified (Villa et al., 2011). The unclassified 
pixels might associate with mixed spectra pixels, thus their classification is addressed at the 
third stage by the unmixing method in order to obtain the abundance fraction of each 
endmember class. Prior to this step, a second step is applied, where spectral data are reduced 
by the selected algorithm. The input variables in terms of absorption features can be reduced 
through a sequential forward selection (SFS) algorithm (Whitney, 1971). This method starts 
with the inclusion of feature sets one by one to minimize the prediction error of a linear 
regression model and focuses on conditional exclusion based on feature significance (Pudil et 
al., 1994). This step is proven to enhance overall performance of spectral models.  

 
Fig. 1. Flow chart scheme of the classification approach for hyperspectral airborne and 
ground data 

The nonnegative matrix factorization (NMF) was offered as an alternative method for linear 
unmixing (Lee et al., 2000). This algorithm search for the source and the transform by 
factorizing a matrix subject to positive constraints based on gradient optimization and 
Euclidean norm designation (Pauca et al, 2006; Robila & Maciak, 2006). We generated an 
algorithm that starts with the random linear transform to the nonnegative source data. The 
algorithm is continuously computing scalar factors that are chosen to produce the “best” 
intermediate source and transform. At each step of the algorithm the source and transform 
should remain positive. The final stage is a method for image segmentation combined with a 
Markov random field (MRF) model under a Bayesian framework (Yang & Jiang, 2003). 
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The validation of the thematic map is performed by comparing ground truth and image 
reflectance data of the selected targets. The ten well-known targets (areas of approximately 
30-40 pixels) were spectrally measured (using ASD SpecPro) and documented. The overall 
accuracy for the Ma'alot Tarshiha images was 96.8 and for the Qalansawe images it was 97.4. 
The exact location of each target within the scenes was captured using aerial orthophoto and 
ground truth field survey. The confusion matrices (Tables 1 and 2) and ROC (receiver 
operating characteristic) curve (Table 3) were calculated by comparison between number of 
pixels in each class (concrete, asphalt, scuffed asphalt) and ground truth maps. The overall 
accuracy of both images stands in good agreement, thus it can be concluded that the 
suggested classification algorithm (Figure 1) performance is stable and accurate. 
 

 Ground truth (%) 
Class Concrete Asphalt Scuffed asphalt 
Unclassified 0 0 0 
Concrete 96.2 1.7 2.1 
Asphalt 1.1 98 0.9 
Scuffed Asphalt 2.8 0.2 97 

Table 1. Confusion matrix of the Ma'alot Tarshiha image for selected classes 
(Correspondence accuracies are in bold.) 

 

 Ground truth (%) 
Class Concrete Asphalt Scuffed asphalt 
Unclassified 0 0 0 
Concrete 96.3 0.8 2.9 
Asphalt 0 98.4 1.6 
Scuffed Asphalt 4.5 0 95.5 

Table 2. Confusion matrix of the Qalansawe image for selected classes (Correspondence 
accuracies are in bold.) 

 

 
Ma’alot image Qalansawe image 

Concrete Asphalt Scuffed asphalt Concrete Asphalt Scuffed asphalt 
DR 0.97 0.97 0.94 0.98 0.96 0.93 
Area 0.99 0.99 0.96 0.99 0.98 0.95 

Table 3. Detection rates (DR) of concrete, asphalt and scuffed asphalt for false alarm 
probability 0.1 according to ROC and area under the curve 

2.3.2 Thermal airborne and ground imagery 

Atmospheric correction is a key processing step for extracting information from thermal 
infrared imagery. The ground-leaving radiance combined with temperature/emissivity 
separation (TES) algorithms are generated and supplied to in-scene atmospheric 
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compensation ISAC1 (Young et al., 2002). This model requires only the calibrated, at-
aperture radiance data to estimate the upwelling radiance and transmittance of the 
atmosphere. It is an effective atmospheric correction that produces spectra that compare 
favorably to the Planck function. 

The ground truth must include several targets as water, sand or soil continuously measured 
by installed thermocouples. The generating atmospheric data cube may be used as an input 
to a temperature emissivity separation algorithm (normalized emissivity method). The 
proposed thermal classification method follows the same four stages of data processing 
(SVM's probabilistic map; data reduction; umnixing; classification) applied to the pre-
processed emissivity imagery (Figure 2). 

 
Fig. 2. Flow chart scheme of the thermal airborne and ground data preprocessing 

From the physical definition, the spectral characteristics of urban materials in the reflective 
and thermal ranges are related. Segl (Segl et al., 2003) showed that materials with high 
albedos in the reflective range produce low albedos in the thermal range and vice versa, due 
to a better energy absorption in the reflective region. However, it is reported that bitumen 
roofing and asphalt pavement generate distinct spectral differences in the thermal 
wavelength range. The thermal measurements remain a compelling focus on a climate 
research in the built urban areas. However, the thermal airborne and ground imagery 
permit definition of UHI (for the ground surface) and resolve streets, roofs and walls. The 
successful numerical model of the urban areas is acquired during night-time conditions, 
when solar shading is absent and turbulent interactions are minimal.  

The validation of the thematic map is performed by comparing ground truth and image 
emissivity data. The five targets (concrete, sand lot, bitumen, tile roof and polyethylene) 
were measured and documented. The resulting emissivity signatures are in good agreement 
with ground-truth data (two examples in Figure 3A and 3B). The results presented here 
confirm the robustness and stability of the suggested algorithm. 

2.3.3 Airborne LiDAR data 

LiDAR data provides precise information about the geometrical properties of the surfaces 
and can reflect the different shapes and formations in the complex urban environment. The 
point cloud (irregularly spaced points) was interpolated into the digital surface model 
(DSM) by applying the Kriging technique (Sacks et al. 1989). The Kriging model has its  
                                                                 
1 ISAC (in-scene atmospheric compensations) model is implemented in ENVI®  

Airborne Thermal Ground ThermalInput Images:

Preprocessing: Radiometric correction by system operator

Atmospheric correction Temperature Image

Emissivity Image
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Fig. 3. Emissivity calculated from the thermal radiance. A is a tile roof and B is a bitumen 
roof 

origins in mining and geostatistical applications involving spatially and temporally 
correlated data (Cressie 1993).  

The surface analysis (Figure 4) is first represented as a DEM (digital elevation model) of the 
scanned scene, where data are separated into on-terrain and off-terrain points (Masaharu 
and Ohtsubo 2002). In this study, the Kriging Gaussian correlation function was utilized to 
visualize and illustrate the edited DEM as a surface-response function. Note that the 
interpolation converts irregularly spaced LiDAR data to a self-adaptive DSM. 

The DTM (digital terrain model) was created by a morphological scale-opening filter, using 
square structural elements (Rottensteiner et al., 2003). Then, according to the filter, the slope  
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Fig. 4. Flow chart scheme of the LiDAR data surface analysis 

map is estimated. The next stage is to fragment a surface model convolved with highly 
heterogeneous terrain slopes into subareas with fixed slope (Zhang et al., 2003; Shan & 
Sampath 2005). At this stage, the terrain is uniformly normalized and the separation 
between on- and off-terrain points is applicable.  

The building boundary is determined by a modified convex hull algorithm (Jarvis 1973) 
which classifies the cluster data into boundary (contour/edge) and non-boundary (inter-
shape) points (Jarvis 1977). Separating points located on buildings from those on trees and 
bushes, is a difficult task (Wang & Shan 2009). The common assumption is that the building 
outlines are separated from the trees in terms of size and shape. The dimensionality learning 
method, proposed by Wang and Shan (2009), is an efficient technique for this purpose.  

In relatively flat urban areas, the roads, which have the same elevation (height) as a bare 
surface, can be extracted by arrangement examination. The simple geometric and 
topological relations between streets might be used to improve the consistency of road 
extraction. First, the DEM data are used to obtain candidate roads, sidewalks and parking 
lots. Then the road model is established, based on the continuous network of points which 
are used to extract information such as centerline, edge and width of the road (Akel et al. 
2003; Hinz & Baumgartner 2003; Cloude et al., 2004).  

2.4 Data registration: Automatic and manual approaches 

The optical and thermal imagery and LiDAR data have fundamentally different 
characteristics. The LiDAR data (monochromatic NIR laser pulse) provides terrain 
characteristics; hence, optical imagery (radiation reflected back from the surface at many 
wavelengths) provides ability for in situ, easy, rapid and accurate assessment of many 
materials on a spatial/spectral/temporal domain, and thermal imagery determines 
temperatures and radiance signature of urban materials and land covers. Since all these 
datasets (Figure 5) are crucial for the assessment and classification of the urban area, a novel 
method for automatic registration and data fusion is needed.  

Data fusion techniques combine data from multiple sensors and related information from 
associated databases. The integrated data set achieves higher accuracy and more specific 
inferences that might be obtained by the use of single sensor alone. In general, data 
registration is a critical preprocessing procedure in all remote-sensing applications that 
utilizes multiple sensor inputs, including multi-sensor data fusion, temporal change  
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Fig. 5. Flow chart scheme of the input data and registration techniques  

detection, and data mosaicking (Moigne et al., 2002). In manual registration, the selection of 
control points (CPs) is usually performed by a human operator. This has proven to be 
inaccurate, time-consuming, and unfeasible due to data complexity, which makes it 
cumbersome or even impossible for the human eye to discern the suitable CPs. Therefore, 
researchers have focused on automating feature detection to align two or more data sets 
with no need for human intervention.  

The automatic registration of data sets has generated extensive research interest in the fields 
of computer vision, medical imaging and remote sensing. Comprehensive reviews have 
been published by Brown (1992) and Zitova and Flusser (2003). Many proposed schemes for 
automatic registration employ a multi-resolution process (Viola and Wells 1997, Wu & 
Chung 2004, Fan et al., 2005, Zavorin & Moigne 2005, Xu & Chen 2007).  

The existing automatic data-registration techniques based on spatial information fall into 
two categories: intensity-based and feature-based (Zitova and Flusser 2003). The feature-
based technique extracts salient structures from sensed and reference data sets by accurate 
feature detectin and by the overlap criterion. As the relevant objects of intereset (e.g., roofs) 
and lines (e.g., roads) are expected to be stable in time at a fixed position, the feature-based 
method is more suitable for multi-sensor and multi-data set fusion, change detection and 
mosaicking. The method generally consists of four steps (Jensen, 2004): (1) CP extraction; (2) 
transformation-model determination; (3) image transformation and resampling, and (4) 
assessment of registration accuracy. The first step is the most complex, and its success 
essentially determines registration accuracy. Thus, the detection method should be able to 
detect the same features in all projections and in different data, regardless of the particular 
image/sensor/data type deformation. Despite the achieved performance, the existing 
methods operate directly on gray intensity values and hence they are not suited for 
handling multi-sensor and multi-type data sets. 

The suggested algorithm is an adapted version of the four stages AIRTop (Figure 6) 
algorithm (Brook & Ben-Dor 2011c). First, the significant features are extracted from all 
input data sets and converted to a vector format. Since the studied scene has a large area, 
regions of interest (ROI) with relatively large variations are selection. The idea of addressing 
the registration problem by applying a global-to-local level strategy (the whole image is now 
divided into regions of interest which are treated as an image) proves to be an elegant way  
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Fig. 6. A flow chart describing the registration algorithm. Blue box: topology map matching. 
Orange box: matching process. Green box: validation and accuracy.  

of speeding up the whole process, while enhancing the accuracy of the registration 
procedure (Chantous et al. 2009). Thus, we expected this method to greatly reduce false 
alarms in the subsequent feature extraction and CP identification steps (Brook et al., 2011). 
To select the distinct areas in the vector data sets, a map of extracted features is divided into 
adjacent small blocks (10% × 10% of original image pixels with no overlap between blocks). 
Then, the significant CPs extraction has been performed by applying the SURF algorithm 
(Brown & Lowe, 2002). First the fast-Harris corners Detector (Lindeberg, 2004), which based 
on an integral image, was performed. The Hessian matrix is responsible for primary image 
rotation using principal points that identified as "interesting" potential CPs in the block. The 
local feature representing vector is made by combination of Haar wavelet response. The 
values of dominant directions are defined in relation to the principal point. As the number 
of interesting points tracked within the block is more than the predefined threshold, the 
block is selected and considered a suitable candidate for CPs detection. 

The spatial distribution and relationship of these features are expressed by topology rules 
(one-to-one) and they are converted to potential CPs by determining a transformation model 
between sensed and reference data sets. The defined rules for a weight-based topological 
map-matching (tMM) algorithm manage (Velaga et al. 2009), transform and resample 
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features of the sensed goereferenced LiDAR data according to a non georeferenced imagery 
in order to reserve original raw geometry, dimensionality and imagery matrices (imagery 
pixels size and location).  

In the proposed 3-D urban application, the manual registration is used to register facades 
imagery and thematic mapping acquired by ground sensors and simplify buildings model 
extracted from LiDAR. This method is executed by a human operator, who identifies a set of 
corresponding CPs from the images and referenced control building model. Despite the fact 
that manual registration has been proven inaccurate and time-consuming due to data 
complexity, this method is still the most widely used technique. We found that for the 
current data sets, manual registration is the easiest and most accurate solution.  

3. 3-D urban environment model 

The urban database-driven 3-D model represents a realistic illustration of the environment 
that can be regularly updated with attribute details and sensor-based information. The 
spatial data model is a hierarchical structure (Figure 7), consisting of elements, which make 
up geometries, which in turn composes layers.  

 
Fig. 7. The 3-D urban environment application's conceptual architecture 

A fundamental demand in non-traditional, multi-sensors and multi-type applications is 
spatial indexing. A spatial index, which is a logical index, provides a mechanism to limit 
searches based on spatial criteria (such as intersection and containment). Due to the 
variation of data formats and types, it is difficult to satisfy the frequent updating and 
extension requirements for developing urban environments. 

An R-tree index is implemented on spatial data by using Oracle's extensible indexing 
framework (Song et al. 2009). This index approximates the geometry with a single rectangle 
that minimally encloses the geometry (minimum bounding rectangle MBR). A bounding 
volume is created around the 3-D object, which equals the bounding volume around the 
solid. The index is helpful in conducting very fast searches and spatial analyses over large 3-
D scenes. 

CityGML2 is an application based on OGC’s (open geospatial consortium) GML 3.1. This 
application not only represents the graphical appearance but in particular, it takes care of 
the semantic properties (Kolbe et al. 2005), such as the spectral/thematic properties, and 
model evaluations. The main advantage is the ability to maintain different levels of detail 
(Kolbe & Bacharach 2006). The underlying model differentiates three levels of detail, for 
which objects become more detailed as the level incise. 
                                                                 
2 http://www.citygml.org/ 

Level 1- “City 3D”

Level 2- “Building Model”

Level 3- “Spectral Model”
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The 3-D urban application is based on an integrated data set: spectral models, ground 
camera and airborne images, and LiDAR data. The system requirements are defined to 
include geo-spatial planning information and one-to-one topology. The concept architecture 
diagram is presented in Figure 4. As the model consist visualization and interactivity with 
maps and 3-D scenes, the interface includes 3-D interaction, 2-D vertical and horizontal 
interactions and browsers that contain spectral/thematic temporal information. The 3-D 
urban application provides services such as thematic mapping, and a complete quantitative 
review of the building and it's surrounding with respect to temporal monitoring. The design 
of the application shows the possibilities of delivering integrated information and thus 
holistic views of whole urban environments in a freeze-frame view of the spatiotemporal 
domain. 

The self-sufficient/self-determining levels of the integrated information contribute different 
parts to this global urban environmental application. The first level (Figure 8), termed “City 
3-D”, supplies three different products: 1) integrated imagery and LiDAR data, 2) 3-D 
thematic map, and 3) 2-D thematic map (which includes 3-D analysis layers such as terrain 
properties, spatial analysis, etc.).  

 
Fig. 8. The 3-D urban environment application – Level 1 (detailed architecture) 

The second level, termed “Building Model” (Figure 9), focuses on a single building in 3-D 
and provides two additional products: 1) integrated imagery and building model extracted 
from LiDAR data set, and 2) 3-D thematic map for general materials classification, and 
quantitative thematic maps implemented by spectral models.  

The most specific and localized level is the third level, termed “Spectral Model” (Figure 
9). The area of interest in this level is a particular place (a patch) on the wall of the 
building in question. The spatial investigation at this level is a continuation of the 
previous level; yet, the data source consists of spectral models that are evaluated for 
spectral in-situ point measurements. This level does not provide any integrated and 
rectified information, but provides geo-referencing of the results of the spectral models in 
realistic 3-D scale. This level completes the database of the suggested 3-D urban 
environment application. 

Level 1 – “City 3D” 

Interface Browser CityGML Downloadable application

Data source

DTM Buildings 
model

Roads 
model

Thermal 
map

Thematic 
map

Component 
/Operator

Data Fusion 
Fuzzy Logic

Spatial surface 
analysis

Spatial selection 
Fuzzy Rules

Spatial 
selection

Data 
processing

Data 
integration

3-D Thematic 
analysis/interaction

2-D thematic 
analysis/interaction

Layer

Airborne LiDAR Airborne Imagery



Fusion of Optical and Thermal Imagery and LiDAR Data for  
Application to 3-D Urban Environment and Structure Monitoring 43 

 
Fig. 9. The 3-D urban environment application – Level 2 (detailed architecture) 

 
Fig. 10. The 3-D urban environment application – Level 3 (detailed architecture) 

4. 3-D urban environment application 
The 3-D monitoring built urban environment application, up to this point, employs single 
processing algorithms applied on imagery or LiDAR data, without taken into account 
contextual information. The data fusion application must provide fully integrated 
information, both of the classification products and the context within the scene. In the 
proposed application, a complete classification and identification task consist of subtasks, 
which have to operate on material and object characteristic/shape levels provided by 
accurately registered database. Moreover, the final fused and integrated application should 
be operated on objects of different sizes and scales, such as a single building detected within 
the urban area or a selected region on a building facade. The multi-scale and multi-sensor 
data fusion is possible with the eCognition procedure (user guide eCognition, 2003), when 
the substructures are archived by a hierarchical network.  
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The results of spectral/thermal classification processes are by far not only a 
spectral/thematic aggregation of classes converted to polygons or polylines (in vector 
format), but also a spatial and semantic structuring of the scene content (example of roofs 
extraction in Figure 11). The resulting network of extracted and identified objects can be 
seen as a spatial/semantic network of the scene. The local contextual information describes 
the joint relationships and meaningful interactions between those objects in the build urban 
environment and linked multi-scale and multi-sensor products. This hierarchy in the rule-
base design allows a well-structured incorporation of knowledge.  

 
Fig. 11. Hierarchical rule-base structure in eCognition 

In fact, now each object is identified not only by its spectral, thermal, textural, 
morphological, topological and shape properties, but also by its unique information linkage 
and its actual neighbors. The data is fused by mutual dependencies within and between 
objects that create a semantic network of the scene. To assure high level accuracy and 
operational efficiency the input products are inspected by the basic topological rule, which 
obligates that object borders overlay borders of objects on the next layer. Therefore, the 
multi-scale information, which is represented concurrently, can be related to each other.  

The semantic network of fuzzy logic is an expert system that quantities uncertainties and 
variations of the input data. The fuzzy logic, as an alternative approach for the Boolean 
statements, avoids arbitrary thresholds and thus, it is able to estimate a real world 
environment (Benz et al., 2004). The implemented rules are guided by the reliability of class 
assignments, thus the solution is always possible, even if there are contradictory 
assignments (Civanlar & Trussel, 1986). This logic proposes a deliberate choice and 
parameterization of the membership function that established the relationship between 
object features and acceptable characteristics. Since the design is the most crucial step to 

ObjectLevelOperation

RoofLevel 1Segmentation

Hierarchical rule-base structure in eCognition:
Roof

• Shape 3-D
• Shape
• Proportions

• Volume 3-D
• Area 2-D
• Diameter 2-D

• Delta H (ground surface - top)

• Material
• VNIR-SWIR thematic class

• Tile
• Bitumen
• Concrete

• Thermal micro – silicates class
• Tile
• Bitumen
• Concrete



Fusion of Optical and Thermal Imagery and LiDAR Data for  
Application to 3-D Urban Environment and Structure Monitoring 45 

introduce expert knowledge and information into the logic, the better and detailed the 
description of the real world environment are modeled by the membership function, the 
better the data fusion.  

The operational system controls that a first class hierarchy will be loaded and used in the 
next step for data integration. Based on this preliminary fusion, first objects of interest are 
created from object primitives by thematic-based fusion. The same steps are performed until 
the final information (spectral quantitative model) is applied. The results are registered and 
integrated information is followed by the reliability map, which is established by the 
primary accuracy and classification confidence of each input data. The reliability map is 
important for post-processing inspection and testing routines; objects with low reliability 
must be assigned manually because no decision is possible. The suggested application 
involves semi-automatic or even manual stages, which have proven to be time-consuming 
operations. Yet, due to the expert system support, it is a time efficient application that 
produces highly accurate and reliable merged information.  

5. Discussion 
In this chapter, we present techniques for data fusion and data registration in several levels. 
Our study focused on the registration and the integration of multi-sensor and multi-
temporal information for a 3-D urban environment monitoring application. For that 
purpose, both registration models and data fusion techniques were used.  

The 3-D urban application satisfies a fundamental demand for non-traditional, multi-sensor 
and multi-type data. The frequent updating and extension requirement is replaced by 
integrating the variation in data formats and types for developing an urban environment. 
The main benefit of 3-D modeling and simulation over traditional 2-D mapping and analysis 
is a realistic illustration that can be regularly updated with attribute details and remote 
sensor-based quantitative/thermal information and models.  

The proposed application offers an advanced methodology by integrating information into a 
5-D data set. The ability to include an accurate and realistic 3-D position, quantitative 
information, thermal properties and temporal changes provide a near-real-time monitoring 
system for photogrammetric and urban planning purposes. The main objectives of many 
studies are linked to, and rely on a historical set of remotely sensed imagery for quantitative 
assessment and spatial evolution of an urban environment (Jensen and Cowen 1999, Donnay 
et al. 2001, Herold et al. 2003, 2005). The well-known methodology is pattern observation in 
the spatiotemporal and spectral domains. The main objective of this research is a fully 
controlled, near-real-time, natural and realistic monitoring system for an urban 
environment. This task led us first to combine the image-processing and map-matching 
procedures, and then incorporate remote sensing and GIS tools into an integrative method 
for data fusion and registration.  

The proposed application for data fusion proved to be able to integrate several different 
types of data acquired from different sensors, and which are additionally dissimilar in 
rotation, translation, and possible scaling. The data fusion operated by fuzzy logic is a final 
product of the application. This approach is an important stage for quality assurance and 
validation but furthermore for information fusion in current and future remote sensing 
systems with multi-sensor sources.  
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The multi-dimensionality (5-D) of the developed urban environment application provides 
services such as thematic and thermal mapping, and a complete quantitative review of the 
building and its surroundings. These services are completed by providing the ability for 
accurate temporal monitoring and dynamic changes (changed detection) observations. The 
application design shows the possibility of delivering integrated information, and thus 
holistic views of whole urban environments, in a freeze-frame view of the spatio-temporal 
domain.  

6. Conclusion 
In conclusion, the suggested application may provide the urban planners, civil engineers 
and decision makers with tools to consider quantitative spectral information and temporal 
investigation in the 3-D urban space. It is seamlessly integrating the multi-sensor, multi-
dimensional, multi-scaling and multi-temporal data into a 5-D operated system. The 
application provides a general overview of thematic maps, and the complete quantitative 
assessment for any building and its surroundings in a 3-D natural environment, as well as, 
the holistic view of urban environment. 
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1. Introduction 

The complexity of wave motion in deep waters, which can damage marine platforms and 
vessels, and in shallow waters, same that can afflict human settlements and recreational 
areas, has given origin to a long-term development in laboratory and field studies, the 
conclusions of which are used to design methodology and set bases to understand wave 
motion behavior. 

Via remote sensing, the use of radar images and optical processing of aerial photographs has 
been used. The interest in wave data is manifold; one element is the inherent interest in the 
directional spectra of waves and how they influence the marine environment and the 
coastline. These wave data can be readily and accurately collected by aerial photographs of 
the wave sun glint patterns which show reflections of the Sun and sky light from the water 
and thus offer high-contrast wave images. 

In a series of articles, Cox and Munk (1954a, 1954b, 1955) studied the distribution of 
intensity or glitter pattern in aerial photographs of the sea. One of their conclusions was that 
for constant and moderate wind speed, the probability density function of the slopes is 
approximately Gaussian. This could be taken as an indication that in certain circumstances, 
the ocean surface could be modeled as a Gaussian random process. Similar observations by 
Longuet-Higgins et al. (1963) (cited by Longuet-Higgins (1962)) with a floating buoy, which 
filters out the high-frequency components, come considerably closer to the Gaussian 
distribution.  

Other authors (Stilwell, 1969; Stilwell & Pilon, 1974) have studied the same problem 
considering a sea surface illuminated by a continuous sky light with no azimuthal variations 
in sky radiance. Different models of sky light have been used emphasizing the existence of a 
nonlinear relationship between the slope spectrum and the corresponding wave image 
spectrum (Peppers & Ostrem, 1978; Chapman & Irani, 1981). 

Simulated sea surfaces have been analyzed by optical systems to understand the optical 
technique in order to obtain best qualitative information of the spectrum (Álvarez-Borrego, 
1987; Álvarez-Borrego & Machado, 1985). 



 
Remote Sensing – Advanced Techniques and Platforms 52

Fuks and Charnotskii (2006) derived the joint probability density function of surface height 
and partial second derivatives for an ensemble of specular points at a random rough 
Gaussian isotropic surface at normal incidence. However, in a real physical situation, 
consideration of Gaussian statistics can be a very good approximation. 

Cox and Munk (1956) observed that the center of the glitter pattern images had shifted 
downwind from the grid center. This shift can be associated with an up/downwind 
asymmetry of the wave profile (Munk, 2009). Surfaces of small positive slope are more 
probable than those of negative slope; large positive slopes are less probable than larger 
negative slopes, thus permitting the restraint of a zero mean slope (Bréon & Henrist, 2006). 

According with Longuet-Higgins (1963) the sea surface slopes have a Gaussian probability 
function to a first approximation. In the next approximation skewness is taken into account. 
The kurtosis is zero, as are all the higher cumulants. In the next approximation, the 
distribution is given taken into account the kurtosis. 

Walter Munk (2009) writes that the skewness appears to be correlated with a rather sudden 
onset of breaking for winds above 4 m s-1 and he does not think that skewness comes from 
parasitic capillaries. Chapron et al. (2002) suggest that the actual waves form under near-
breaking conditions, along with the varying population and length scales for these breaking 
events, should also contribute to the skewness. 

In this chapter we will consider two different cases to analyze statistical properties of 
surface slopes via remote sensing: first we assume the fluctuation of the surface slopes to be 
statistically Gaussian and the second case we assume the fluctuation of the surface slopes to 
be statistically non-Gaussian. We, also, assume that the surfaces are illuminated by a source, 
the Sun, of a fixed angular extent,  , and imaged through a lens that subtends a very small 
solid angle. With these considerations, we calculated their images, as they would be formed 
by a signal clipping detector. In order to do this, we define a “glitter function”, which 
operates on the slope of the surfaces. In the first case we consider two situations: the 
detector line of sight angle, d , is constant for each point on the surface and d  is variable 
for each point in the surface. In the second case, with non-Gaussian statistics, we consider 

d  variable for each point in the surface only, because we consider that this case is more 
realistic. 

2. Geometry of the model (Gaussian case considering a constant detector 
angle) 

The physical situation is shown in figure 1. The surface  x  is illuminated by a uniform 
incoherent source S of limited angular extent, with wavelength  . Its image is formed in D 
by an aberration free optical system. The incidence angle, s , is defined as the angle 
between the incidence angle direction and the normal to the mean surface. Then, in figure 1, 

s , represents the mean angle subtended by the source S and d represents the mean angle 
subtended by the optical system of the detector with the normal to the mean surface. 

The apparent diameter of the source is   and of the detector is d . Light from the source is 
reflected on the surface just one time and, depending on the slope, the light reflected will or 
will not be part of the image. In broad terms, the image consists of bright and dark regions 
that we call a glitter pattern.  represents the angle between the x axis and the surface, and  
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Fig. 1. The detector is located in the zenith of each reflection point in the profile. 

  represents the angle between the normal to the plane and the source S. This angle is given 
by ,s    and the specular angle is given by .r     From this two equations we can 
write 

 2r s    . (1) 

Because the source has a finite size, there are several incidence directions which are specular 
reflected to the camera. The directions, os (where this angle is the angular dimension of the 

Sun), where there are incidence rays which are determined by the condition 

 ,
2 2s os s   
     (2) 

in other words, the source is angularly described by the function,  os  , can be written like 

   ,os s
os rect

 
  

 

 
 


 (3) 

where rect(.) represents the rectangle function (Gaskill, 1978). 

So, the projection of this source on the detector, after reflection, is given by 

 2 2
2 2s s     
      , (4) 

   r
R rect

 
  

 

 
 


,  (5) 

where equation (1) is taken into account. 
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On the other side, the detection system pupil can be represented by the function 

   dP rect
d
   

 

 


. (6) 

The intensity light I , arriving to the detection plane D depends on the overlap between the 
functions  R  and  P  , and can be approximated by 

    
2

2

RI P d



 




    . (7) 

In practical situations d  is so smaller than  , that we can to approximate 

    ,dP      where   is the Dirac delta, of this way 

 
  ,R d

d r

I

rect



 
  

 

 

 


. (8) 

The light reflection will arrive to the detector D when 

 ,
2 2r d r   
     (9) 

and because 2r s    , we have 

 .
2 4 2 4

s d s d 
   

      (10) 

Defining tan ,    / 2s d    and tan ,o   and using the relationship 

   2tan 4 tan 1 tan 4 ,        valid for small 4 , we obtain the next condition for 

the slopes 

    2 21 1 .
4 4o o o o          
 

 (11) 

We find then the “glitter function”, given by 

  
 2

.
1 2

o

o

B rect
 

        
  (12) 

This expression (eq. 12) tell us that the geometry of the problem selects a surface slope 
region and encodes like bright points in the image (glitter pattern). 
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2.1 Relationship among the variances of the intensities in the image, surface slopes 
and surface heights 

The mean of the image, I , may be written (Papoulis, 1981) 

    ( ) ,I I x B p d




      (13) 

where  B   is defined by equation (12) and  p   is the probability density function in one 
dimension, where in a first approximation a Gaussian function is considered. Substituting in 
equation (13) the expressions for  B   and  p  , we have 

 
   

2

1/2 22

1
( ) exp .

22 1 2

o
I

o

I x rect d




                 
   

 (14) 

Defining   21 4o oa       and   21 4 ,o ob       we can write 

   1
.

2 2 2I
b a

I x erf erf
 

    
              


 

 (15) 

The variance of the intensities in the image, 2
I , is defined by (Papoulis, 1981) 

        2 22 2 .I II x I x B p d




            (16) 

But,    2 ,B B    then    2 ,I x I x  therefore 

      22 1 ,I I II x I x        (17) 

and substituting the expression of  I x , equation (15), in equation (17), we have 

 

2

2 1 1
,

2 22 2 2 2I
b a b a

erf erf erf erf
   

           
                                    


   

 (18) 

which is the required relation between the variance of the intensities in the image, 2
I , and 

the variance of the surface slopes, 2
 . 

The relation (18) is shown in figure 2 for some typical cases, using the geometry described 
above, with 0o

d   and 0.68 .o  In the horizontal axis we have the variance of the surface 
slopes, 2

 , and in the vertical axis we have the variance of the intensities of the image, 2
I . 

In the figure we can observe the dependence of this relationship with the angular position of 
the source, s . In figure 2 we also can observe that for small incidence angles (0-10 degrees) 
and small values of variance of the surface slopes, it is possible to obtain bigger values in the 
variance of the intensities in the image. From equation (18), we can see that this behavior is 
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independent of any surface height power spectrum that we are analyzing, because this 
relation depends on the probability density function of the surface slopes and the geometry 
of the experiment only. 

 
Fig. 2. Relationship between the variance of the surface slopes with the variance of the 
intensities in the image. 

In certain cases, figure 2, if we have data corresponding to a s  value only, it is not possible 
to obtain the variance of the surface slopes, 2

 , because for a value of 2
I  we will have two 

possible values of 2
 . To solve this problem, it is necessary to analyze images which 

correspond at two or more incidence angles and to select a slope variance value which is 
consistent with all these data. 

The relationship between 2
  and 2

  can be derived from (Papoulis, 1981) 

    2

2 ,
d C

C
d    




 (19) 

if we know the correlation function of the surface heights (this will be shown in next section 
of this chapter). Here,  C   is the correlation function of the surface heights and  C   is 
the correlation function of the surface slopes. 

2.2 Relationship between the correlation function of the intensities in the image and 
of the surface heights 

Our analysis involves three random processes: the surface profile,   ,x  its surface slopes, 
  ,x  and the image,  .I x  Each process has a correlation function and it was shown 

(Álvarez-Borrego, 1993) that these three functions hold a relationship. 
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The relationship between correlation functions of the surface heights,  C  , and the surface 
slopes,  C  , is given by equation (19), and the relationship between  C   and the 
correlation function of the intensities in the image,  IC  , is given by (Álvarez-Borrego, 1993) 

      
 

 
 

2 2
1 2 1 2 1 22

1 21/2 2 22 2

2
exp .

2 12 1
I I

B B C
C d d

CC

 


    

           
       

 


 
  

 (20) 

In order to achieve the inverse process, using equation (19) and equation (20), these two 
equations must meet certain conditions. For example, it is required that there exists one to 
one correspondence among the amount involved. 

Using equation (19) the processed data can be numerically integrated twice, such that we 
obtain information of the correlation function of the surface heights,  C  , from the 
correlation function of the surface slopes,  C  . Although equation (20) is a more 
complicated expression, we cannot obtain an analytical result from it. A first integral can be 
analytically solved and for the second it is possible to obtain the solution by numerical 
integration. Resolving the first integral analytically, equation (20) can be written like 

   
 

 
 

2
2 22 2

22 2 2 2 2

2
exp ,

4 2 2 1 2 1

b

I I
a

b C a C
C erf erf d

C C

 

     

    
                                      


 

 
      

  (21) 

where  21 4o oa        and  21 4.o ob        

So, a relationship between values of the correlation function of the intensities in the image, 
 IC  , and the values of the correlation function of the surface slopes takes,  C  , can be 

obtained (Figure 3). In this case, to small angles we can find higher values for the correlation 
function of the intensities in the image. In all the cases, the angular position of the camera or 
detector, d , is zero and 2

 =0.03 . The correlation functions of figure 3 are normalized. 

Also, from equation (19), it is possible to obtain the correlation function of the surface 
heights,  C  , from  C   and the require inverse process to determine the correlation 
function of the surface heights is completed. 

A theoretical variance 2
I  can be calculated from equation (21). We wrote in Table 1 the 

values of the image variance in order to normalize the correlations in figure 3 for different 
values for s . 

 

s  
2
  2

I  

10 0.03 0.0119734700 
20 0.03 0.0083223130 
30 0.03 0.0044081650 
40 0.03 0.0016988780 
50 0.03 0.0004438386 

Table 1. Values of the image variance in order to normalize the correlations in figure 3 for 
different values for s .  
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Fig. 3. Relationship between the correlation function of the surface slopes and the correlation 
function of the intensities in the image. 

3. Geometry of the model (Gaussian case considering a variable detector 
angle) 

A more real physical situation is shown in figure 4. The surface,  x , is illuminated by a 
uniform incoherent source S of limited angular extent, with wavelength  . Its image is 
formed in D by an aberration-free optical system. The incidence angle s  is defined as the 
angle between the incidence angle direction and the normal to the mean surface and 
represents the mean angle subtended by the source S.  d i

  corresponds to the angle 
subtended by the optical system of the detector with the normal to point i  of the surface, 
i. e. 

   1tan ,d i

i x
H

    
 

   (22) 

where H is the height of the detector and x  is the interval between surface points. We can 
see that in this more realistic physical situation, angle d  is changing with respect to each 
point in the surface. It is worth noticing that a variable d  does not restrict the sensor field 
of view. 

i  is the angle subtended between the normal to the mean surface and the normal to the 

slope for each i  point in the surface 

 
  11

tan .
2 2 2

s d i s
i

i x
H

      
 

     (23) 

The apparent diameter of the source is  . Light from the source is reflected on the surface 
for just one time, and, depending on the slope, the light reflected will or will not be part of 
the image. Thus, the image consists of bright and dark regions that we call a glitter pattern. 
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Fig. 4. Geometry of the real physical situation. Counterclockwise angles are considered as 
positive and clockwise angles as negative. 

The glitter function can be expressed as (Álvarez-Borrego & Martín-Atienza, 2010) 

  
 2

,
1

2

i oi
i

oi

B rect

 
  

   
  
 

   (24) 

where  

    2 21 1 ,
4 4oi oi i oi oi          
 

  (25) 

  tan ,i i     (26) 

 
 

tan .
2

s d i
oi

 
   

  

 
  (27) 

The interval characterized by equation (25) defines a specular band where certain slopes 
generate bright spots in the image. This band has now a nonlinear slope due to the variation 
of  d i

  with respect to each i  point of the surface (Figure 5). Combining equations (25) – 
(27), the slope interval, where a bright spot is received by the detector, is 

 1 11 1
tan tan .

2 2 4 2 2 4
s s

i
i x i x
H H

             
   

     (28) 

3.1 Relationships among the variances of the intensities in the image and surface 
slopes 

The mean of the image I  may be written as (Álvarez-Borrego & Martín-Atienza, 2010) 
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Fig. 5. All the random processes involved in our analysis. The specular band corresponds to 
bright regions in the image. 

       ,I i i iI x B p d




       (29) 

where  iB   is the glitter function defined be equation (24).  ip   is the probability 
density function, where a Gaussian function is considered in one dimension. Substituting in 
equation (29) the expressions for  iB   and  ip  , we have 

  
 

2

221

1 1
exp .

2 21
2

N
i oi i

I i
i

oi

I x rect d
N



  

 
    

       
   

 

    
  (30) 

The detector angle d is a function of the position x ; thus, the specular angle is a function of 
the distance x  from the nadir point of the detector 0n   to the point n i (equation 22). 

Defining  21 4i oi oia        and  21 4i oi oib       , we can write 

  
1

1 1
.

2 2 2

N
i i

I
i

b a
I x erf erf

N   

    
              


 

  (31) 

The variance of the intensities in the image 2
I  is defined by (Álvarez-Borrego & Martín-

Atienza, 2010) 
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        222 2

1

1
.

N

I i I i i
i

I x I x B p d
N



 

             (32) 

However,  iB  =  2
iB  , then  2I x =  I x ; therefore 

      22 1 .I I II x I x        (33) 

Substituting the equation (31) in equation (33), we have 

 

2
2

1

1 1 1
,

2 42 2 2 2

N
i i i i

I
i

b a b a
erf erf erf erf

N N    

                                                


   
  (34) 

which is the required relationship between the variance of the intensities in the image 2
I  

and the variance of the surface slopes 2
 . 

The relationship between the variance of the surface slopes and the variances of the 
intensities of the image for different s  angles (10o-50o) is shown in figure 6 (equation 34). 
The detector is located as shown in figure 4 and the subtended angle by the source is

0.68o . When the camera detector is at H=100 m the behavior of the curves look similar 
to the curves shown in Álvarez-Borrego & Martín-Atienza, 2010 (figure 6a). In this case, we 
also can observe that, for big incidence angles (40o – 50o) and small values of variance of the 
surface slopes, it is possible to obtain bigger values in the variance of the intensities in the 
image.  

If we analyze the figure 6j we can observe that 2
I  increases for lower s  values (10o-20o). 

These results match with the results presented by Álvarez-Borrego in 1993. Figure 6j was 
made considering an H=1000 m. The reason for this match is that the condition proposed by 
Álvarez-Borrego in 1993 considers a d  value constant (see figure 2). This condition is 
similar to have the sensor camera to an H value very high where the surface slopes values 
are considered almost constant.  

Figure 6 shows how these relationships ( 2
I  versus 2

 ) are changing while H is being 
bigger. Dark lines show limit extremes for s  of 10o and 50o. It can be seen that when H is 
increasing to 200 m the line of 50o starts to decay and start to cross with the others. In so far 
as H goes up, the lines, with larger s  go down until the order of the curves change. The 
explanation for this is very simple: if the camera stays at H=100 m, it will receive more 
reflection of light at large s , because the geometry of reflection. When H increases, the 
camera will receive less light reflection of large incidence angles but will have more light 
reflection for small incidence angles. Therefore, when the camera is at a larger height, will 
have more reflection from light incidence angles smaller than light of larger incidence 
angles. Thus we can say that the results presented by Álvarez-Borrego in 1993, Cureton et 
al., 2007 and Álvarez-Borrego & Martín-Atienza in 2010 are correct for the Gaussian case. 

In certain cases, if we have data corresponding to one s  value, it is not possible to obtain a 
single value for the variance of the surface slopes 2

 . To solve this problem, it is necessary 
to analyze images which correspond at two or more incidence angles and to select a slope 
variance value which is consistent with all these data (Álvarez-Borrego, 1995). 
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Fig. 6. Relationship between the variance of the surface slopes and the variance of the 
intensities of the image for different H values. 

From equation (34), we can see that this relation depends on the probability density function 
of the surface slopes and the geometry of the experiment only. 
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3.2 Relationship between the correlation functions of the intensities in the image and 
of the surface slope 

The relationship between the correlation function of the surface slopes  C   and the 

correlation functions of the intensities in the image  IC   is given by 

        2
1 2 1 2 1 2

1 1

1 1
, ,

N N

I I i i i i i i
i i

C B B p d d
N N

 

  

            (35) 

where  1 2,i ip    is defined by 
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Although it is possible to obtain an analytical relationship for the first integral, for the 
second integral the process must be numeric. Thus, eq. (35) can be written like 

   
 

 
 

2
2 22 2

22 2 2 2 21 1

1 1 2
exp ,

4 2 2 1 2 1

i

i

bN N
i i

I I
i ia

b C a C
C erf erf d

N N C C

 

       

    
                                     

 
 

 
      

  (37) 

where  21 4i oi oia       and  21 4.i oi oib       

In order to avoid computer memory problems, the 16384 data point profile was divided into 
into a number of consecutive intervals. The value of d varies point to point in the profile. 
For each interval and for each s  value, the relationship between the correlation functions 

 IC   and  C   was calculated. Then, the several computed relationships for each s  
value were averaged. 

In this case we used a value of 2
 =0.03 . The correlation function of the intensities in the 

image is not normalized. Similar to the behavior of the variances, when H increases the 
behavior of the curves have a similar process. A theoretical variance 2

I  can be calculated 
from equation (37). We wrote in Table 2 the values of the image variance in order to 
normalize the correlations in figure 7 for different values for s  and H (100, 500, 1000 and 
5000 m).  

4. Geometry of the model (Non-Gaussian case considering a variable 
detector angle) 

The model, considering d as variable, is shown in figure 4. We think this is a more realistic 
situation. 

4.1 Relationships among the variances of the intensities in the image and surface 
slopes considering a non-Gaussian probability density function 

The mean of the image I  may be written as (Álvarez-Borrego & Martín-Atienza, 2010): 
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H s  
2
  2

I  

100 10 0.03 0.00003160564 

100 20 0.03 0.00005271762 

100 30 0.03 0.00014855790 

100 40 0.03 0.00058990210 

100 50 0.03 0.00195377600 

500 10 0.03 0.00015853820 

500 20 0.03 0.00023902050 

500 30 0.03 0.00043911520 

500 40 0.03 0.00107317300 

500 50 0.03 0.00269619900 

1000 10 0.03 0.00031712280 

1000 20 0.03 0.00047002010 

1000 30 0.03 0.00078709770 

1000 40 0.03 0.00161060600 

1000 50 0.03 0.00344703200 

5000 10 0.03 0.00158160000 

5000 20 0.03 0.00228022000 

5000 30 0.03 0.00332568200 

5000 40 0.03 0.00498063700 

5000 50 0.03 0.00723998800 

Table 2. Values of the image variance in order to normalize the correlations in figure 7 for 
different values for s  and H. 

      
1

1 N

I i i i
i

I x B p d
N



 

        (38) 

where  iB  is the glitter function defined by equation (24).  ip  is the probability density 

function, where a non-Gaussian function is considered in one dimension (Cureton, 2010) 

     
3 4 2

3 4
2

2
1 1 1

exp 1 3 6 3 ,
6 242 2

i i i i
i

ip  
    

                                                            

  
     

 (39) 

where  3
 is the skewness,  4

  is the kurtosis and  is the standard deviation of the 

surface slopes. 

Substituting in equation (38) the expressions for  iB   and  ip  , we have 
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Fig. 7. Relationship between the correlation function of the surface slopes and the correlation 
function of the intensities in the image. 
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 (40) 

The detector angle d  is a function of the position x, thus, the specular angle is a function of 
the distance x from the nadir point of the detector, n = 0, to the point n = i (see equation (22)). 

Writing again  21 4i oi oia        and  21 4i oi oib      , we can write 
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The variance of the intensities in the image 2
I  is defined by equation (33). Substituting 

equation (41) in equation (33) we have 
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which is the required relationship between the variance of the intensities in the image 2
I  

and the variance of the surface slopes 2
  when a non-Gaussian probability density function 

is considered. 

The relationship between the variance of the surface slopes and the variances of the intensities 
of the image for different s  angles (10o-50o) is shown in figures 8 and 9 (equation 42). Figures 
8 and 9 show this relationship considering the skewness and the skewness and kurtosis in the 
non-Gaussian probability density function respectively. We can see that the behavior of the 
curves looks very similar to the Gaussian case (figure 6). The values for skewness and kurtosis 
were taken from a Table showed by Plant (2003) from data given by Cox & Munk (1956), for a 
wind speed of 13.3 m/s with the wind sensor at 12.5 m on the sea surface level.  

The curves including the skewness and skewness and kurtosis are little higher for small 
values of 2

  compared with the Gaussian case (figure 6) except when s  is below 40o 
where the Gaussian and non-Gaussian cases (considering skewness only) are inverted to 
small surface slope variances, and these results show that 2

I  increases for higher s  values 
(figures 8a and 9a). Cox & Munk (1956) reported 2

  values of 0.04 and 0.05 like maximum 
values of the surface slopes in the wind direction and values of 0.03 in the cross wind 
direction for wind speed bigger than 10 m/s. Thus, we think that in the range for 2

  from 
0-0.05 the behavior of the curves look very clear and separate each one of the other (figures 
8a and 9a). If we analyze the figures 8j and 9j we can observe that 2

I  increases for lower s  
values (10o-20o). 

Figures 8 and 9 show how these relationships ( 2
I versus 2

 ) are changing while H is being 
bigger, where the skewness and skewness and kurtosis are being considered. These curves 
have the same behavior like in the Gaussian case and the explanation for this inversion is 
the same as explained before.  
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Fig. 8. Relationship between the variance of the surface slopes and the variance of the 
intensities of the image, for different H values considering a non-Gaussian probability 
density function where the skewness has been taken account only. 

About the non-Gaussian case we can conclude that the main difference with the Gaussian 
case is the less higher values of the variance of the intensities of the image for small values 
of surface slope variance when s  is in the 40o – 50o range when H=100 m. In addition, when  
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Fig. 9. Relationship between the variance of the surface slopes and the variance of the 
intensities of the image, for different H values considering a non-Gaussian probability 
density function where the skewness and kurtosis have been taken account. 

H=1000 m this condition is inverted, we can find less smaller values of the variance of the 
intensities of the image for small values of surface slope variance when s  is in the 10o – 20o 
range. In the other angles, in both cases, it is not possible to see significant differences 
between the values 10o – 30o when H=100 m and 30o – 50o when H=1000 m. 
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4.2 Relationship between the correlation functions of the intensities in the image and 
of the surface slope considering a non-Gaussian probability density function 

As mentioned before, our analysis involves three random processes: the surface profile 
 x , its surface slopes  x  and the image  I x . Each process has a correlation function 

and it was shown in (Álvarez-Borrego, 1993) that these three functions are related. 

The relationship between the correlation function of the surface slopes  C  and the 
correlation function of the intensities in the image  IC  is given by 

        2
1 2 1 2 1 2

1 1

1 1
, ,

N N

I I i i i i i i
i i

C B B p d d
N N

 

  

            (43) 

where  1 2,i ip    is defined by (Cureton, 2010) 

 

 
 

 
  

 

   

 

2 2
1 1 2 2

1 2 1/2 2 22 2

3
30 21 1

2
21 2 21 2 2 1

12 1

21
, exp

2 12 1

3

3 2
1

1
6

3

i i i i
i i

i i

i i i i

i

C
p

CC

C



  

 
 

   
   




          
     

          
     
                     
         
 





  

 
 

   
   




 

 

2
2 22 1 2

3
03 22 2

,

2

3

i i i

i i

C  
  

 
 

  
  
  
  
  
  
  
  
  

                    
           
             
         

  
  

 
 

  (44) 

where  03
  and  30

  are the skewness,  12
  and  21

  are the relationship between the 
moments of 1i  and 2 i .  

Although it is possible to obtain an analytical relationship for the first integral, for the 
second integral the process must be numeric. Thus, equation (43) can be written like 
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where 
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Figure 10 shows graphically the relationship between the normalized correlation function of 
the surface slopes  

n
C    and the normalized correlation function of the intensities of the 

image  I n
C   . In this case a 2 0.03   was used. When H increases the behavior of the 

curves have a similar process like the variance curves.  

When H=100 m (Figure 10a) the behavior of the curves for s  of 10o – 20o have an “unusual” 
behavior for low surface slope variances when compared with Gaussian case. This is 
because the inversion of the curves starts to lower values of H. In order to avoid memory 
computer problems, the 16384 data points profile was divided into a number of consecutive 
intervals. The value of d varies point to point in the profile. For each interval and for each 

s  value, the relationship between the correlation functions  IC  and  C   was 
calculated. Then, all the computed relationships for each s value were averaged. 

A theoretical variance 2
I  can be calculated from equation (45). We wrote in Table 3 the 

values of the image variance in order to normalize the correlations in figure 10 for different 
values for s  and H (100, 500, 1000 and 5000 m). 
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Fig. 10. Relationship between the correlation function of the surface slopes and the correlation 
function of the intensities in the image. The curves correspond to different values of s . 
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H s  
2
  2

I  

100 10 0.03 0.003126364 
100 20 0.03 0.004354971 
100 30 0.03 0.006071378 
100 40 0.03 0.008187813 
100 50 0.03 0.009875824 
500 10 0.03 0.012038690 
500 20 0.03 0.011886750 
500 30 0.03 0.009668245 
500 40 0.03 0.006645083 
500 50 0.03 0.003959459 
1000 10 0.03 0.012945720 
1000 20 0.03 0.010339930 
1000 30 0.03 0.006902623 
1000 40 0.03 0.004036960 
1000 50 0.03 0.002067475 
5000 10 0.03 0.011358240 
5000 20 0.03 0.007713670 
5000 30 0.03 0.004572885 
5000 40 0.03 0.002406005 
5000 50 0.03 0.001022463 

Table 3. Values of the image variance in order to normalize the correlations in figure 10 for 
different values for s  and H. 

5. Conclusions 

We derive the variance of the surface heights from the variance of the intensities in the 
image via remote sensing considering a glitter function given by equation (12) when the 

geometry consider a detector angle of 0o
d  , and considering a glitter function given by 

the equation (24) considering a geometrically improved model with variable detector line of 
sight angle, given by figure 4. In this last case, we consider Gaussian statistics and non-
Gaussian statistics. We derive the variance of the surface slopes from the variance of the 
intensities of remote sensed images for different H values. In addition, we discussed the 
determination of the correlation function of the surface slopes from the correlation function 
of the image intensities considering Gaussian and non-Gaussian statistics. 

Analyzing the variances curves for Gaussian and non-Gaussian case it is possible to see the 
behavior of the curves for different incident angles when H increases. This behavior agrees 
with the results presented by Álvarez-Borrego (1993) and Geoff Cureton et al. 2007, and 
Álvarez-Borrego and Martin-Atienza (2010) for the Gaussian case. 

These new results solve the inverse problem when it is necessary to analyze the statistical of 
a real sea surface via remote sensing using the image of the glitter pattern of the marine 
surface. 
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1. Introduction 

Multichannel remote sensing (RS) has gained popularity and has been successfully applied 
for solving numerous practical tasks as forestry, agriculture, hydrology, meteorology, 
ecology, urban area and pollution control, etc. (Chang, 2007). Using the term 
“multichannel”, we mean a wide set of imaging approaches and RS systems (complexes) 
including multifrequency and dual/multi polarization radar (Oliver & Quegan, 2004), 
multi- and hyperspectral optical and infrared sensors. While for such radars the number of 
formed images is a few, the number of channels (components or sub-bands) in images can 
be tens, hundreds and even more than one thousand for optical/infrared imagers. 
TerraSAR-X is a good example of modern multichannel radar system; AVIRIS, HYDICE, 
HYPERION and others can serve as examples of modern hyperspectral imagers, both 
airborne and spaceborne (Landgrebe, 2002; Schowengerdt, 2007).  

An idea behind increasing the number of channels is clear and simple: it is possible to expect 
that more useful information can be extracted from more data or this information is more 
reliable and accurate. However, the tendency to increasing the channels’ (sub-band) number 
has also its “black” side. One has to register, to process, to transmit and to store more data. 
Even visualization of the obtained multichannel images for their displaying at tristimuli 
monitors becomes problematic (Zhang et al., 2008). Huge size of the obtained data leads to 
difficulties at any standard stage of multichannel image processing involving calibration, 
georeferencing, compression if used (Zabala et al., 2006). But, probably, the most essential 
problems arise in image pre-filtering and classification.  

The complexity of these tasks deals with the following:  

a. Noise characteristics in multichannel image components can be considerably different 
in the sense of noise type (additive, multiplicative, signal-dependent, mixed), statistics 
(probability density function (PDF), variance), spatial correlation (Kulemin et al., 2004; 
Barducci et al., 2005, Uss et al., 2011, Aiazzi et al., 2006);  
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b. These characteristics can be a priori unknown or known only partly, signal-to-noise 
ratio can considerably vary from one to another component image (Kerekes & Baum, 
2003) and even from one to another data cube of multichannel data obtained for 
different imaging missions;  

c. Although there are numerous books and papers devoted to image filter design and 
performance analysis (Plataniotis &Venetsanopoulos, 2000; Elad, 2010), they mainly 
deal with grayscale and color image processing; there are certain similarities between 
multichannel image filtering and color image denoising but the former case is 
sufficiently more complicated;  

d. Recently, several papers describing possible approaches to multichannel image filtering 
have appeared (De Backer et al., 2008; Amato et al., 2009; Benedetto et al., 2010; Renard 
et al., 2006; Chen & Qian, 2011; Demir et al., 2011, Pizurica & Philips, 2006; Renard et al., 
2008); a positive feature of some of these papers is that they study efficiency of 
denoising together with classification accuracy; this seems to be a correct approach 
since classification (in wide sense) is the final goal of multichannel RS data exploitation 
and filtering is only a pre-requisite for better classification; there are two main 
drawbacks of these papers: noise is either simulated and additive white Gaussian noise 
(AWGN) is usually considered as a model, or aforementioned peculiarities of noise in 
real-life images are not taken into account;  

e. Though efficiency of filtering and classification are to be studied together, there is no 
well established correlation between quantitative criteria commonly used in filtering 
(and lossy compression) as mean square error (MSE), peak signal-to-noise ratio (PSNR) 
and some others and criteria of classification accuracy as probability of correct 
classification (PCC), misclassification matrix, anomaly detection probability and others 
(Christophe et al., 2005);  

f. One problem in studying classification accuracy is availability of numerous classifiers 
currently applied to multichannel images as neural network (NN) ones (Plaza et al., 
2008), Support Vector Machines (SVM) and their modifications (Demir et al., 2011), 
different statistical and clustering tools (Jeon & Landgrebe, 1999), Spectral Angle 
Mapper (SAM) (Renard et al., 2008), etc.;  

g. It is quite difficult to establish what classifier is the best with application to 
multichannel RS data because classifier performance depends upon many factors as 
methodology of learning, parameters (as number of layers and neurons in them for 
NN), number of classes and features’ separability, etc.; it seems that many researchers 
are simply exploiting one or two classifiers that are either available as ready computer 
tools or for which the users have certain experience; 

h. Dimensionality reduction, especially for hyperspectral data, is often used to simplify 
classification, to accelerate learning, to avoid dealing with spectral bands for which 
signal-to-noise ratios (SNRs) are quite low (Chen & Qian, 2011) due to atmospheric 
effects; to exploit only data from those sub-bands that are the most informative for 
solving a given particular task (Popov et al.., 2011); however, it is not clear how to 
perform dimensionality reduction in an optimal manner and how filtering influences 
dimensionality reduction;  

i. Test multichannel images for which it could be possible to analyze efficiency of filtering 
and accuracy of classification are absent; because of this, people either add noise of 
quite high level to real-life data (that seem practically noise free) artificially or 
characterize efficiency of denoising by the “final result”, i.e. by increasing the PCC 
(Chen & Qian, 2011).  
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It follows from the aforesaid that it is impossible to take into account all factors mentioned 
above. Thus, it seems reasonable to concentrate on considering several particular aspects. 
Therefore, within this Chapter we concentrate on analyzing multichannel data information 
component and noise characteristics first. To our opinion, this is needed for better 
understanding of what are peculiarities of requirements to filtering and what approaches to 
denoising can be applied. All these questions are thoroughly discussed in Section 2 with 
taking into account recent advances in theory and practice of image filtering. Besides, we 
briefly consider some aspects of classifier training in Section 3. Section 4 deals with analysis 
of classification results for three-channel data created on basis of Landsat images with 
artificially added noise. Throughout the Chapter, we present examples from real-life RS 
images of different origin to provide generality of analysis and conclusions.  

One can expect that more efficient filtering leads to better classification. This expectation is, 
in general, correct. However, considering image filtering, one should always keep in mind 
that alongside with noise removal (which is a positive effect) any filter produces distortions 
and artefacts (negative effects) that influence RS data classification as well. Because of this, 
filtering, to be reasonable for applying, has to provide more positive effects than negative 
ones from the viewpoint of solving a final task, RS data classification in the considered 
case.  

2. Approaches to multichannel image filtering 

2.1 Information content and noise characteristics 

Speaking very simply, benefits of multichannel remote sensing compared to single-channel 
mode are due to the following reasons. First, availability of multichannel (especially 
hyperspectral) data allows solving many particular tasks since while for one particular task 
one subset of sub-band data is “optimal”, another subset is “optimal” for solving another 
task. Thus, multichannel remote sensing is multi-purpose allowing different users to be 
satisfied with employing data collected one time for a given territory. Second, useful 
information is often extracted by exploiting certain similarity of information content in 
component images and practical independence of noise in these components. Thus, efficient 
SNR increases due to forming and processing more sub-band images.  

Really, correlation of information content in multichannel RS data is usually high. Let us 
give one example. Consider hyperspectral data provided by AVIRIS airborne system 
(available at http://aviris.jpl.nasa.gov/aviris) that can be represented as ( , , )I i j   where 

1,..., , 1,...,im imi I j J   denote image size and   is wavelength, , 1,...k k K  defines 
wavelength for a k-th subband (the total number of sub-bands for AVIRIS images is 224). Let 
us analyze cross-correlation factors determined for neighbouring k-th and k+1-th sub-band 
images as  

 1
1 1 1

1 1

( ( ( , , ) ( ))( ( , , ) ( ))) /( )
im imI J

k k
k mean k k mean k im im k k

i j

R I i j I I i j I I J     
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( ( , , ) ( )) /( 1)
im imI J

k k mean k im im
i j

I i j I I J  
 

    

The obtained plot for AVIRIS data is presented in Fig. 1. It is seen that for most neighbour 
sub-bands the values of 1k kR   are close to unity confirming high correlation (very similar 
content) of these images. There are such k for which 1k kR   considerably differs from unity. 
In particular, this happens for several first sub-bands, several last sub-bands, sub-bands 
with k about 110 and 160. The main reason for this is the presence of noise.  
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Fig. 1. The plot 1 , 1,...,223k kR k   for AVIRIS image Moffett Field  

To prove this, let us present data from the papers (Ponomarenko et al., 2006) and (Lukin et 
al., 2010b). Based on blind estimates of additive noise standard deviations in sub-band 
images 2

ad k , robust modified estimates PSNRmod have been obtained for all channels 
(modifications have been introduced for reducing the influence of hot pixel values):  

 2 2
mod 10 99% 1%( ) 10log (( ( ) ( )) / ad kPSNR k I k I k     (2) 

where %( )qI k  defines q-th percent quintile of image values in k-th sub-band image.  

The plot is presented in Fig. 2. Comparing the plots in Figures 1 and 2, it can be concluded 
that rather small 1k kR   are observed for such subintervals of k for which mod( )PSNR k  are 
also quite small. Thus, there is strict relation between these parameters.  

There is also relation between mod( )PSNR k  and SNR for sub-band images analyzed in Ref. 
(Curran & Dungan, 1989). In this sense, one important peculiarity of multichannel 
(especially, hyperspectral) data is to be stressed. Dynamic range of the data in sub-band 
images characterized by max min( ) ( )I k I k  (maximal and minimal values for a given k-th sub-
band) varies a lot. Note that to avoid problems with hot pixels and outliers in data, it is also 
possible to characterize dynamic range by 99% 1%( ) ( )I k I k  exploited in (2). 

The plot of 99% 1%( ) ( ) ( )robD k I k I k   is presented in Fig. 3. It follows from its analysis that a 
general tendency is decreasing of ( )robD k  when k (and wavelength) increases with having 
sharp jumps down for sub-bands where atmospheric absorption and other physical effects 
take place. Though both mod( )PSNR k  and SNR can characterize noise influence (intensity) 
in images, we prefer to analyze mod( )PSNR k  and PSNR below as parameters more 
commonly used in practice of filter efficiency analysis. Strictly saying, mod( )PSNR k  differs  
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Fig. 2. mod( )PSNR k  for the same image as in Fig. 1 
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Fig. 3. Robustly estimated dynamic range ( )robD k  

from traditional PSNR, but for images without outliers this difference is not large and the 
tendencies observed for PSNR take place for mod( )PSNR k  as well.  

Noise characteristics in multichannel image channels can be rather different as well. The 
situation when noise type is different happens very seldom (this is possible if, e.g., optical 
and synthetic aperture radar (SAR) data are fused (Gungor & Shan, 2006) where additive 
noise model is typical for optical data and multiplicative noise is natural for radar ones). The 
same type of noise present in all component images is the case met much more often. 
However, noise type can be not simple and noise characteristics (e.g., variance) can change 
in rather wide limits. Let us give one example. The estimated standard deviation (STD) of 
additive noise for all sub-band images is presented in Fig. 4. As it is seen, the estimates vary 
a lot. Even though these are estimates with a limited accuracy, the observed variations 
clearly demonstrate that noise statistics is not constant.  

A more thorough analysis (Uss et al., 2011) shows that noise is not purely additive but signal 
dependent even for data provided by such old hyperspectral sensors as AVIRIS. Sufficient 
variations of signal dependent noise parameters from one band to another are observed. 
Recent studies (Barducci et al., 2005, Alparone et al., 2006) demonstrate a clear tendency for 
signal-dependent noise component to become prevailing (over additive one) for new 
generation hyperspectral sensors. This means that special attention should be paid to this 
tendency in filter design and efficiency analysis with application to multichannel data 
denoising and classification. Although the methods of multichannel image denoising 
designed on basis of the additive noise model with identical variance in all component  
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Fig. 4. Estimated STD of noise for components of the same AVIRIS image  

images can provide a certain degree of noise removal, they are surely not optimal for the 
considered task.  

Consider one more example. Figure 5 presents two components of dual-polarisation (HH 
and VV) 512x512 pixel fragment SAR image of Indonesia formed by TerraSAR-X spaceborne 
system (http://www.infoterra.de/tsx/freedata/start.php). Amplitude images are formed 
from complex-valued data offered at this site. As it is seen, the HH and VV images are 
similar to each other although both are corrupted by fully developed speckle and there are 
some differences in intensity of backscattering for specific small sized objects placed on 
water surface (left part of images, dark pixels). The value of cross-correlation factor (1) is 
equal to 0.63, i.e. it is quite small. Both images have been separately denoised by the DCT-
based filter adapted to multiplicative nature of noise (with the same characteristics for both 
images) and spatial correlation of speckle (Ponomarenko et al., 2008a). The filtered images 
are represented in Fig. 6 where it is seen that speckle has been effectively suppressed. 
Filtering has considerably increased inter-channel correlation, it is equal to 0.85 for denoised 
images. This indirectly confirms that low values of inter-channel correlation factor in 
original RS data can be due to noise.  

 
HH 

 
VV 

Fig. 5. The 512x512 pixel fragment SAR images of Indonesia for two polarizations  
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Fig. 6. The SAR images after denoising  

The given example for dual polarization SAR data is also typical in the sense that noise in 
component images can be not additive (speckle is pure multiplicative) and not Gaussian (it 
has Rayleigh distribution for the considered amplitude single look SAR images). For the 
presented example of HH and VV polarization images statistical and spatial correlation 
characteristics of speckle are practically identical in both component images, but it is not 
always the case for multichannel radar images.  

The presented results clearly demonstrate that noise in multichannel RS images can be 
signal-dependent where its variance (and sometimes even PDF) depends upon information 
signal (image). Noise statistics can also vary from one sub-band image to another. These 
peculiarities have to be taken into account in multichannel image simulation, filter and 
classifier design and performance analysis.  

2.2 Component-wise and vector filtering 

If one deals with 3D data as multichannel RS images, an idea comes immediately that 
filtering can be carried out either component-wise or in a vector (3D) manner. This was 
understood more than 20 years ago when researchers and engineers ran into necessity to 
process colour RGB images (Astola et al.,1990). Whilst for colour images there are actually 
only these two ways, for multichannel images there is also a compromise variant of 
processing not entire 3D volume of data but also certain groups (sets) of channels (sub-
bands) (Uss et al., 2011). As analogue of this situation, we can refer to filtering of video 
where a set of subsequent frames can be used for denoising (Dabov et al., 2007). There is 
also possibility to apply denoising only to some but not all component images. In this sense, 
it is worth mentioning the paper (Philips et al., 2009). It is demonstrated there that pre-
filtering of some sub-band images can make them useful for improving hyperspectral data 
classification carried out using reduced sets of the most informative channels. However, the 
proposed solution to apply the median filter with scanning windows of different size 
component-wise is, to our opinion, not the best choice.  
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Thus, there are quite many opportunities and each way has its own advantages and 
drawbacks. Keeping in mind the peculiarities of image and noise discussed above, let us 
start from the simplest case of component-wise filtering. It is clear that more efficient 
filtering leads, in general, to better classification (although strict relationships between 
conventional quantitative criteria characterizing filtering efficiency and classifier 
performance are not established yet). Therefore, let us revisit recent achievements and 
advances in theory and practice of grayscale image filtering and analyze in what degree 
they can be useful for hyperspectral image denoising. 

Recall that the case of additive white Gaussian noise (AWGN) present in images has been 
studied most often. Recently, the theoretical limits of denoising efficiency in terms of output 
mean square error (MSE) within non-local filtering approach have been obtained (Chatterjee 
& Milanfar, 2010). The authors have presented results for a wide variety of test images and 
noise variance values. Moreover, the authors have provided software that allows calculating 
potential (minimal reachable) output MSE for a given noise-free grayscale image for a given 
standard deviation of AWGN. Later, in the paper (Chatterjee & Milanfar, 2011), it has been 
shown how potential output MSE can be accurately predicted for a noisy image at hand. 

This allows drawing important conclusions as follows. First, potential reduction of output 
MSE compared to variance of AWGN in original image depends upon image complexity 
and noise intensity. Reduction is large if an image is quite simple and noise variance is large, 
i.e. if input SNR (and PSNR) of an image to be filtered is low. For textural images and high 
input SNR, potential output MSE can be by only 1.2...1.5 times smaller than AWGN variance 
(see also data in the papers (Lukin at al., 2011, Ponomarenko et al., 2011, Fevralev et al., 
2011)). This means that filtering becomes practically inefficient in the sense that positive 
effect of noise removal is almost “compensated” by negative effect of distortion introducing 
inherent for any denoising method in less or larger degree. With application to 
hyperspectral data filtering, this leads to the aforementioned idea that not all component 
images are to be filtered. The preliminary conclusion then is that sub-band images with 
rather high SNR are to be kept untouched whilst other ones can be denoised. A question is 
then what can be (automatic) rules for deciding what sub-band images to denoise and what 
to remain unfiltered? Unfortunately, such rules and automatic procedures are not proposed 
and tested yet. As preliminary considerations, we can state only that if input PSNR is larger 
than 35 dB, then it is hard to provide PSNR improvement due to filtering by more than 2...3 
dB. Moreover, for input PSNR>35 dB, AWGN in original images is almost not seen (it can be 
observed only in homogeneous image regions with rather small mean intensity). Because of 
this, denoised and original component images might seem almost identical (Fevralev et al., 
2011). Then it comes a question is it worth carrying out denoising for such component 
images with rather large input PSNR in the sense of filtering positive impact on 
classification accuracy. We will turn back to this question later in Section 4.  

The second important conclusion that comes from the analysis in (Chatterjee & Milanfar, 
2010) is that the best performance for grayscale image filtering is currently provided by the 
methods that belong to the non-local denoising group (Elad, 2010; Foi et al., 2007; Kervrann 
& Boulanger, 2008). The best orthogonal transform based methods are comparable to non-
local ones in efficiency, especially if processed images are not too simple (Lukin et al., 
2011a). Let us see how efficient these methods can be with application to component-wise 
processing of multichannel RS data.  
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Although noise is mostly signal-dependent in component images of hyperspectral data, 
there are certain sub-bands where dynamic range is quite small and additive noise 
component is dominant or comparable to signal-dependent one (Uss et al., 2011; Lukin et al., 
2011b). One such image (sub-band 221 of the AVIRIS data set Cuprite) is presented in Fig. 7,a. 
Noise is clearly seen in this image and the estimated variance of additive noise component is 
about 30. The output image for the BM3D filter (Foi et al., 2007) which is currently the best 
among non-local denoisers is given in Fig. 7,b. Noise is suppressed and all details and edges 
are preserved well.  

  
           (a)              (b) 

Fig. 7. Original 221 sub-band AVIRIS image Cuprite (a) and the output of BM3D filter (b)  

However, applying the non-local filters becomes problematic if noise does not fit the 
(dominant) AWGN model considered above. There are several problems and few known 
ways out. The first problem is that the non-local denoising methods are mostly designed 
for removal of AWGN. Recall that these methods are based on searching for similar 
patches in a given image. The search becomes much more complicated if noise is not 
additive and, especially, if noise is spatially correlated. One way out is to apply a properly 
selected homomorphic variance-stabilizing transform to convert a signal dependent noise 
to pure additive and then to use non-local filtering (Mäkitalo et al., 2010). This is possible 
for certain types of signal-dependent noise (Deledalle et al., 2011, see also 
www.cs.tut.fi/~foi/optvst). Thus, the considered processing procedure becomes 
applicable under condition that the noise in an image is of known type, its characteristics 
are known or properly (accurately) pre-estimated and there exists the corresponding pair 
of homomorphic transforms. Examples of signal dependent noise types for which such 
transforms exist are pure multiplicative noise (direct transform is of logarithmic type), 
Poisson noise (Anscombe transform), Poisson and pure additive noise (generalized 
Poisson transform) and other ones.  
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Let us demonstrate applicability of the three-stage filtering procedure (direct homomorphic 
transform – non-local denoising – inverse homomorphic transform) for noise removal in 
SAR images corrupted by pure multiplicative noise (speckle). The output of this procedure 
exploited for processing the single-look SAR image in Fig. 5 (HH) is represented in Fig. 8,a. 
Details and edges are preserved well and speckle is sufficiently suppressed.  

  
              (a )            (b) 

Fig. 8. The HH SAR image after denoising by the three-stage procedure (a) and vector DCT-
based filtering (b)  

The second problem is that similar patch search becomes problematic for spatially correlated 
noise. For correlated noise, similarity of patches can be due to similarity of noise realizations 
but not due to similarity of information content. Then, noise reduction ability of non-local 
denoising methods decreases and artefacts can appear. The problem of searching similar 
blocks (8x8 pixel patches) has been considered (Ponomarenko et al., 2010). But the proposed 
method has been applied to blind estimation of noise spatial spectrum in DCT domain, not 
to image filtering within non-local framework. The obtained estimates of the DCT spatial 
spectrum have been then used to improve performance of the DCT based filter 
(Ponomarenko2008). Note that adaptation to spatial spectrum of noise in image filtering 
leads to sufficient improvement of output image quality according to both conventional 
criteria and visual quality metrics (Lukin et al, 2008).  

Finally, the third problem deals with accurate estimation of signal-dependent noise 
statistical characteristics (Zabrodina et al., 2011). Even assuming a proper variance 
stabilizing transform exists as, e.g., generalized Anscombe transform (Murtag et al, 1995) for 
mixed Poisson-like and additive noise, parameters of transform are to be adjusted to mixed 
noise statistics. Then, if statistical characteristics of mixed noise are estimated not accurately, 
variance stabilization is not perfect and this leads to reduction of filtering efficiency. Note 
that blind estimation of mixed noise parameters is not able nowadays to provide quite 
accurate estimation of parameters for all images and all possible sets of mixed noise 
parameters (Zabrodina et al., 2011). Besides, non-local filtering methods are usually not fast 
enough since search for similar patches requires intensive computations.  
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As an alternative solution to three-stage procedures that employ non-local filtering, it is 
possible to advice using locally adaptive DCT-based filtering (Ponomarenko et al., 2011). 
Under condition of a priori known or accurately pre-estimated dependence of signal 
dependent noise variance on local mean 2 ( )tr

sd f I  , it is easy to adapt local thresholds for 
hard thresholding of DCT coefficients in each nm-th block as  

 ( , ) ( ( , ))T n m f I n m


 (3) 

where ( , )I n m


is the estimate of the local mean for this block,   is the parameter (for hard 

thresholding, 2.6   is recommended). If noise is spatially correlated and its normalized 
spatial spectrum ( , )normW k l  is known in advance or accurately pre-estimated, the threshold 
becomes also frequency-dependent  

 ( , , , ) ( , ) ( ( , ))normT n m k l W k l f I n m


 (4) 

where k and l are frequency indices in DCT domain.  

One more option is to apply the modified sigma filter (Lukin et al., 2011b) where the 
neighbourhood for a current ij-th pixel is formed as  

 min max( , ) ( , ) ( ( , )) , ( , ) ( , ) ( ( , ))sig sigI i j I i j f I i j I i j I i j f I i j     , (5) 

where sig  is the parameter commonly set equal to 2 (Lee, 1980) and averaging of all image 
values for ij-th scanning window position that belong to the interval defined by (5) is carried 
out. This algorithm is very simple but not as efficient as the DCT-based filtering in the same 
conditions (Tsymbal et al., 2005). Moreover, the sigma filter can be in no way adapted to 
spatially correlated noise.  

Finally, if there is no information on 2 ( )tr
sd f I   and ( , )normW k l , it is possible to use an 

adaptive DCT-based filter version designed for removing non-stationary noise (Lukin et al., 
2010a). However, for efficient filtering, it is worth exploiting all information on noise 
characteristics that is either available or can be retrieved from a given image.  

Let us come now to considering possible approaches to vector filtering of multichannel RS 
data. Again, let us start from theory and recent achievements. First of all, it has been recently 
shown theoretically that potential output MSE for vector (3D) processing is considerably 
better (smaller) than for component-wise filtering of color RGB images (Uss et al., 2011b), by 
1.6…2.2 times. This is due to exploiting inherent inter-channel correlation of signal 
components. Then, if a larger number of channel data are processed together and inter-
channel correlation factor is larger than for RGB color images (where it is about 0.8), one can 
expect even better efficiency of 3D filtering.  

Similar effects but concerning practical output MSEs have been demonstrated for 3D DCT 
based filter (Ponomarenko et al., 2008b) and vector modified sigma filter (Kurekin et al., 
1999; Lukin et al., 2006; Zelensky et al., 2002) applied to color and multichannel RS images. 
It is shown in these papers that vector processing provides sufficient benefit in filtering 
efficiency (up to 2 dB) for the cases of three-channel image processing with similar noise 
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intensities in component images. This, in turn, improves classification of multichannel RS 
data (Lukin et al., 2006, Zelensky et al., 2002).  

However, there are specific effects that might happen if 3D filtering is applied without 
careful taking into account noise characteristics in component images (and the 
corresponding pre-processing). For the vector sigma filter, the 3D neighborhood can be 
formed according to (5) for any a priori known dependences f(.) that can be individual for 
each component image. This is one advantage of this filter that, in fact, requires no pre-
processing operations as, e.g., homomorphic transformations. Another advantage is that if 
noise is of different intensity in component images processed together, then the vector 
sigma filter considerably improves the quality of the component image(s) with the smallest 
SNR. A drawback is that filtering for other components is not so efficient. The 
aforementioned property can be useful for hyperspectral data for which it seems possible to 
enhance component images with low SNR by proper selection of other component images 
(with high SNR) to be processed jointly (in the vector manner). However, this idea needs 
solid verification in future.  

For the 3D DCT-based filtering, two practical situations have been considered. The first one 
is AWGN with equal variances in all components (Fevralev et al., 2011). Channel 
decorrelation and processing in fully overlapping 8x8 blocks is applied. This approach 
provides 1…2 dB improvement compared to component-wise DCT-based processing of 
color images according to output PSNR and the visual quality metric PSNR-HVS-M 
(Ponomarenko et al., 2007). The second situation is different types of noise and/or different 
variances of noise in component images to be processed together. Then noise type has to be 
converted to additive by the corresponding variance stabilizing transforms and images are 
to be normalized (stretched) to have equal variances. After this, the 3D DCT based filter is to 
be applied. Otherwise, e.g., if noise variances are not the same, oversmoothing can be 
observed for component images with smaller variance values whilst undersmoothing can 
take place for components with larger variances. To illustrate performance of this method, 
we have applied it to dual-polarization SAR image composed of images presented in Fig. 5. 
Identical logarithmic transforms have been used first separately for each component to get 
two images corrupted by pure additive noise with equal variance values. Then, the 3D DCT 
based filtering with setting the frequency dependent thresholds as 

( , ) ( , )adc normT k l W k l  has been used where adc  denotes additive noise standard 

deviation after direct homomorpic transform. Finally, identical inverse homomorphic 
transforms have been performed for each component image. The obtained filtered HH 
component image is presented in Fig. 8,b. Speckle is suppressed even better than in the 
image in Fig 8,a and edge/detail preservation is good as well.  

Note that vector filtering of multichannel images can be useful not only for more efficient 
denoising, but also for decreasing residual errors of image co-registration (Kurekin1997). Its 
application results in less misclassifications in the neighborhoods of sharp edges.  

As it is seen, the DCT-based filtering methods use the parameter   that, in general, can be 
varied. Analysis of the influence of this parameter on filtering efficiency for the three-
channel LandSat image visualized in RGB in Fig. 9 has been carried out in (Fevralev et al., 
2010). Similar analysis, but for standard grayscale images, has been performed in 
(Ponomarenko et al., 2011). It has been established that an optimal value of   that provides 
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maximal efficiency of denoising according to a given quantitative criteria depends upon a 
filtered image, noise intensity (variance for AWGN case), thresholding type, and a metric 
used. In particular, for hard thresholding which is the most popular and rather efficient, 
optimal   is usually slightly larger than 2.6 if an image is quite simple, noise is intensive 

and output PSNR or MSE are used as criteria ( PSNR
opt ). For complex images and small 

variance of noise (input PSNR>32..34 dB), PSNR
opt  is usually slightly smaller than 2.6. 

Interestingly, if the visual quality metric PSNR-HVS-M (Ponomarenko et al., 2007) is 
employed as criterion of filtering efficiency, the corresponding optimal value is 

0.85PSNR HVS M PSNR
opt opt     for all considered images and noise intensities. This means that if 

one wishes to provide better visual quality of filtered image, edge/detail/texture 
preservation is to be paid main attention (better preservation is provided if   is smaller).  

  
               (a)          (b)  

Fig. 9. Noise free (a) and noisy (b) test images, additive noise variance is equal to 100  

3. Classifiers and their training 

In this Section, we would like to avoid a thorough discussion on possible classification 
approaches with application to multichannel RS images. An interested reader is addressed 
to (Berge & Solberg, 2004), (Melgani & Bruzzone, 2004), (Ainsworth et al., 2007), etc. General 
observations of modern tendencies for hyperspectral images are the following. Although 
there are quite many different classifiers (see Introduction), neural network, support vector 
machine and SAM are, probably, the most popular ones. One reason for using NN and SVM 
classifiers is their ability to better cope with non-gaussianity of features. Dimensionality 
reduction (there are numerous methods) is usually carried out without loss in classification 
accuracy but with making the classification task simpler.  

Classifier performance depends upon many factors as number of classes, their separability 
in feature space, classifier type and parameters, a methodology of training used and a 
training sample size, etc. If training is done in supervised manner (which is more popular 
for classification application), training data set should contain, at least, hundreds of feature 
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vectors and classification is then carried out for other pixels (in fact, voxels or feature vectors 
obtained for them). Validation is usually performed for thousands of voxels. Pixel-by-pixel 
classification is usually performed, being quite complex even in this case, although some 
advanced techniques exploit also texture features (Rellier et al., 2004). There is also an 
opportunity to post-process preliminary classification data in order to partly remove 
misclassifications (Yli-Harja & Shmulevich, 1999).  

The situation in classification of multichannel radar imagery is another due to considerably 
smaller number of channels (Ferro-Famil & Pottier, 2001, Alberga et al., 2008). There is no 
problem with dimensionality reduction. Instead, the problem is with establishing and 
exploiting sets of the most informative and noise-immune features derived from the 
obtained images. One reason is that there are many different representations of polarimetric 
information where features can be not independent, being retrieved from the same original 
data. Another reason is intensive speckle inherent for radar imagery where SARs able to 
provide appropriate resolution are mostly used nowadays.  

To sufficiently narrow an area of our study, we have restricted ourselves by considering the 
three-channel Landsat image (Fig. 9a) composed of visible band images that relate to central 
wavelengths 0.66 μm, 0.56 μm, and 0.49 μm associated with R, G, and B components of the 
obtained “color” image, respectively. Only the AWGN case has been analyzed where noise 
with predetermined variance was artificially added to each component independently. 
Radial basis function (RBF) NN and SVM classifiers have been applied. According to the 
recommendations given above, training has been done for several fragments for each class 
shown by the corresponding colors in Fig. 10b. The numbers of training samples was 1617, 
1369, 375, 191 and 722 for the classes “Soil”, “Grass”, “Water”, “Urban” (Roads and 
Buildings), and “Bushes”, respectively. Classification has been applied to all image pixels 
although validation has been performed only for pixels that belong to areas marked by five 
colors in Fig. 10a.  

  
             (a)             (b)  

Image classes:       -grass,       -water,       -roads and buildings,       -bushes,       -soil 
 

Fig. 10. Ground truth map (a) and fragments used for classifier training (b) 
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Pixel-by-pixel classification has been used without exploiting any textural features since 
these features can be influenced by noise and filtering. The training dataset has been 
formed from noise-free samples of the original test image represented in Fig. 9,a, to 
alleviate these impairments degrading the training results and to make simpler the analysis 
of image classification accuracy in the presence of noise and distortions introduced by 
denoising. Thus, in fact, for every image pixel the feature vector has been formed as 

 , ,R G B
q q q qx x xx , i.e. composed of brightness values of Landsat image components 

associated with R, G, and B.  

Details concerning training the considered classifiers can be found in (Fevralev et al., 2010). 
Here we would like to mention only the following. We have used the RBF NN with one 
hidden layer of nonlinear elements with a Gaussian activation function (Bose & Liang, 1996) 
and an output layer with linear elements. The element number in the output layer equals to 
the number of classes (five) where every element is associated with the particular class of 
the sensed terrain. The classifier presumes making a hard decision that is performed by 
selecting the element of the output layer having the maximum output value. The RBF NN 
unknown parameters have been obtained by the cascade-correlation algorithm that starts 
with one hidden unit and iteratively adds new hidden units to reduce (minimize) the total 
residual error. The error function has exploited weights to provide equal contributions from 
every image class for different numbers of class learning samples. 

The considered SVM classifier employs nonlinear kernel functions in order to transform a 
feature vector into a new feature vector in a higher dimension space where linear 
classification is performed (Schölkopf et al., 1999). The SVM training has been based on 
quadratic programming, which guarantees reaching a global minimum of the classifier 
error function (Cristianini & Shawe-Taylor, 2000). For the considered classification task, 
we have applied a Radial Basis kernel function of the same form as the activation function 
of the RBF NN hidden layer units. To solve multi-class problem using the SVM classifier 
we have applied one-against-one classification strategy. It divides the multi-class problem 
into S(S-1)/2 separate binary classification tasks for all possible pair combinations of S 
classes. A majority voting rule has been then applied at the final stage to find the resulting 
class. 

The overall probability of correct classification reached for noise-free image is 0.906 for the 
RBF NN and 0.915 for the SVM classifiers, respectively. The reasons of the observed 
misclassifications are that the considered classes are not separable as we exploited only 
three simple features (intensities in channel images). The largest misclassification 
probabilities have been observed for the classes “Soil” and “Urban”, “Soil” and “Bushes”. 
This is not surprising since these classes are quite heterogeneous and have similar “colors” 
in the composed three-channel image (see Fig. 9,a).  

4. Filtering and classification results and examples 

Concerning Landsat data classification, let us start with considering overall probabilities of 
correct classification Pcc. The obtained results are presented in Table 1 for three values of 
AWGN variance, namely, 100, 49, and 16 (note that only two values, 100 and 49, have been 
analyzed in the earlier paper (Fevralev et al., 2010). The case of noise variance equal to 16 is 
added to study the situation when input PSNR=39 dB, i.e. noise intensity is such that noise  
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Image σ2   Pcc for SVM Pcc for RBF NN 

Noisy 16 - 0.890 0.887 

Filtered (component-wise, HT) 16 2.5 0.909 0.905 

Filtered (3D, HT) 16 2.5 0.919 0.906 

Noisy 49 - 0.813 0.838 

Filtered (component-wise, HT) 49 2.5 0.889 0.903 

Filtered (component-wise, HT) 49 2.1 0.880 0.898 

Filtered (component-wise, CT) 49 3.9 0.888 0.903 

Filtered (component-wise, CT) 49 3.3 0.879 0.896 

Filtered (3D, HT) 49 2.6 0.917 0.911 

Noisy 100 - 0.729 0.766 

Filtered (component-wise, HT) 100 2.5 0.881 0.902 

Filtered (component-wise, HT) 100 2.1 0.867 0.892 

Filtered (component-wise, CT) 100 3.9 0.879 0.902 

Filtered (component-wise, CT) 100 3.3 0.865 0.890 

Filtered (3D, HT) 100 2.6 0.918 0.914 

Table 1. Classification results for original and filtered images  

is practically not seen in original image (Fevralev et al., 2011). Alongside with hard 
thresholding (HT), we have analyzed a combined thresholding (CT)  

 
3 2 2

( , , , ), ( , , , ) ( , , , )
( , , , )

( , , , ) / ( , , , )
ct

D n m k l if D n m k l n m k l
D n m k l

D n m k l n m k l otherwise



 

  


 (6) 

where 2( , , , ) ( ( , ) ( , )normn m k l f I n m W k l  . Note that for CT 3.9PSNR
opt   and the 

aforementioned property 0.85PSNR HVS M PSNR
opt opt     is also valid. 

As it follows from analysis of data in Table 1, any considered method of pre-filtering noisy 
images has positive effect on classification irrespectively to a classifier used. As it could be 
expected, the largest positive effect associated with considerable increase of Pcc is observed if 
noise is intensive (see data for σ2=100 compared to „Noisy“). If noise variance is small 
(σ2=16), there is still improvement of image quality after filtering. Output PSNR becomes 
42.4 dB after component-wise denoising and 43.0 after 3D DCT-based filtering. This 
improvement in terms of PSNR leads to increase of Pcc although it is not large. Probability of 
correct classification has sufficiently increased for classes 1 (Soil), 2 (Grass), and 5 (Bushes).  

Note that for filtered image Pcc is practically the same as for classification of noise-free data. 
This shows that if PSNR for classified image is over 42…43 dB, the (residual) noise 
practically does not effect classification.  

Both considered algorithms of thresholding produce approximately the same results for the 
same noise variance, classifier and component-wise filtering (compare, e.g., the cases 
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2.5   for HT and 3.9   for CT, σ2=100 and 49). Because of this, we have analyzed only 
hard thresholding for σ2=16.  

The use of smaller 2.1   for HT and 3.3   for CT (that correspond to PSNR HVS M
opt   ) 

results in slight reduction of Pcc compared to the case of setting PSNR
opt . To our opinion, this 

can be explained by better noise suppression efficiency provided for the DCT-based filtering 
with larger   which is expedient for, at least, two classes met in the studied Landsat image 
(namely, for „homogeneous“ classes „Water“ and „Grass“ that occupy about half of pixels 
in validation set, see Fig. 10b). Data analysis also allows concluding that more efficient 
filtering provided by the 3D filtering compared to component-wise processing leads to 
sufficient increase in Pcc especially for intensive noise case and SVM classifier. This shows 
that if filtering is more efficient in terms of conventional metrics, then, most probably, it is 
more expedient in terms of classification. All these conclusions are consistent for both 
classifiers. Although the results are slightly better for the RBF NN if noise is intensive, Pcc 
values are almost the same for non-intensive noise.  

We have also analyzed the influence of filtering efficiency on classification accuracy for 
particular classes. Only hard thresholding has been considered (the results for combined 
thresholding are given in (Fevralev et al., 2010) and they are quite close to the data for hard 
thresholding). Three filtering approaches have been used: component-wise denoising with 

2.1PSNR HVS M
opt     (denoted as Filtered 2.1), component-wise filtering with PSNR

opt  (denoted 

as Filtered 2.5), and 3D (vector) processing (Filtered 3D).  

For the first class “Soil”, a clear tendency is observed: more efficient the filtering, larger the 
probability of correct classification Pcorr1. The same holds for “homogeneous” classes 
“Grass” (analyze Pcorr2) and “Water” (see data for Pcorr3), the attained probabilities for these 
classes are high and approach unity for filtered images. The dependences for the class 
“Bushes” (see Pcorr5) are similar to the dependences for the class “Soil”. Pcorr5 increases if 
more efficient filtering is applied but not essentially. Quite many misclassifications remain 
due to “heterogeneity” of the classes “Soil” and “Bushes” (see discussion above).  

Finally, specific results are observed for the class “Urban” (see data for Pcorr4). The pixels that 
belong to this class are not classified well in noisy images, especially by the SVM classifier. 
Filtering, especially 3D processing that possesses the best edge/detail preservation, slightly 
improves the values of Pcorr4. There is practically no difference in data for the cases Filtered 
2.1 and Filtered 2.5.  

Thus, we can conclude that a filter ability to preserve edges and details is of prime 
importance for such “heterogeneous” classes. It can be also expected that the use of texture 
features for such classes can improve probability of their correct classification. Note that, for 
other classes, image pre-filtering also indirectly incorporates spatial information to 
classification by taking into account neighbouring pixel values at denoising stage to 
“correct” a given pixel value.  

Let us now present examples of classification. Fig. 11,a, and 11,b illustrate classification 
results for noisy images (σ2=100) for both classifiers. There are quite many pixel-wise 
misclassifications due to influence of noise, especially for the SVM classifier. Even the  
water surface is classified with misclassifications. In turn, Figures 11,c and 11,d present  



 
Remote Sensing – Advanced Techniques and Platforms 

 

92

Image σ2 Classifier Pcorr1 Pcorr2 Pcorr3 Pcorr4 Pcorr5 

Noisy 49 RBF NN 0.717 0.909 0.987 0.718 0.805 

Noisy 49 SVM 0.612 0.939 0.930 0.650 0.785 

Filtered 2.1 49 RBF NN 0.814 0.991 0.987 0.715 0.830 

Filtered 2.1 49 SVM 0.770 0.996 0.971 0.655 0.812 

Filtered2.5 49 RBF NN 0.827 0.994 0.987 0.714 0.833 

Filtered 2.5 49 SVM 0.803 0.998 0.974 0.657 0.818 

Filtered 3D 49 RBF NN 0.839 0.997 0.987 0.720 0.860 

Filtered 3D 49 SVM 0.882 0.998 0.986 0.682 0.862 

Noisy 100 RBF NN 0.649 0.790 0.984 0.718 0.776 

Noisy 100 SVM 0.530 0.826 0.834 0.634 0.745 

Filtered 2.1 100 RBF NN 0.811 0.983 0.986 0.718 0.819 

Filtered 2.1 100 SVM 0.728 0.994 0.966 0.653 0.797 

Filtered2.5 100 RBF NN 0.834 0.991 0.985 0.717 0.830 

Filtered 2.5 100 SVM 0.776 0.998 0.969 0.658 0.805 

Filtered 3D 100 RBF NN 0.853 0.996 0.984 0.719 0.862 

Filtered 3D 100 SVM 0.888 0.998 0.985 0.687 0.858 

Table 2. Classification results for particular classes of original and filtered images 

classification results for the three-channel image processed by the 3D DCT-based filter. It is 
clearly seen that quite many misclassifications have been corrected and the objects of certain 
classes have become compact. Comparison of the classification results in Figures 11,c and 
11,d to the data in Figures 11,a and 11,b clearly demonstrate expedience of using RS image 
pre-filtering before classification if noise is intensive.  

Let us give one more example for multichannel radar imaging. Fig. 12,a shows a three-
channel radar image (in monochrome representation composed of HH Ka-band, VV Ka-
band, and HH X-band SLAR images. The result of its component-wise processing by the 
modified sigma filter is presented in Fig. 12,b. Noise is suppressed but the edges are 
smeared due to residual errors of image co-registration and low contrasts of edges.  

Considerably better edge/detail preservation is provided by the vector filter (Kurekin et 
al., 1997) that, in fact, sharpens edges if their misalignment in component images is 
detected (see Fig. 12,c). Finally, the result of bare soil areas detection (pixels are shown by 
white) by trained RBF NN applied to filtered data is depicted in Fig. 12,d. Since we had 
topology map for this region, probability of correct detection has been calculated and it 
was over 0.93. Classification results from original co-registered images were considerably 
less accurate. 
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           (a)                 (b)  

  
           (c)                (d)  

Fig. 11. Classification maps for noisy image classified by RBF NN (a) and SVM (b) and the 
image pre-processed by the 3D DCT filter classified by RBF NN (c) and SVM (d)  
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          (a)           (b)  

  
          (c)             (d) 

Fig. 12. Original three-channel radar image in monochrome representation (a), output for 
component-wise processing (b), output for vector filtering (c), classification map (d) 

5. Conclusions 

It is demonstrated that in most modern applications of multichannel RS noise characteristics 
deviate from conventional assumption to be additive and i.i.d. Thus, filtering techniques are 
to be adapted to more sophisticated real-life models. This especially relates to multichannel 
radar imaging for which it is possible to gain considerably higher efficiency of denoising by 
taking into account spatial correlation of noise and sufficient correlation of information in 
component images. New approaches that take into account aforementioned properties are 
proposed and tested for real life data. It is also shown that filtering is expedient for RS 
images contaminated by considerably less intensive noise than in radar imaging. Even if 
noise is practically not seen (noticeable by visual inspection) in original images, its removal 
by efficient filters can lead to increase of data classification accuracy.  
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1. Introduction 

Because of its ability to describe interdependence between neighboring sites, the Markov 
Random Field (MRF) is a very attractive model in characterizing correlated observations 
(Moura and Balram, 1993) and it has potential applications in areas of remote sensing, such 
as spatio-temporal modeling and machine vision. In this study, we model image random 
field conditional to the texture label as a Multivariate Gauss Markov Random Field 
(MGMRF); whereas; the thematic map is modeled as a discrete label MRF (Li, 1995). The 
observations in the Gauss Markov Random Field (GMRF) are distributed with the Gaussian 
distribution.  

There are some MGMRF models where the interaction matrices are modeled in some 
simplified form, including the MGMRF with isotropic interaction matrix which we shall 
refer here as Hazel’s GMRF (Hazel, 2000), The MGFMRF with anisotropic interaction matrix 
proportional to the identity matrix which we shall refer here as Rellier’s GMRF (Rellier et. 
al., 2004), and the Gaussian Symmetric Clustering (GSC) (Hazel, 2000). 

From these developments, the model for anisotropic GMRF was generalized and its 
parameter estimator for an arbitrary neighborhood system is characterized (Navarro et al., 
2009). Using our model, the classification performance was analyzed and compared with the 
GMRF models in literature.  

Spectral classes are explored in segmenting image random field models to be able to extract 
the spatial, spectral, and temporal information. A special case is addressed when the 
observation includes spectral and temporal information known as the spectro-temporal 
observation. With respect to the spectral and temporal dimensions, the separability structure 
is considered based on the Kronecker tensor product of the GMRF model parameters. 
Separable parameters contain less parameters, compared with its non-separable counterpart. 
In addition, the spectral and temporal dimensions on a separable model can be analyzed 
separately. We analyzed whether the separability of the GMRF parameters would improve 
the classification of the thematic map. 

2. Image random field modelling and thematic classification 

This section covers statistical background in characterizing random fields based on the MRF. 
Then, we will present estimation for the thematic map and image random field parameters. 
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Finally the thematic map classifier is presented based on the Iterated Conditional Modes 
(ICM) algorithm. 

2.1 Markov random fields 

A random field  : Z Z ss   where s  is a site on the lattice   with the neighborhood 
system   with parameter Π  is a MRF if for s   (Winkler, 2003). 

    ; ;p p Z Z Π Z Z Πs ss s  (1) 

where  :   Ζ Ζ t sts is the random field which consists of observations of the neighbors 
of .s  Similarly,  :   Ζ Ζ t sts   

is the random field, which consists of observations 
that exclude .s  

2.2 Thematic map modeling 

Let  L L s s   be denoted as the thematic map, where  1, ,L Ms   is the labeled 
thematic class at site s and M is the number of thematic classes. The thematic map is 
modeled as a discrete space, discrete domain MRF with parameters 

    ,1a bm m M  φ r r   where am is the singleton potential coefficient for the 
th

m thematic class, br are made up by the pairwise potential coefficients, and  is region of 
support (Jeng & Woods, 1991) or the neighborhood set (Kasyap & Chellappa, 1983). Its 
conditional probability density function (pdf) is given by 
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2.3 Image random field modeling 

The observation sY  given the thematic map L  is modeled with the conditional 
distribution     ~ ,N L LNY L μ Σs s s . It is conditionally dependent on Ls , the thematic 
class at site s , and it is driven by an autoregressive Gaussian colored noise process 

  ~ , .1N LN NX L 0 Σs s  
Two noise processes sX and s rX are statistically independent if 

the corresponding thematic classes Ls and L s r are different for all r  and .s   This 
model tends to avoid the blurring effect created between segment boundaries which, in 
turn, may yield poor classification performance. The resulting equation can be written as 
follows: 
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The noise process has the following characterization:  

     1; NE sX L Θ 0   (4) 
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The conditional probability on the other hand is given as 
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2.4 Maximum pseudo-likelihood estimation 

The maximum pseudo-likelihood estimation (MPLE) combines sites to form the pseudo-
likelihood function from the conditional probabilities (Li, 1995). The pseudo-likelihood 
functions for the thematic map random field and image random field parameters are given 
as follows:  

    ;PL p L 


 s s
s

φ L φ


 (8) 

    
 1

, ;
M

m m

PL p 

 

 s s

s

Θ L Y Y L Θ


 (9) 

where  m  is the collection of sites with the thm thematic class. The MPLE possesses an 
invariance property, that is, if Π̂  is the MPLE of the parameter Π , then for an arbitrary 
function ,   ˆ Π  is the MPLE of the parameter  . Π  The proof is similar to that of the 
invariance property of the MLE (Casella and Berger, 2002) since the form of the pseudo-
likelihood function is analogous that of the likelihood function, depending on the parameter 
given the data. Moreover, the MPLE converges to the MLE almost surely as the lattice size 
approaches infinity (Geman and Greffigne, 1987). 

2.5 Thematic classification 

The thematic map can be recovered by the maximum a posteriori probability (MAP) rule. It 
can be implemented using a numerical optimization technique such as Simulated Annealing 
(SA) (Jeng & Woods, 1991). Although the global convergence employing SA is guaranteed 
almost surely, its convergence is very slow (Aarts & Korts, 1987; Winkler, 2006). An 
alternative to this is to use the ICM algorithm (Besag, 1986) given as  

    ˆ arg max , ; ; .
1

L p L m p L m
m M

  
 

Y L Θ L φs s ss s   (10) 
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This is interpreted as the instantaneous freezing of the annealing schedule of the SA. 
However, since  ;p Y L Θ is difficult to evaluate, alternatively, it is replaced by its pseudo-
likelihood (Hazel, 2000) given as  

    


; , ; .p p s s
s

Y L Θ Y Y L Θ


 (11)  

Hence, the classifier is reduced to  

    
  

  
1

ˆ arg max , ; ; .
m M

L p p L ms s s s s
s

Y Y L Θ L φ


 (12) 

The ICM algorithm, unlike the SA, is only guaranteed to converge to the local maxima. This 
problem can be alleviated by initializing the thematic map from the Gaussian Spectral 
Clustering (GSC) model (Hazel, 2000).  

2.6 Numerical implementation 

The MPLE-based estimators are not in their closed form and must be evaluated numerically. 
The pseudocode for estimating the parameters is presented below.  

Initialize L , φ , andΘ  
Estimate φ  
Estimate Θ  

Estimate  mμ given  mrθ and  mΣ  
Estimate  mrθ given  mΣ and  mμ  
Estimate  mΣ given  mμ and  mrθ  

Estimate Ls  by the ICM Algorithm 

The image random field parameters are estimated using a method with some resemblance to 
the Gauss-Seidel iteration method (Kreyzig, 1993). The convergence criterion for estimating 
these parameters using this iteration method has yet to be established. As a precautionary 
measure, a single iteration was performed. This method was also applied in estimating the 
image random field estimators in Rellier’s GMRF (Rellier, et. al., 2004).  

3. Spectro-temporal MGMRF modelling 

The spectro-temporal observation image random field will be characterized with hybrid 
separable MGMRF parameters. 

3.1 Image random field modeling 

We let M1 - number of lines, M2 - number of samples, N1 - number of spectral bands, and N2 
- number of temporal slots. The image random field is characterized as follows: 

Lattice     
1 2 1 1 2 2
, :  1 ,  1s s s M s M      

Thematic Class   
1 2

,s s
L L
s
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The thematic class L
s
 at a given site s  is modeled to be fixed over time. 

Observation          
1 2 1 2 1 2 1 2 1 2

, , ,1,1 , , , , , ,

T

s s s s s s k l s s N N
W W W 

s
Y Y    

The observation 
s
Y  is a multispectral and mono-temporal vector of reflectance of the given 

spatial location  
1 2
,s s measured at the th

k spectral band with wavelength
k

  , for 

1
1 k N  , and at the th

l  temporal slot with time 
l

T T  for 
2

1 l N  . More specifically, the 
  

1
1

th

k l N   element of 
s
Y  denoted as  , ,k l

Y
s

 is given as    
1 2

, , , , ,k l s s k l
Y W
s

.  

Let us consider the matrix #

s
Y  defined by rearranging the elements of the spectro-temporal 

observation
s
Y  with the reshape operator  #

1 2
, ,reshape N N

s s
Y Y . The reshape function 

given as  
1 2

, ,reshape N NB A  transforms the vector   1 2
N N

k
a A   into the 

1 2
N N matrix   1 2

N N

ij
b

 B   by the mapping  
1

1ij k i j N
b a

  
  for all 

1
1 i N   and 

2
1 j N  , i.e.  

 

     

     

     

2

2

1 1 1 2

, 1,1 , 1, 2 , 1,

, 2 ,1 , 2 , 2 , 2 ,#

, ,1 , , 2 , ,

.

N

N

N N N N

Y Y Y

Y Y Y

Y Y Y



 
 
 
 
 
  

s s s

s s s

s

s s s

Y





   



 (13) 

The matrix #

s
Y is characterized by allocating the reflectance across the bands for a given time 

by column and the reflectance across time for a given band by row. 

3.2 Separable structure of the covariance matrix 

There is a growing interest in modeling the covariance structure with more than one attribute. 
For example, in spatio-temporal modeling, the covariance structure of “spatial” and “temporal” 
attributes is jointly considered (Kyriakidis and Journel, 1999; Huizenga, et. al., 2002). On the 
other hand, in the area of longitudinal studies the covariance structure between “factors” and 
“temporal” attributes are jointly considered (Naik and Rao, 2001). Both studies mentioned 
above considered covariance matrices with a separable structure between these attributes. 

In the realm of remote sensing, few studies have  been conducted combining the covariance 
structure involving spectro-temporal attributes. Campbell and  Kiiveri demonstrated canonical 
variates calculations are reduced to simultaneous between-groups and within-group analyses 
of a linear combination of spectral bands over time, and the analyses of a linear combination of 
the time over the spectral bands (Campbell and Kiiveri, 1988). 

In light of recent literature, we propose to model the GMRF models as applied to remote 
sensing image processing where the covariance structure of the “spectral” and “temporal” 
attributes is characterized jointly. The separable covariance structure associated with the 
matrix Gaussian distribution has been considered.  

3.2.1 Non-separable covariance structure 

The matrix observation driven by a colored noise and its vectorized distribution, is assumed 
to be a realization from the process whose conditional form is given by 
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  ~ ,
N N

N L
s s
X L 0 Σ . The covariance matrix  L

s
Σ  does not have any special structure, 

except it has to be a positive definite symmetric matrix. This covariance matrix structure 
referred to as an unpatterned covariance matrix (Dutilleul, 1999). The statistical 
characterization is similar to the MGMRF discussed in Section 2.3.  

3.2.2 Matrix gaussian distribution 

Let #
X be a random matrix distributed as

    # # 1 2

,
~ , ,

m n
NX M Ξ Ξ where # m nM  is the 

expectation matrix,
 1 m mΞ  is the covariance matrix across the rows, and

 2 n nΞ  is the 
covariance matrix across the columns. Hence, the pdf of #

X  is given as 

 
     

         
1 11 2# # # # #

2 22 1 2

1 1
exp

22

T

n mmn
p tr



   
     

  
X Ξ X M Ξ X M

Ξ Ξ
 (14) 

(Arnold, 1981). Also, if we stack the matrix #
X  into the random vector  #

vecX X , 

then  ~ ,
mn

NX M Ξ  where  # mn
vec M M   is the expectation matrix and 

   2 1 mn mn  Ξ Ξ Ξ   is the covariance matrix (Arnold, 1981), and its pdf is given as 

  
 

   1
1 22

1 1
exp .

22

T
mnp


      

X X M Ξ X M
Ξ

 (15) 

We model the associated noise process #

s
X  as a matrix Gaussian distribution, i.e. 

        1 2 1 2

1 2#
,~ , ,N N N NN L Ls s sX L 0 Σ Σ  where 

    1 1
1 N N

L


s
Σ   is the covariance matrix 

across the bands, and 
    2 2

2 N N
L


s

Σ   is the covariance matrix across time. Stacking the 

matrix #

s
X  into a random vector   1 2

# N N

vec 
s s

X X   corresponds to the vectorized colored 

noise with conditional distribution 
        

1 2 1 2

2 1
~ ,

N N N N
N L L

s s s
X L 0 Σ Σ . 

3.2.3 Separable covariance structure 

The spectro-temporal, separable covariance matrix model (Lu and Zimmerman, 2005; 
Fuentes, 2006) has the form 

          2 1m m m Σ Σ Σ  (16) 

for 1 m M   where          1 111 N N
ijm m  Σ  is the covariance matrix across bands and 

         2 222 N N
klm m  Σ  is the covariance matrix across time. Now, since 

         1 2 1 2

2 1~ N N N NN L L s s sX L 0 Σ Σ  (17) 

           1 2

2 1~ ,N NN L L Ls s s sY L μ Σ Σ  (18) 
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then, the covariance is given as (Arnold, 1981): 

             1 2
, , , ,cov , kk llk l k lX X L L  s ss s L;Θ   (19) 

             1 2
, , , ,cov , kk llk l k lY Y L L  s ss s L;Θ  . (20) 

This corresponds to the product of the variance associated with the reflectance at the 
th

k  
spectral band 

   1

kk
L
s

 and the variance associated with the reflectance at the th
l  temporal 

slot 
   2

ll
L
s

. Likewise, the cross-covariance is given as (Arnold, 1981): 

             1 2
, ,, ,cov , ik jlk li jX X L L  s sss L;Θ  (21) 

             1 2
, ,, ,cov , ik jlk li jY Y L L  s sss L;Θ . (22) 

This corresponds to the product of the covariance associated with the reflectance at the 
th

i and the th
k  spectral band 

   1

ik
L
s

 and the covariance associated with the reflectance at 

the th
j and the th

l  temporal slot 
   2

jl
L
s

. 

The number of parameters in the unpatterned covariance matrix is 
   1 2 1 21 2 1 2N N N N N N   . On the other hand, the number of parameters for a 

separable covariance matrix is    1 1 2 21 1 2N N N N      , which has fewer parameters 

compared to its non-separable counterpart. 

3.2.4 Separable of interaction matrix structure 

We can also model the interaction matrix coefficients with a separable structure for all 
r  and 1 m M   of the form 

          2 1m m m r r rθ θ θ  (23) 

where 
    1 1

1 N N
m


r
θ   is the interaction matrix across the bands and 

    2 2
2 N N

m


r
θ   is the 

interaction matrix across time. In the next section, the interaction matrix coefficient  m
r
θ  

can be made separable for r  and1 m M  provided that  mΣ is separable. 
Furthermore, if  mΣ  is separable, then the following is the resulting statistical 
characterization of 

s
X :  

 1; NE    sX L Θ 0  (24)  

 

       
                     

2 1

2 1
1

2 2 1 1cov , ;

otherwise

p

L L L L

N N

L L

L L L L
 



  

  

       





s s r s s r

s s

s s r r s s r s s

Σ Σ r 0

X X L Θ θ Σ 1 θ Σ 1 r

0 0


 (25)  
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2 1cov , ; .L L L LL L
      

s s r s s rs s r s sX Y L Θ Σ 1 Σ 1  (26)  

The covariance matrix, from the above equation,  cov , ;
s s r

X X L Θ  has a separable 
structure between the spectral domain and temporal dimensions. It has a form analogous to 
that of what is shown in (4) through (6), which is intuitively appealing.  

The number of parameters in the unpatterned interaction matrix coefficient is 2 2 2
1 2 .N N N  

On the other hand, the number of parameters for the separable interaction matrix coefficient 
is 2 2

1 2N N , which has fewer parameters compared to its non-separable counterpart. 

3.2.5 Separable mean structure 

Likewise, we can also model the mean with a separable structure of the form 

          2 1m m m μ μ μ  (27)  

for 1 m M  where     11 1Nm μ  is the mean across the bands and     22 1Nm μ   is 
the mean across time. The number of parameters in the unpatterned mean vector is 

1 2N N N . On the other hand, the number of parameters for the separable mean vector is 

1 2N N  which has fewer number of parameters compared to its non-separable counterpart. 

3.2.6 Hybrid separable structure 

Finally, we can model the GMRF parameters as having a hybrid separability structure, that 
is, some of its parameters are separable while the rest are not. Hence, there are eight 
combinations to consider. As shown in Section 5.2, it is impossible to model a separable 
interaction matrix with a non-separabable matrix. This leave us six cases to consider in this 
study. 

4. Estimation of thematic map parameters 

The MPLE of φ  is obtained by taking the derivative of  log PL φ with respect to 
 1m m M
a

 
and  b r r  , then equating to zero (Li, 1995). Accordingly, the estimators are 

obtained numerically by solving the following set of simultaneous nonlinear equations:  

 
 

 
 

1

exp ,

 ,  1

exp ,

m

mL mM

l
l

a b V L m L

a m M

a b V L l L





 


 

 
    

     
 

    
 


 
 

s

r s s r
r

s s
r s s r
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1



 

 (28)  

 
   

 
 1

1

exp , ,

,      ,  .

exp ,

M

l
l

M

l
l

a b V L l L V L l L

V L L b

a b V L l L

 
 


 


 

 
      

    
 

    
 

 
 

 

t s s t s s r
t

s s r r
s s

t s s t
t
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 (29)  
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5. Important MGMRF specifications 

This section provides important characterizations enable us to derive the estimators of the 
GMRF parameters in the next section. We present a simple, yet powerful, method to derive 
the MPL estimators of the mean and the interaction matrix. Finally, new problems arise in 
estimating the multivariate observation GMRFs, which were not encountered in the 
univariate case, are discussed. 

5.1 MPL-based method technique of deriving mean and the interaction matrix 
estimators 

In this section, a method of deriving the MPL estimators for the mean and the vectorized 
interaction coefficients are presented regardless of separability. The MPL estimator of the 
interaction matrix coefficients can be derived by taking the matrix derivative of the log of 
the pseudo-likelihood function with respect to the interaction matrix coefficient or with 
respect to its vectorized version from the equivalence relation (Neudecker, 1969) 

 
   f f

vec
vec

 
  

 
P P

X X
 (30)  

where  f X  , and ,  
m nX P  . The latter expression is preferred, since it is easier to 

evaluate. The following proposition provides a simple way of deriving the MPL estimators, 
where the estimator is either the mean or the vectorized interaction matrix coefficient 
(Navarro, et. al., 2009). 

Proposition 1  Let   1q
m

Φ  , 1 m M   be a vector of parameters which is either the 
mean or the vectorized interaction matrix coefficient. Suppose that 

s
X  can be expressed in 

the form  

  L s s s sX P Q Φ  (31)  

where   1N  
s s
P P Θ L  ,   N q 

s s
Q Q Θ L   is independent of  L

s
Φ , and the 

covariance matrix  mΣ , 1 m M   is known, then the MPL estimator for  mΦ , 
1 m M   is obtained by solving the equation 

  
 

1
1  .T

q
m

m



 s s

s

Q Σ X 0


 (32)  

Proof From (7) and (9), the log pseudo-likelihood of the image random field conditional 
to the thematic map is given as 

      
 

1

1

1
log log 2 log  .

2

M
T

m m

PL N L L 

 

       s s s s
s

Θ L Σ X Σ X


 (33)  

Taking the gradient of the log pseudo-likelihood function in (33) with respect to  mΦ  for 
1 m M  , and equating to 1q0  yields 
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1
1

1

1
log .

2

M
T

q
l l

PL L
m m




 

 
  
   s s s

s

0 Θ L X Σ X
Φ Φ

 (34) 

Since 

 
         

           

1 1

1 1 12

TT

T T T T

L L L L

L L L L L L

 

  

  

  

s s s s s s s s s s

s s s s s s s s s s s s

X Σ X P Q Φ Σ P Q Φ

P Σ P P Σ Q Φ Φ Q Σ Q Φ
 (35) 

then taking the gradient in (34) with respect to Φ yields 

 

           

      

   

1 1 1

1

1

2 2

2

2  .

T T T
L m L m

T
L m

T
L m

L L L L

L L

L

  
 








 


 



s s

s

s

s s s s s s s s s s

s s s s s

s s s

X Σ X Q Σ P 1 Q Σ Q Φ 1
Φ

Q Σ P Q Φ 1

Q Σ X 1

 (36)  

Finally, substituting the result of (36) into (34) gives us the identity 

    
 

 
 

1 1
1

1

.
M

T T
q L m

l l m

L m 
 

  
   ss s s s s

s s

0 Q Σ X 1 Q Σ X
 

 (37)  

5.2 Interaction matrix identities 

From the covariance identity 

    cov , ; cov , ;T
 s s r s r sX X L Θ X X L Θ  (38)  

(Ravishanker and Dey, 2002), from (5), we obtain the following relationship: 

        1 .TL L L L
 r s s r s sθ Σ θ Σ  (39)  

One consequence of this result is that 
s

X can be written as follows: 

                    1  
S

T
L L L LL L L L L L L

 


  



        s s r s s rs s s r s s r s s r s s s r s
r

X Y μ θ 1 Y μ Σ θ Σ 1 Y μ


 (40) 

where
S

 , a subset of  which represents the symmetric neighborhood set (Kashyap and 

Chellappa, 1983), is defined as follows: 
S S

   r r   and   .
S S

    r r�    

Another consequence of (39) are the specifications of the interaction matrices in the 
separable case. If the interaction matrices are modeled as separable, then by (39), we obtain 

                             2 1 2 1 1 1
T

Tm m m m m m m m m m 
      r r r r r rθ θ θ Σ θ θ Σ Σ θ Σ  (41)  

for 1 m M  . The RHS of (40) can be made separable if  mΣ is also separable. Hence, 
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12 1 2 1 2 1 2 1

1 12 1 2 1 2 1

1 12 2 2 1 1 1 .

T

T T

T T

m m m m m m m m

m m m m m m

m m m m m m



 

 

 

    

     
 

 

r r r r

r r

r r

θ θ Σ Σ θ θ Σ Σ

Σ Σ θ θ Σ Σ

Σ θ Σ Σ θ Σ

 (42)  

The identification of  mrθ  is completely specified from (39) if we take 

                  11 1 1 1Tm m m m


 r rθ Σ θ Σ  (43)  

                  12 2 2 2Tm m m m


 r rθ Σ θ Σ , (44) 

which is analogous to the relation in (39). 

By considering the hybrid separability cases which involve a separable interaction matrix 
and a non-separable covariance matrix, the expression      1Tm m m

rΣ θ Σ  is not separable, 
in general. This implies that  mrθ  cannot be expressed in the form 

         2 1m m m   r r rθ θ θ  for Sr  ,1 m M   and thus these cases are not possible. 

6. GMRF parameter estimation 

This section proposes an estimation procedure for the GMRF parameters for both separable 
and non-separable cases based on the MPL. 

6.1 Mean parameter estimation 

Proposition 2  Assume that the interaction matrix coefficients  mrθ  for r  , 
1 m M  and the covariance matrices  mΣ  for 1 m M   are known. Then the mean 
parameters are estimated as follows: 

a. Non-Separable Case: 

           
 

1

1ˆ
T

N NL m L m
m

m m m m
 




 

  

    
       

     
  

s r s rr r
s r r

μ I θ 1 Σ I θ 1
   

(45) 

         
 

1

T

N L m L m
m

m m m
 


 

  

    
     

     
  

s r s rr s r s r
s r r

I θ 1 Σ Y θ 1 Y
   

for 1 m M  . 

b. Separable Case: 

In addition, if we assume the following for 1 m M  : 
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   1

mμ  is estimated, given that 
   2

mμ  is known  

 
   2

mμ  is estimated, given that 
   1

mμ  is known. 
Thus 

   

              
    

 

              
 

1 1

1

1

1

2 21

2 1

ˆ

T
T

N N N NL m L m
m

T
T

N N L m L m
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m m m m m
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 (46)
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2
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1 1

ˆ

T
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N N N NL m L m
m

T
T

N N L m L m
m
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r r
s r r

r s r s r
s r r

μ

I μ I θ 1 Σ I θ 1 I μ

I μ I θ 1 Σ Y θ 1 Y

 

 





 (47)

 

for 1 m M  .  

Proof 

a. The proof for the non-separable case is derived by applying Proposition 1 (Navarro, et. 
al., 2009). 

b. From (3), sX can be written as follows: 

          .NL L L LL L L
  

 

   
         
   

 s r s s r ss s r s s r r s s
r r

X Y θ 1 Y I θ 1 μ
 

 (48) 

For the separable case, the mean can be written as follows: 

 

         
                  

                  
1 1

2 2

2 1

2 1 2 1

1 2 1 2

1

1 .

N N

N N

m m m

m m m m

m m m m

 

    

    

μ μ μ

μ I μ μ I μ

I μ μ I μ μ

 (49) 

Plugging the results of (49) into (48) yields 
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 (50) 
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 1


      1
m mΦ μ , 1 m M   

For this case, we recognize the following from (50): 

 
   

    1

2 .N NL LL L
 



 
    
 

 s r ss r s s
r

Q I θ 1 μ I


 (51)  

By applying Preposition 1 and rearranging terms, we obtain (46). 

 2


      1
m mΦ μ , 1 m M   

For this case from (50), we recognize 

    
    2

1 .N NL LL L
 



 
    
 

 s r ss r s s
r

Q I θ 1 I μ


 (52) 

by applying Preposition 1 and rearranging terms, we obtain (47). 

6.2 Interaction matrix parameter estimation 

Proposition 3 Assume that the mean vectors  mμ  for 1 m M  and the covariance 
matrices  mΣ for 1 m M  are known, then interaction matrix parameters are estimated 
by solving the simultaneous linear equations given as follows: 

a. Non-Separable Case: 

      m m mH Ψ Γ  (53) 

where 

        
 

1
, , ,  ,  T

S S
m

m row col m m m



           
 s t s r

s

H A Σ A r t 


 (54) 

         
 

1
, ,  S

m

m row m m m



 
   
 
 
 s t s

s

Γ A Σ Y μ t 


 (55) 

      ˆ ,  Sm row vec m rΨ θ r   (56) 

and 

                  1
, , .N N N NL m L mm m m m m




       

s-r s rs r s-r s rA Y μ 1 I K Σ Σ Y μ 1 I  (57) 

From the invariance property of the MPL, the complete set of non-separable interaction 
matrix estimators is estimated as follows:  
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      ˆ ˆ , ,m reshape vec m N Nr rθ θ  (58) 

          1ˆ ˆTm m m m


 r rθ Σ θ Σ  (59)  

for 
S

r  , 1 m M  .  

b. Separable Case: 

In addition, if we assume the following for 
S

r   and 1 m M  : 

 
   1

m
r
θ  is estimated, given that 

   2
m

r
θ  is known  

 
   2

m
r
θ  is estimated, given that 

   1
m

r
θ  is known 

then 

            k k km m mH Ψ Γ  (60)  

where 

              
 

1
, , ,  ,  k k k T

S S
m

m row col m m m



           
 s t s r

s

H A Σ A r t


   (61)  

             
 

1
, ,  k k

S
m

m row m m m



 
   
 
 
 s t s

s

Γ A Σ Y μ t


  (62)  

          ˆ ,  k k
Sm row vec m rΨ θ r   (63) 

for 1 2k   and 

              
1 2 1 2 1

1 2
, , ,

T T
N N N N Nm vec m m   s r r s rA θ I I K I A  (64)  

              
2 2 1 2 1

2 1
, , , .

T T
N N N N Nm vec m m   s r r s rA I θ I K I A  (65)  

From the invariance property of the MPL, the complete set of separable interaction matrix 
estimators is estimated as follows for 

S
r   , 1 m M  , 1 2k  :  

          ˆ ˆ , ,k k
k km reshape vec m N Nr rθ θ  (66)  

                  1ˆ ˆk k k T km m m m


r rθ Σ θ Σ  (67)  

and also 
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          2 1ˆ ˆ ˆm m m r r rθ θ θ  (68) 

for 
S

r   and 1 m M  . 

Proof 

a. The proof for the non-separable case is derived by applying Proposition 1 (Navarro, et. 
al., 2009). 

b. From (3), sX can be written as 

 
         , .

S

Tvec L L vec L


    s s s s s r s r s
r

X X Y μ A θ


 (69) 

The above expression can also be written using the following matrix identities (Magnus and 
Neudecker, 1999) 

 
     Tvec vec ABC C A B  (70) 

where m nA  , n pB  , and .p qC   

  T T T  A B A B  (71)  

    ,
T

m nvec vecA K A  (72)  

where m nA  . In addition, from the identity (Magnus and Neudecker, 1999) 

         ,n q m pvec vec vec     A B I K I A B  (73)  

where m nA   and p qB  , it follows that 

 

           
            2 1 2 1

2 1
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r r
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 (74)  

Furthermore, since 
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 (75)  

then, 
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Plugging the results of (76) into (69) yields 
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 (77)  

 1
         1

m vec m
t

Φ θ , ,  1
S

m M  t   

For this case, we recognize from (77), 

  (1)
,

T ms s tQ A . (78)  

By applying Preposition 1 and rearranging terms, we obtain the following expression  

               
 

        
 

1 1 1 11 1
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 (79)  

By aggregating the equation in (79) for St  , the interaction matrix coefficients are 
estimated by solving the simultaneous linear equations in (60) for 1.k    

 2
         2

m vec m
t

Φ θ , ,  1
S

m M  t   

For this case, we recognize from (77)  

  (2)
,

T ms s tQ A . (80)  

By applying Preposition 1 and rearranging terms, we obtain the following expression  

               
 

        
 

2 2 2 21 1
, , , .

S

T

m m

m m m vec m m m m 

  
   s t s r r s t s

r s s

A Σ A θ A Σ Y μ
 

 (81)  

By aggregating the equations in (79) for St  , the interaction matrix coefficients are 
estimated by solving the simultaneous linear equations in (60) for 2.k    

6.3 Covariance matrix parameter estimation 

Since sX is dependent on a covariance matrix in finding the MPL estimator of  mΣ , for all 
1 m M  is cumbersome to derive. As an alternative, we estimate the covariance matrix as 
the sample covariance matrix given that the mean vectors  mμ for 1 m M  and the 
interaction matrix coefficients  mrθ , for ,r  1 m M  are known, then the covariance 
matrix parameters are estimated as follows: 

a. Non-Separable Case: 

      

1ˆ T

m

m
r m 

  s s
s

Σ X X


 (82)  
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b. Separable Case: 

In addition, if we assume the following for 1 m M  : 

 
   1

mΣ  is estimated, given that 
   2

mΣ  is known  
 

   2
mΣ  is estimated, given that 

   1
mΣ  is known 

then 
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 (83)  
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  s s
s
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 (84)  

The above estimators are not in their closed form. The estimators can be solved iteratively 
using the flip-flop algorithm (Dutilleul, 1999). 

7. Data preparation 

The multispectral and multitemporal satellite image under consideration is the ‘Butuan’ 
image acquired from the LANDSAT TM. The image shows the scenery of Butuan City and 
its surroundings in Northeastern Mindanao, Philippines. It consists of six spectral bands and 
four temporal slots with a dynamic range of 8 bits. The images were captured 
chronologically on the following dates: August 1, 1992, August 7, 2000, May 22, 2001, and 
December 3, 2002. The images were radiometrically corrected, geometrically co-registered 
with each other, and have been resized to 600 x 800 pixels. The image in Fig. 1 is a gray-
scaled RGB realization captured on May 22, 2001. 

 
Fig. 1. RGB image of ‘Butuan’ captured on May 22, 2001.  
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The thematic classes were established by employing the k-means algorithm (Richards and 
Jia, 2006). The thematic classes were identified and their mean reflectance vector form the 
training data are shown in Table 1. 
 

M Thematic Class Landsat TM Band Number 

1 2 3 4 5 7 

1 Thick Vegetation 62 48 33 91 69 29 

2 Sparse Vegetation 70 58 43 99 83 37 

3 Built Up Areas 77 63 54 75 78 41 

4 Body of Water 72 41 29 12 13 11 

5 Thin Clouds 104 84 76 88 85 53 

6 Thick Clouds 197 190 190 144 167 115 

Table 1. Average reflectances from the training data.  

Training and verification sites were obtained from a random sample of 1200 sites. The first-
order neighborhood system in the MRF modeling of the thematic map and the image were 
used.  

8. Discussion 

8.1 Non-separable case 

The classification performance of our model with non-separable MGMRF parameters, as 
compared to the GSC, Hazel's, and Rellier's models are presented in Table 2.  
 

Model Accuracy 

GSC 55.3% 

Hazel’s GMRF 45.6% 

Rellier’s GMRF 83.1% 

Our Model 84.3% 

Table 2. Classification Accuracy of Different MGMRF models. 

The GSC model has a low accuracy compared to the remaining MGMRF models. It 
substantiates that Markov dependence would yield a better accuracy to the thematic map 
classification than to the site independence model. 

It is noticeable that Hazel’s GMRF presents a relatively poor classification accuracy which is 
attributed to the bilateral symmetry imposed into the interaction matrices, that is, 
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    L Lr s r sθ θ  (85)  

(Hazel, 2000) which in general, does not hold the multivariate case. This relation, however, 
holds in the univariate case (Kashyap and Chellappa, 1983) as well as the Rellier’s GMRF.  

On the other hand, anisotropic models, such as Rellier’s GMRF, and our model exhibited a 
substantially better classification performance as compared to the GSC. Since the covariance 
matrix estimators used a sub-optimal alternative, some slight performance degradation has 
resulted. 

8.2 Hybrid separable case 

Denote Sμ , Sθ , and SΣ  to be the separable indicators for the mean, interaction matrix, and 
covariance matrix, respectively.  

8.2.1 Hybrid separable GSC model 

Since the GSC model is a degenerate form of our MGMRF with zero interaction matrices, the 
separability structure of the mean and covariance matrices are examined. The results are 
presented in Table 3 showed that no improvement in the classification performance, 
regardless of separability of the parameters. 

 

SΣ  Sμ  Accuracy 

0 0 55.3% 

0 1 54.2% 

0 0 54.3% 

1 1 54.1% 

Table 3. Classification Accuracy of Hybrid Separable GSC models. 

8.2.2 Hybrid separable anisotropic GMRF model 

The hybrid separable anisotropic MGMRF shows the separability of the covariance matrix 
has a slight improvement in performance over a non-separable spectro-temporal 
observation. As discussed in Section 5.2, the hybrid separable model with separable 
interaction matrix, together with a non-separable matrix, were excluded in the model 
performance as these modes are not possible. The classification accuracy is presented in 
Table 4. 

 

SΣ  Sθ  
Sμ  Accuracy 

0 0 0 84.3% 

0 0 1 84.6% 

0 1 0  

0 1 1  
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SΣ  Sθ  
Sμ  Accuracy 

1 0 0 84.5% 

1 0 1 86.6% 

1 1 0 83.8% 

1 1 1 86.2% 

Table 4. Classification Accuracy of Hybrid Separable Anisotropic MGMRF models. 

8.3 Thematic maps 

Some of the thematic map labels are presented in Figs. 2 to 4, based on the May 22, 2001 
satellite image. For clarity of visual presentation, thematic map labels were based on the 
gray-scaled average RGB reflectance of the training data. 
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Fig. 2. Thematic Map – Hazel’s MGMRF  

 
Fig. 3. Thematic Map – GSC with separable mean and covariance matrix  
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Fig. 4. Thematic Map – Anisotropic MGMRF separable mean, interaction matrices, and 
covaraince matrices 

9. Summary, conclusions, and recommendations 

This study presents a parameter estimation procedure based on the MPL for an anisotropic 
MGMRF with hybrid-separable parameters. Although the MGMRF is a natural extension of 
its univariate counterpart, the interaction matrix relationship is, in general, dependent on 
the covariance matrix. In an effort to make the estimation and classification procedure more 
tractable to compute, some sub-optimal approximations were incorporated. This resulted in 
a slight degradation in the classification performance. The classification performance based 
on our model performed well when compared to the GSC model and Hazel’s MGMRF. 
Nonetheless, its performance is comparable to the Rellier’s MGMRF. Moreover, for spectro-
temporal observations, the separability of the interaction matrix as well as the covariance 
matrix improved the classification performance. Computational capabilities are foreseen to 
further advance in the near future following the improvement of numerical estimation and 
classification procedures. 

This study presents a parameter estimation procedure based on the MPL for anisotropic 
MGMRF with hybrid-separable parameters. Although the MGMRF is a natural extension of 
its univariate counterpart, the interaction matrix relationship is, in general, dependent on 
the covariance matrix. In an effort to make the estimation and classification procedure more 
tractable to compute, some sub-optimal approximations were incorporated in the process. 
This resulted in a slight degradation in the classification performance. The classification 
performance, based on our model, has performed well, as compared to the GSC model and 
Hazel’s MGMRF. Furthermore, its performance is comparable to Rellier's MGMRF. In terms 
of spectro-temporal observations, the separability of the covariance matrix has improved the 
classification performance. This study can be improved even more with numerical 
estimation and classification procedure as computational capabilities. This is foreseen to 
further advance in the near future. 
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1. Introduction

This chapter deals with the difficulties of transmitting data gathered from sensors placed
in very remote areas where energy supplies are scarce. The data link is established by
means of the ionosphere, a layer of the upper atmosphere that is ionized by solar radiation.
Communications through the ionosphere have persisted, although the use of artificial
repeaters, such as satellites, has provided more reliable communication. In spite of being
random, noisy and susceptible to interference, ionospheric transmission still has favorable
characteristics (e.g. low cost equipment, worldwide coverage, invulnerability, etc.) that
appeal to current communications engineering.

The Research Group in Electromagnetism and Communications (GRECO) from La Salle -
Universitat Ramon Llull (Spain) is investigating techniques for the improvement of remote
sensing and skywave digital communications. The GRECO has focused its attention on the
link between Antarctica and Spain. The main objectives of this study are: to implement
a long-haul oblique ionospheric sounder and to transmit data from sensors located at the
Spanish Antarctic Station (SAS) Juan Carlos I to Spain.

The SAS is located on Livingston Island (62.7 ◦S, 299.6 ◦E; geomagnetic latitude 52.6 ◦S) in the
South Shetlands archipelago. Spanish research is focused on the study of the biological and
geological environment, and also the physical geography. Many of the research activities
undertaken at the SAS collect data on temperature, position, magnetic field, height, etc.
which is temporarily stored in data loggers on-site. Part of this data is then transmitted
to research laboratories in Spain. Even though the SAS is only manned during the austral
summer, data collection never stops. While the station is left unmanned, the sets of data
are stored in memory devices, and are not downloaded until the next Antarctic season. The
information that has to be analyzed in almost real-time is transmitted to Spain through a
satellite link. The skywave digital communication system, presented here, is intended to
transmit the information from the Antarctic sensors as a backup, or even as an alternative
to the satellite, without depending on other entities for support or funding.

Antarctica is a continent of great scientific interest in terms of remote sensing experiments
related to physics and geology. Due to the peculiarities of Antarctica, some of these
experiments cannot be conducted anywhere else on the Earth and this fact might oblige the
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researchers to transmit gathered data to laboratories placed on other continents for intensive
study. Because of the remoteness of the transmitter placed at the SAS, the system suffers from
power restrictions mainly during austral winter. Therefore, maintaining the radio link, even
at a reduced throughput, is a challenge. One possible solution to increase data rate, with
minimal power, is to improve the spectral efficiency of the physical layer of the radio link
while maintaining acceptable performance. The outcomes and conclusions of this research
work may be extrapolated to other environments where communication is scarcely possible
due to economic or coverage problems. Therefore, the solutions presented in this study may
be adopted in other situations, such as communications in developing countries or in any
other remote area.

1.1 Remote sensors at the SAS

In this section we describe the main sensors located at the SAS, including a geomagnetic
sensor, a vertical incidence ionosonde, an oblique incidence ionosonde and a Global
Navigation Satellite System (GNSS) receiver. They have all been deployed in the premises
of the SAS by engineers of the GRECO and scientist of the Observatori de l’Ebre. The
geomagnetic sensor, the vertical incidence ionosonde and the GNSS receiver are commercial
solutions. The oblique incidence ionosonde, used to sound the ionospheric channel between
Antarctica and Spain, was developed by the GRECO in the framework of this research work.

1.1.1 Geomagnetic sensor

Ground-based geomagnetic observatories provide a time series of accurate measurements of
the natural magnetic field vector in a particular location on the Earth’s surface. This data
is used for several scientific and practical purposes, including the synthesis and updates of
global magnetic field models, the study of the solar-terrestrial relationships and the Earth’s
space environment, and support for other types of geophysical studies.

Once the raw observatory data is processed, it is sent to the World Data Centers, where
the worldwide scientific community can access them. International Real-time Magnetic
Observatory Network (INTERMAGNET) provides means to access the data by an almost
real-time satellite link. The data is packed, sent to the geostationary satellites, and collected
by Geomagnetic Information Nodes (GINs), where the information can be accessed freely.
However, experience has shown that the satellite link is not 100% reliable, and it is preferable
to have alternative means to retrieve the geomagnetic data.

There are three main reasons for designing a transmission backup system by skywave. Firstly,
visibility problems appear when trying to reach geostationary satellites from polar latitudes.
Secondly, end-to-end reliability can be increased by transmitting each frame repeatedly
throughout the day. And finally, the ionospheric channel is freely accessed anywhere, whereas
satellite communications have operational costs.

1.1.2 Ionosonde: vertical incidence soundings of the ionosphere

A vertical incidence ionospheric sounder (VIS) (Zuccheretti et al., 2003) was installed in order
to have a sensor providing ionospheric monitoring in this remote region. This ionosonde
is also being used to provide information for the High Frequency (HF) radio link employed
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for data transmission from the SAS to Spain. Data provided by the VIS is used to conduct
ionospheric research, mainly to characterize the climatology of the ionospheric characteristics
and to investigate the ionospheric effects caused during geomagnetically disturbed periods
(see (Solé et al., 2006) and (Vilella et al., 2009)).

1.1.3 Oblique ionosonde

The oblique ionosonde monitors various parameters to model the HF radiolink between the
SAS and Spain (Vilella et al., 2008). These parameters include link availability, power delay
profile and frequency dispersion of the channel. The sounder includes a transmitter, placed on
the premises of the SAS and a receiver deployed in Spain. The main drawback of the oblique
sounder is the difficulty in establishing the ionospheric link. Firstly, the long distance of the
link (12700 km) requires four hops to reach the receiver. And secondly, the transmitted signal
has to cross the equator and four different time zones.

1.1.4 Global Navigation Satellite Systems

The ionosphere study can be approximated from several points of view. Vertical incidence
soundings provide accurate information about electron density profiles below the peak
electron density. However, when using this technique the electron profile must be
extrapolated from the peak point to the upper limit of the ionosphere. Moreover, the low
density of vertical ionosondes, especially in oceans and remote areas, is a serious impairment.

GNSS receivers constitute a high temporal and spatial resolution sounding network which
despite gaps over oceans and remote regions, can be used to study fast perturbations affecting
local regions, such as Travelling Ionospheric Disturbances and scintillations, or wider regions
such as solar flares. Data gathered from GNSS receivers can provide information about the
Total Electron Content (TEC) between receivers and satellites by means of proper tomographic
modeling approaches. Spatial and temporal variations of the main ionospheric events can be
monitored by means of GNSS receivers, especially those placed in the Antarctic Region, which
is considered the entrance point of many ionospheric disturbances coming from Solar events.
Furthermore, TEC reaches its highest variability peaks in the Antarctica area.

1.2 Data transmission

This chapter will study, analyze and experimentally verify a possible candidate for the
physical layer of a long-haul ionospheric data link, focusing on the case SAS-Spain.
Preliminary studies of data transmission feasibility over this link were already performed
in (Deumal et al., 2006) and (Bergada et al., 2009), with encouraging results.

The first application of this link is the transmission of data generated by a geomagnetic sensor
installed at the SAS. Future applications may include sending information of another nature
such as temperature, glacier movements, seismic activity, etc.

The minimum requirements regarding the geomagnetic sensor data transmissions from the
SAS to Spain are:

• The system should support a data throughput of 5120 bits per hour.
• The maximum delivery delay of the data should not exceed 24 hours.
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1.2.1 Constraints

The extreme conditions prevailing at the SAS impose a number of restrictions that affect the
transmission system. We highlight the following ones:

• The transmission power should be minimal. It is noted that the SAS is inhabited
only during the austral summer, approximately from November to March. During this
period there is no limitation regarding the maximum power consumption. However, the
transmission system is designed to continue operating during the austral winter, when
energy is obtained entirely from batteries powered by wind generators and solar panels.
Hence the power amplifier is set to a maximum of only 250 watts.

• Environmental regulations applicable at the site advise against the installation of large
structures that would be needed to install certain types of directive antennas.

1.2.2 Approach

This section justifies the need for a new data communication system adapted to the
requirements of the project and presents the main ideas of this proposal. Firstly, we review
the mechanisms that exist worldwide regarding the regulation of occupation of the radio
spectrum. Then we review the features of current standards of HF data communications and
discuss the non-suitability of these to the requirements of the project.

The International Telecommunication Union (ITU) is responsible for regulating the use of
radio spectrum. From the point of view of frequency allocation, it has divided the world into
three regions. Broadly speaking, region 1 comprises Europe and Africa, Asia and Oceania
constitute region 2 and North and South America region 3.

In each region, the ITU recommends the allocation of each frequency band to one or several
services. When multiple services are attributed to the same frequency band in the same
region, these fall into two categories: primary or secondary. The ones that are classified as
secondary services can not cause interference with the primary services and can not claim
protection from interference from the primary services; however, they can demand protection
from interference from other secondary services attributed afterwards.

Given these considerations, we propose a system transmission with the following guidelines:

• It can not cause harmful interference to any other service stations (primary or secondary).
• It can not claim protection from interference from other services.

To meet these requirements, we propose a system with the following characteristics:

• Reduced transmission power (accordingly with the consumption constrains).
• Low power spectral density.
• Robustness to interference.
• Burst transmissions (few seconds).
• Sporadic communications.

Moreover, given the ionospheric channel measures described in (Vilella et al., 2008) the
following additional features are required:

• Robustness against noise (possibility of working with negative signal to noise ratio).
• Robustness against time and frequency dispersive channels.
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1.2.3 HF communication standards

In this section we briefly review the current communication standards for HF and we justify
its non-suitability for the purposes of this project.

Due to the proliferation of modems in the field of HF communications, interoperability
between equipment from different manufacturers became a problem (NTIA, 1998). Hence
the need to standardize communication protocols. Worldwide, there are three organizations
proposing standards regarding HF communications: (i) the U.S. Department of Defense
proposes the Military Standards (MIL-STD-188-110A, 1991; MIL-STD-188-110B, 2000;
MIL-STD-188-141A, 1991), (ii) the Institute for Telecommunications Science (ITS), which
depends on the U.S. Department of Commerce, writes the Federal Standard (FED-STD) and
(iii) NATO proposes the Standardization Agreements (STANAG-4406, 1999; STANAG-5066,
2000).

Regarding the interests of this work it is noted that:

• The standard modes are designed for primary or secondary services. Therefore:
– The bandwidth of the channels is standardized (3 kHz or multiples). Interference

reduction, i.e. minimize the output power spectral density, with other transmitting
systems is not considered.

– No modes are considered based on short sporadic burst transfers to reduce interference
with other users.

– There are anti-jamming techniques (see MIL-STD-188-148) for additional application on
a appropriate communication standard, but the proposals are not based on intrinsically
robust to interference modulations.

• Robust configurations require a minimum signal to noise ratio (SNR) of 0 dB at 3 kHz
bandwidth, which is not common in this link under the specified conditions of transmitted
power and antennas (Vilella et al., 2008).

We conclude that the configurations proposed by current standards do not meet the desirable
characteristics for the type of communication that is required in this work, and consequently,
a new proposal should be suggested. In this chapter, we study a number of alternatives based
on the use of Direct Sequence Spread Spectrum (DS-SS) techniques in order to cope with the
impairments of the channel, the environment and other services.

2. Data transmission with Direct Sequence Spread Spectrum techniques

Spread Spectrum (SS) techniques are described by (Pickholtz et al., 1982) as a kind of
transmission in which signal occupies a greater bandwidth than the necessary bandwidth to
send the information; bandwidth spreading is achieved by an independent data source, and a
synchronized code in the receiver to despread and retrieve data.

SS began to be developed especially for military purposes in the mid twentieth century and
has continued in the forefront of research to present, which is, nowadays, a key point for the
3G mobile cellular systems (Third Generation Partnership Project, 1999) and wireless systems
transmitting in free bands (IEEE802.11, 2007).

127Low Rate High Frequency Data Transmission from Very Remote Sensors



6 Will-be-set-by-IN-TECH

In the field of HF communications new techniques have always been slowly introduced due
to a widespread sense that reliable communications were not feasible in this frequency band,
while improvements of its implementation would be irrelevant. However, SS techniques have
been suggested several times as suitable for the lower band of frequencies (i.e. LF, MF and, by
extension, HF) (see (Enge & Sarwate, 1987)), since the intrinsic characteristics of SS systems to
cope with multipath and interference (typical ionospheric channel characteristics).

There are three types of spread spectrum systems (Peterson et al., 1995): Direct Sequence,
Frequency Hopping and hybrid systems composed by a mixture of both. In this study we
will focus on Direct Sequence schemes.

DS-SS systems spread the spectrum by multiplying the information data by a spreading
sequence. Consider the following model (Proakis, 1995):

sss(t) =
Ns−1

∑
i=0

dic(t− iTs), c(t) =
L−1

∑
l=0

cl p(t− lTc), (1)

where di denotes the ith symbol, of length Ts, of a modulated signal:

d = {d0, d1, ..., dNs−1} (2)

and cl are the chips 1, of length Tc, of a spreading sequence of length L:

c = {c0, c1, ..., cL−1} (3)

and p(t) is a pulse shaping defined as

p(t) =
{

1, t ∈ [0, Tc)
0 ⇒ otherwise

(4)

In addition, it holds that LTc = Ts and thus if the base band signal is formed by the symbols
di and occupies a bandwidth of 1

Ts
the spread spectrum signal sss(t) occupies a bandwidth of

1
Tc

= L 1
Ts

.

The spreading sequence c should have good properties of autocorrelation and
cross-correlation in order to ease the detection and synchronization at the receiver side.

Some of the main advantages of a system based on DS-SS are: (i) jamming and interference
robustness, (ii) privacy, (iii) ability to use Code Division Multiple Access (CDMA) and (iv)
robustness against multipath and time variant channels. On the other hand, the drawbacks
of this technique are: (i) bandwidth inefficiency and (ii) receiver complexity: chip-level
synchronization, symbol despreading (DS-SS signaling) and channel estimation and detection
(RAKE receiver) (Viterbi, 1995).

Throughout the following sections we will discuss the most important considerations that
justify the choice of DS-SS; as well as the technical basis to design the data modem for the
ionospheric link between the SAS and Spain.

1 The bits of a spreading sequence are called chips
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2.1 Robustness against interference

Ionospheric communications have global coverage range. Consequently, any system
operating in a given area might potentially interfere with other remote systems operating
at the same frequency band. Hence the transmission system proposed in this work might
be interfered with primary or secondary services that are assigned the same frequency band.
For these reasons it is appropriate to review the characteristics of DS-SS regarding robustness
against interference.

Let a DS-SS based system that transmits Rb bits per second in a bandwidth Bss (Bss � Rb)
in the presence of additive white Gaussian noise z(t) with power spectral density No [W/Hz]
and narrowband interference i(t) with power Pi. At the receiver side:

rss(t) = sss(t) + i(t) + z(t). (5)

Then (Pickholtz et al., 1982),(
Eb
No

)
z(t),i(t)

=
P
Pn

Bss

Rb

Pn

Pn + Pi
=

P
Pn

Bss

Rb

N0

N0 +
Pi
Bss

, (6)

where Pn = Bss No is the noise power within the transmission bandwidth and P = EbRb is
the signal power. We can deduce from Equation 6 that we can reduce the effect of interfering
signals by increasing Bss. In other words, as Bss = L · Rb, the larger the spreading factor the
lower the degradation due to interfering signals. The quotient Bss

Rb
is called the process gain

Gp and is a measure of the robustness of a spread spectrum system against interference. In
DS-SS systems the processing gain coincides with the spreading sequence length (L).

It is noted that when Bss increases
(

Eb
No

) ∣∣∣∣
z(t)

does not change because Pn = NoBss increases

in the same proportion, whereas an increase of Bss implies an equivalent improvement

of
(

Eb
No

) ∣∣∣∣
i(t)

, as Pi is unchanged. To summarize, the use of spread spectrum provides

improvement regarding narrowband interfering signals whereas no improvement over noise
is achieved.

Feasibility studies of DS-SS systems with different types of interference can be found in the
literature. See, for instance, (Schilling et al., 1980) when the interference is a narrowband
signal and (Milstein, 1988) for multiple interfering signals.

2.2 Robustness against multipath channels

According to the analysis described in (Vilella et al., 2008), the ionospheric channel established
between the SAS and Spain shows a maximum multipath delay spread (τmax) that varies,
depending on time and frequency, between 0.5 ms and 2.5 ms. Therefore, the coherence
bandwidth of the channel, which can be considered as approximately the inverse of the
maximum multipath delay spread (Proakis, 1995), can be narrower than 400 Hz. In case of
transmitting with a wider bandwidth the channel would be frequency selective and distortion
due to multipath would arise. Below, the properties of DS-SS against multipath are discussed.

Let a DS-SS based system with bandwidth Bss in a channel with coherence bandwidth Wc ∼
1

τmax
� Bss. If symbol time Ts � τmax intersymbol interference due to multipath can be
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neglected. Moreover, if Ts � 1
υmax

(where υmax denotes the maximum Doppler spread) the
channel is almost invariant during a symbol time. Under these conditions it can be shown
that (Proakis, 1995):

r(k)
ss (t) =

N

∑
n=1

h
(

n
Bss

)
s(k)

ss

(
t− n

Bss

)
+ z(t), (7)

where h
(

n
Bss

)
denotes a coefficient of the equivalent low-pass of the channel impulse

response, sss(t) corresponds to the base band spread signal defined in Equation 1, (k) denotes
the contribution due to symbol k, N = τmaxBss is the number of non zero channel taps
(since sss(t) has a limited bandwidth of Bss) and z(t) is additive white Gaussian noise. In
consequence, the signal reception is formed by delayed replicas of the transmitted signal.
Then, we substitute Equation 1 in Equation 7 and apply an array of correlators to correlate the
received signal with N copies of the spreading sequence c (each of them delayed a chip time).
Let c be a sequence with good properties of circular autocorrelation:

ρ(m) =
L

∑
l=1

clcl+m

{
1, m = 0
0 ⇒ otherwise (8)

The output Um of each correlator can be expressed as:

Um = dkh
(

m
Bss

)
+

∫ Ts

0
c(t)z(t +

m
Bss

) dt, m ∈ [0, N − 1]. (9)

Therefore, at the output of each correlator we obtain each transmitted symbol (dk) multiplied

by a channel coefficient h
(

m
Bss

)
plus a noise term. Hence, the use of DS-SS can take advantage

of different replicas of the signal if correctly combined. The most general linear combination
is the criterion of Maximal Ratio Combining that chooses the coefficients that maximize
instantaneous SNR (Peterson et al., 1995). To properly apply this method it is mandatory
to know the coefficients of the channel. Alternatively, the outputs of the correlators can be
equally weighed (Equal Gain Combining), thus simplifying the receiver at the expense of
worse performance.

2.3 Transmission with low spectral density power

One of the requirements of the proposed transmission system consists in causing minimal
interference with primary and secondary services. For this purpose we propose alternatives
to minimize power spectral density. We should note that as process gain increases, DS-SS
techniques enable transmission with arbitrarily low power density. Suppose the transmission
of a data stream d using a bandwidth Bd and power P. Then the average power spectral

density is D = P
Bd

[
W
Hz

]
. Under the same conditions of power consider the transmission of

the same data stream with DS-SS (sss(t)) by means of a spreading sequence c(t) of length L.
Then, the spectral occupancy of sss(t) will be at least L · Bd and the average power spectral

density will be Dss =
P

L·Bd

[
W
Hz

]
.

Therefore, the use of DS-SS involves an average reduction of power spectral density by a factor
equal to the process gain Gp = L. Then, the spectral occupancy proportionally increases;
however, it is not an inconvenience in this case since there is no limitation in this regard.
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2.4 Flexibility regarding spectral efficiency

The signal model expressed by Equation 1 is able to transmit k = log2 K bits (b(0)0 . . . b(0)k−1)
modulated in di during a period Ts (K is the number of possible modulation symbols in d and
k is the corresponding number of bits per symbol).

The spectral efficiency (Css = k/(Ts · Bss)), expressed in [bits/s/Hz] and defined as the ratio
between bit-rate and transmission bandwidth, is Gp times lower than the non spreading
system.

There are several alternatives to increase spectral efficiency without decreasing process gain
(and hence, robustness to interference) at the expense of increasing computational cost of
the receiver. In the following sections we describe two of them: DS-SS M-ary signaling and
quadriphase spreading. We briefly present the signal model, a study of the probability of error
and we note the spectral efficiency of each of them.

2.4.1 DS-SS M-ary signaling

Let a set of M spreading sequences Q =
{

c(1), c(2), . . . , c(M)
}

that satisfy a certain correlation
relationship (orthogonal or nearly orthogonal according to Equation 8). Suppose that a certain
sequence v from the previous set (v ∈ [1, M]) is transmitted depending on the value of m =
log2(M) bits of information. Then

sss(t) =
Ns−1

∑
i=0

di

L−1

∑
l=0

c(v)
l p(t− iTs − lTC) =

Ns−1

∑
i=0

dic
(v)(t). (10)

This technique is called DS-SS M-ary signaling (see, for example, (Enge & Sarwate, 1987)
for orthogonal sequences). On the receiver side, the optimum demodulator correlates the
received signal with a replica of each of the M possible sequences belonging to the set Q.
A noncoherent detector will make a decision based on the computation of the maximum
likelihood of the M envelopes at the output of each correlator. The probability Ps of detecting
an incorrect sequence in the presence of only additive white noise is given by (Proakis, 1995):

Ps =
M−1

∑
p=1

(−1)p+1
(

M− 1
p

)
1

p + 1
e−

p
p+1 (m+k)

Eb
No . (11)

The probability P1 of making an error in the demodulation of coded bits transmitted in a
certain sequence can be computed from the following expression (Proakis, 1995):

P1 =
2m−1

2m − 1
Ps. (12)

Once the sequence is detected we proceed to compute the probability P2 of making an error
in the demodulation of the coded bits in d:

P2 =
1
2

Ps + (1− Ps) Q

⎛
⎝
√

2
k

(
Eb
No

)′
⎞
⎠ , (13)
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Fig. 1. Probability of error versus SNR per bit using DS-SS M-ary signaling for various values
of M (32, 64, 128) and k (k = 0 : no modulation, k = 1: BPSK, k = 2: QPSK). Probability is
analytically (A) computed and derived from algorithm simulations (S)

where
(

Eb
No

)′
=

(
Eb
No

)
(m + k). Finally, the joint probability Pb of bit error considering the

contribution of both mechanisms is:

Pb =
m · P1 + k · P2

m + k
. (14)

Figure 1 shows that the higher the M, the lower the SNR per bit required to obtain a certain
BER. It can be explained by the fact that L increases as M (in a DS-SS system) and so does the
process gain. It can be shown that the minimum SNR per bit required to obtain an arbitrarily
small BER when M → ∞ is -1.6 dB. Figure 1 also shows that the larger the k, the smaller the
SNR per bit required to achieve a given BER. This apparent contradiction can be derived from
the following two arguments: (i) for a given bit-rate, a high value of k enables the reduction of
transmission bandwidth (and thus reduction of noise) and hence, improve the probability of
finding the transmitted sequence (Equation 13). (ii) The probability Pb of total error (Equation
14) is a balance between P1 and P2. The second term in P2 (Equation 13) derives from the
probability of error in demodulating the bits in d once the sequence is successfully detected.
So, if this term is lower than both the first term in Equation 13 and P1 (Equation 12) the use of
any kind of modulation will not result in significant degradation in Pb.
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In a symbol time Ts we send k + m bits (b(1)0 · · · b(1)k−1b(1)0 · · · b(1)m−1), where k corresponds to
the bits modulated with d and m corresponds to the bits used in the choice of the spreading
sequence. Consequently, the spectral efficiency is:

C =
k + m

Gp
= Css +

m
Gp

= Css +
log2 M

Gp
. (15)

Therefore, the larger the M the lower the BER for a given SNR per bit and the greater the
spectral efficiency at the expense of greater computational cost of the receiver. In addition, the
larger the number of bits per symbol the better the BER for a given SNR per bit and the lower
the computational cost of the receiver.

2.4.2 DS-SS M-ary signaling + Quadriphase

Another alternative is to divide the set of M sequences into two subsets: Qr =

{c(1), · · · , c(M/2)} on one side and Qi = {c(M/2+1), · · · , c(M)} on the other side. Then, apply
DS-SS M-ary signaling on both the real and the imaginary part of d. Thus,

sss(t) =
Ns−1

∑
i=0

(

{di} c(v1)(t) + j · � {di} c(v2)(t)

)
, v1 ∈ [1, M/2], v2 ∈ [M/2 + 1, M]. (16)

This variant is called quadriphase chip spreading and permits us to send M = 2 log2 (M/2)
bits per symbol by choosing a sequence from each of the two sets (plus k additional bits per
symbol encoded in the modulation of di).

At the receiver side, the demodulator correlates the received signal with a replica of each of
the M possible sequences. The detector will decide on the envelopes computed at the output
of correlators corresponding to the sequences of the subset Qr and a similar decision on the
subset Qi. The probability of incorrectly detecting a sequence from both the set Qr and Qi in
the presence of only additive white Gaussian noise is:

Ps =
M/2−1

∑
p=1

(−1)p+1
(

M/2− 1
p

)
1

p + 1
e−

p
p+1(

m+k
2 )

Eb
No . (17)

It is worth noting that the factor 1/2 multiplying Eb
No

comes from considering that the symbol
energy is equally distributed between real and imaginary parts (see Equation 16). The
probability P1 of incorrectly demodulating the bits coded in a sequence that belongs to the
subset Qr or Qi can be obtained by applying an equation analogous to Equation 12:

P1 =
2(m/2)−1

2(m/2) − 1
Ps. (18)

We then discuss the probability P2 of error on the bits modulated in d in the case of BPSK
and QPSK. For BPSK, the decision is based on the sign of the sum of the two outputs of
the correlators for the two sequences detected in the previous step. The case of QPSK is
equivalent to two BPSK with half the SNR per each bit, both independently demodulated
from the detection of two sequences (the corresponding to subsets Qr and Qi, respectively).
Then, the probability P2 for BPSK and QPSK, respectively, is:

P2 =
1
2

PsPs + 2Ps(1− Ps)Q
′
bpsk + (1− Ps)(1− Ps)Qbpsk , (19)
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Fig. 2. Probability of error as a function of SNR per bit combining both techniques DS-SS
M-ary signaling and quadriphase chip spreading for various values of M (32, 64, 128) and k
(k = 0 : no modulation, k = 1: BPSK, k = 2: QPSK). Probability is analytically (A) computed
and derived from algorithm simulations (S)

P2 =
1
2

PsPs + Ps(1− Ps)
(

Q
′
bpsk + 0.5

)
+ (1− Ps)(1− Ps)Q

′
bpsk , (20)

where

Qbpsk = Q

⎛
⎝
√

2
(

Eb
No

)′
⎞
⎠ and Q

′
bpsk = Q

⎛
⎝
√(

Eb
No

)′
⎞
⎠ . (21)

Finally, the probability Pb of bit error is equal to Equation 14. If we compare Figure 2 with
Figure 1 it is shown that, for a given bit-rate, in terms of BER versus SNR per bit (for k = 0
with only additive white Gaussian noise) applying DS-SS M-ary signaling using M sequences
is almost equivalent to using DS-SS M-ary signaling plus quadriphase chip spreading using
2M sequences. In this latter case, however, the process gain is doubled.

When we introduce modulation (i.e. k �= 0) Figure 2 and Figure 1 show that the equivalence
noted in the previous paragraph is no longer true: the use of quadriphase chip spreading
with sequences of length 2M in combination with modulation produces inefficiency in terms
of BER with respect to a system that does not use quadriphase chip spreading with sequences
of length M. This is intuitively explained by noticing that when doubling the length of the
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sequence, keeping the same bandwidth, the number of transmitted sequences is halved as is
the number of encoded bits in the modulation.

In a symbol time Ts, k + m bits are sent (b(1)0 · · · b(1)k−1b(1)0 · · · b(1)m−1), k bits due to the modulation
of d and m bits due the choice of the spreading sequence. Therefore, spectral efficiency is:

C =
k + m

Gp
= Css +

m
Gp

= Css +
2 log2 (M/2)

Gp
(22)

Comparing Equation 22 with Equation 15 and equal bit rate, it is shown that quadriphase and
biphase chip spreading have an approximate spectral efficiency (assuming Gp = L ≈ M).

3. The experiments

This section describes the outcomes of various experiments based on DS-SS over the link
established between the SAS and Spain. Firstly, we define the objectives of the study and
point out some methodological criteria that was taken into account. Following, the testbench
and the algorithms used to carry out the tests are described. Finally, the experiments are
explained and the outcomes derived from them carefully discussed.

3.1 Goals

The aim of this work is to experimentally evaluate various alternatives, based on DS-SS,
concerning the maximum achievable performance in terms of bit error rate and spectral
efficiency at the expense of greater complexity at the receiver side. The final goal is to come
up with a proposal for the data transmission link between the SAS and Spain. Therefore, the
alternatives that we suggest may combine the following aspects:

• General features: (i) frequency chip, (ii) modulation.
• Related to DS-SS signaling: (i) process gain (determined by L), (ii) number of bits per

sequence (expressed in terms of M), (iii) spreading: biphase or quadriphase.

However, there are a number of aspects, which are beyond the scope of this study, that must
be defined and implemented. They are, specifically: (i) frame format, (ii) frequency and time
synchronization (chip and frame), (iii) coding and interleaving and (iv) channel estimation
and multipath diversity use.

It is noteworthy that it is not the aim of these experiments to measure the percentage of
satisfactory receptions among the total number of receptions, since this magnitude is strongly
related to the robustness of the synchronization method, which is beyond the scope of this
study. Consequently, we will only evaluate expected performance from satisfactory receptions
by means of a testbench explained below (see Section 3.3).

Figures 3 and 4 depict a block diagram of the transmitter and receiver, respectively. On one
hand, common modules are shown in green. Specifically:

• At transmitter side: (i) a binary random source (320 bits), (ii) a turbo encoder (rate = 1/3)
which operates combined with an interleaver (972 coded bits at the output), (iii) a frame
compiler, designed according to the measured characteristics of multipath and Doppler
spread, which builds a frame that consists of: (iii.a) a initial field for synchronization and
channel estimation, (iii.b) a field that is periodically repeated to track channel estimation
and (iii.c) data (see Section 3.3.1 and Figure 5).
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Fig. 3. Transmitter block diagram. Common modules to all experiments (testbench) are
shown in green and modules with specific characteristics are shown in blue
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Fig. 4. Receiver block diagram. Common modules to all experiments (testbench) are shown
in green and modules with specific characteristics are shown in blue

• At receiver side: (i) frequency synchronization by means of an unmodulated tone
previously emitted, (ii) frame synchronization, (iii) channel estimation (iv) decoding and
deinterleaving and (v) a SNR estimation module.

On the other hand, modules with specific parameters for the experiments are shown in blue in
both the transmitter and the receiver. These parameters are: (i) chip frequency ( fchip), which
determines the signal bandwidth (2500, 3125 and 6250 chips per second), (ii) modulation, a
choice between no modulation, BPSK or QPSK, (iii) the process gain (spreading sequence of
length 31, 63 or 127 chips), (iv) biphase or quadriphase spreading and (v) the number of bits
per sequence log2 (M) (always L = M− 1).

3.2 Methodology

In this section we explain the approach followed prior to obtaining the outcomes from these
experiments. We emphasize the following points:

• According to the explanations of the previous section, all experiments use a common
testbench. Consequently, the test algorithms equally affect all experiments.

• Each experiment consists of a signal composed of 320 bits of data (972 coded bits),
which are modulated, spread, filtered, and finally appropriate headers are appended
to them. This signal has the appearance of a burst with a duration that depends on
specific characteristics of the experiment (number of bits per symbol, sequence length,
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etc.). Experiments are transmitted during a sounding period that has a maximum time
length of 20 seconds, which is repeated every minute except for 18 minutes assigned to
maintenance and other functions.

• In each sounding period several signals are transmitted within a frame. Each frame is
repeated at least twice within a sounding period (more repetitions will be possible in case
of short frames).

• Each sounding period is associated with a carrier frequency. Seven different carrier
frequencies have been chosen based on availability outcomes presented in (Vilella et al.,
2008). These carrier frequencies are: {8078, 8916, 10668, 11411, 12785, 14642, 16130} [kHz].
Then, each frequency is tested 6 times per hour.

• Each day consists of 18 available hours (from 18 UTC to 11 UTC, both included).
• Each frame is transmitted a minimum of two days. Under these assumptions, each

experiment was performed at a certain time and frequency, at least 24 times (2 days, 6
times per hour, 2 frames per sounding period).

• There are a number of days with frames containing a common experiment. This fact allows
the assessment of interday variability.

3.3 Testbench

The testbench consists of a frame and a set of algorithms shared between all experiments,
which are all described below.

3.3.1 Frame compilation

The testbench is based on a frame which is shown in Figure 5, where:

• C is a header based on two identical sequences s of length L(s) chips, as follows:

C =
{

sL(s)−l+1 · · · sL(s) s s s1 · · · sl
}

. (23)

Therefore, C has a length of 2L(s) + 2l chips, where l is the number of chips circularly
added before the first and after the second sequence. This header is used to achieve frame,
chip and sample synchronization as well as initial channel estimation. The value of l can
be computed by means of the maximum multipath spread of the channel (τmax) as:

l = �τmax fchip�, (24)

where �·� denotes the integer immediately above. Therefore, l is the number of guard
chips before and after the block formed by the two sequences s. This guard ensures both
circular correlation during synchronization and channel estimation free from intersymbol
interference.

• S is a signaling field based on sequence s, with the following form:

S =
{

sL(s)−l+1 · · · sL(s) s s1 · · · sl
}

. (25)

Therefore, S is of length L(s) + 2l. The value of l is calculated using Equation 24. This
field provides channel estimation tracking. The period of repetition of S (denoted by TS) is
computed by means of the maximum Doppler spread of the channel (υmax) as:

TS ≈ 1
10 υmax

, (26)
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Fig. 5. Testbench frame format

where the channel is considered to be flat over a tenth of the inverse of υmax.
• D is a data symbol based on a Gold sequence of length L chips. Between the header C and

the field S, or between two consecutive S fields there are B symbols that build a block. The
number of symbols per block is given by the following equation:

B = round
(TS · fchip

L(s)

)
. (27)

3.3.2 Algorithms description

This section explains reception algorithms used by all experiments (in green in block diagram
of Figure 4).

Let r[n]
′
be the signal at the output of a downsampling filter during the sounding period. r[n]

′

is Δt seconds long with Δt · fm samples, where fm is the sampling frequency at the receiver
side ( fm = 50 ksps).

Estimation of frequency synchronization error (δ f ) between transmitter and receiver is
obtained by applying algorithms explained in (Vilella et al., 2008) to a non modulated
signal which is transmitted immediately before the data signal. Then, the signal r[n]

′
is

downconverted to baseband by a complex exponential signal with frequency −δ f :

r[n] = r[n]
′ · e2π

δ f
fm

n (28)

The next point to be considered is the frame, chip and sample synchronization which is
obtained from the header C (Alsina et al., 2009). Firstly, emitter and receiver are time
synchronized by means of a GPS receiver at each side, with time resolution of one second.
Hence, the receiver knows the second ta in which an experiment is transmitted. Let a
synchronization window around ta : [ta − δa/2, ta + δa/2]. Then the frame, chip and sample
synchronization point ts is:

ts =

argmax
m

(‖S1‖+ ‖S2‖)
fm

, m ∈ [ta − δa/2, ta + δa/2] fm, (29)

where

S1 =
L(s)−1

∑
k=0

r[m + k]s[k] and S2 =
L(s)−1

∑
k=0

r[m + L(s) fm

fchip
+ k]s[k], (30)

where s is the sequence of length L(s), interpolated by a root raised cosine filter, that forms
header C.

It is noted that S1 and S2 are the correlation of the signal r with a replica of the header
sequence s and with the same header sequence delayed L(s) chips, respectively. Therefore,
synchronization probability is maximum for that value of m such that the sequences in S1 and
S2 match in phase with header C.
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It can be easily deduced from Equation 29 and Equations 30 that the greater the length of the
sequence s (in chips and samples), the greater the likelihood of synchronization; however, the
greater the length of the header. So, there is trade-off between synchronization performance
and spectral efficiency.

Once frame, chip and sample (ts) are successfully synchronized a matched filter is applied,
followed by a decimate process to adjust the signal to one sample per chip (see Figure 4):

rd[k] =
Np−1

∑
l=0

r[
ts

fm
+ k

fm

fchip
+ l]p[l], (31)

where p is a pulse of length Np samples, namely a root raised cosine with roll-off factor α =
0.65.

Channel estimation is initally obtained from the second sequence on header C and tracked by
the field S as:

hl =
L(s)−1

∑
k=0

rd[
δt

fchip
+ k + l]s[k], l in[−τmax fchip, τmax fchip], l ∈ Z, (32)

where δt denotes the time offset of the sequence (C or S) from which we obtain channel
estimation.

The despreading of each symbol is achieved by a bank of correlators using each of the
sequences c(m) that belongs to the family denoted by Q = {c(1), c(2), · · · , c(M)}. The
correlation is calculated for all those l values such that the channel estimation exceeds a certain
threshold γ:

U(m)(l) =
L−1

∑
k=0

rd[
td
fm

+ l + k]c(m)[k], m ∈ [1, M], ∀l | ‖hl‖ � γ, (33)

where td indicates the starting point of the symbol under consideration and L is the length of
the sequences used to spread data.

When using quadriphase spreading, the set of sequences Q is divided into two subsets Qr =

{c(1), · · · , c(M/2)} on one side and Qi = {c(M/2+1), · · · , c(M)} on the other side. Then we
compute both decision variables similarly to Equation 33.

The decision of which sequence has been transmitted is performed based on a criterion of
maximum absolute value at the output of the correlators. It is only evaluated over the
set or subset of appropriate sequences and for the shift l such that the channel estimation
is maximum. We denote by p (p ∈ [1, M]) the index for the sequence with maximum
correlator output, when not using quadriphase spreading, and pr (pr ∈ [1, M/2]) and pi
(pi ∈ [M/2 + 1, M]) when using quadriphase spreading.

The demodulation of bits contained in d (see Equation 1) is achieved using a RAKE
architecture. If not using quadriphase spreading, the decision is based on the decision variable
U computed as follows:

U = ∑
l

h∗l

(
U(p)(l)− ∑

k<l
U(p)(k)ρ(p)(l − k)

)
, ∀l | ‖hl‖ � γ, (34)
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where ρ(p) is the circular autocorrelation of sequence p. If applying quadriphase spreading
two decision variables (Ur and Ui) will be needed, one per each branch.

The value of p (or pr and pi) determines the bits used by the technique of spread spectrum,
and the decision on U (or Ur and Ui) determines the bits used by modulation of d.

If not using quadriphase spreading, each bit mapped to a symbol is linked to a soft-bit Sb that
is computed according to the following expression:

Sb =

∥∥∥U(p)(l)
∥∥∥2

1
M−1

M
∑

m=1,m �=p

(
‖U(m)(l) | −U(l)

)2
, l | ∀k �= l, ‖hl‖ > ‖hk‖ , (35)

where:

U(l) =
1

M− 1

M

∑
m=1,m �=p

‖U(m)(l)‖ . (36)

It is noted that the term on the numerator in Equation 35 is a measure of the power of the signal
after despreading, while the denominator is an estimation of the noise power, computed at the
output of the correlators for those sequences which are not sent. Therefore, the soft-bit is an
estimation of the signal to noise ratio after despreading. When using quadriphase spreading,
soft-bits are calculated similarly to the biphase spreading option, for both detected sequences
(pr and pi) and the corresponding subsets of sequences (Qr and Qi).

The noise variance is also computed at the output of the correlators except for those
corresponding to the transmitted sequences. Once despreading and demodulation processes
have finished (with the corresponding soft-bits) a deinterleaving and a Turbo decoding
(Berrou & Glavieux, 1996) are applied. These two modules operate on a set of 972 coded bits
and generate a set of 320 decoded bits. The Turbo code has a constraint length of 4 and runs 8
iterations.

If not using quadriphase spreading, SNR estimation is obtained averaging soft-bits values for
each symbol of the burst. Specifically:

SNR =
1

Nsymbols

Nsymbols−1

∑
n=0

Sb(n)

L
. (37)

3.4 Outcomes

As a summary of the characteristics of most of the experiments carried out during the
Antarctic season 2006/07 we have compiled Table 1. For each configuration we give the
bandwidth ( fchip), the length of the sequence (L), the number of sequences (M), the use of
quadriphase (QS), the type of modulation, the achieved bit rate, the spectral efficiency (C) (in
parenthesis) and finally, the number of days each experiment was transmitted.

In order to summarize the outcomes obtained from the experiments carried out on the link
between the SAS and Spain the plots shown in Figures 6 and 7 contain information from tens
of thousands of bursts and are compared to the maximum achievable performance discussed
in Section 2.4.
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Config. fchip L M QS Modulation bit rate (C) Num. days

uncoded coded

(1) 2500 63 64 0 none 238 (0.10) 79 (0.03) 1

(2) 2500 63 64 1 none 397 (0.16) 132 (0.05) 1

(3) 2500 63 64 1 QPSK 476 (0.19) 159 (0.06) 4

(4) 2500 31 32 1 QPSK 806 (0.32) 267 (0.11) 2

(5) 3125 63 64 0 none 298 (0.10) 99 (0.03) 1

(6) 3125 63 64 1 none 496 (0.16) 165 (0.05) 1

(7) 3125 63 64 1 QPSK 595 (0.19) 198 (0.06) 11

(8) 3125 31 32 1 QPSK 1008 (0.32) 336 (0.11) 2

(9) 6250 63 64 0 none 595 (0.10) 198 (0.03) 1

(10) 6250 63 64 1 none 992 (0.16) 331 (0.05) 1

(11) 6250 63 64 1 QPSK 1190 (0.19) 397 (0.06) 5

Table 1. Configurations of the experiments carried out on the ionospheric link between the
SAS and Spain during the 2006/07 Antarctic season

The basic plot that is used to show the most important outcomes is a scatterplot (see,
for instance, the two top pictures in Figure 6 containing BER(′) performance versus SNR
estimation. The estimation of SNR at the receiver side is computed immediately after
despreading by means of Equation 37. Regarding this estimation it should be noted that (i) the
signal strength is measured by means of only the most powerful path and hence, the signal at
the receiver input is actually higher in case of multipath channel, (ii) when the detector at the
output of correlators commits an error the subsequential SNR estimation is incorrect (see, for
instance, Figure 6 (top) which shows that the detector systematically fails, producing BER(′)

close to 0.5 when the SNR is approximately -8 dB).

BER(′) refers to the bit error rate measured on bits contained in a burst of Nbits (320 uncoded
bits). Therefore, each point (SNR,BER(′)) of the scatterplot corresponds to the demodulation
of a burst of Nbits. The thick line shown on each scatterplot is obtained by calculating the
median of points of BER(′) in consecutive subintervals of width 0.02.

The relationship between BER and SNR can be obtained by simulation, or analytically,
according to the explanations in Section 2.4. Then, the probability P that a burst of Nbits
contains k erroneous bits is:

P
(

BER(′) =
k

Nbits

)
=

(
Nbits

k

)
BERk (1− BER)Nbits−k . (38)

We define the interval
[

BER(′)
l , BER(′)

h

]
which, given a BER, contains with a probability of 90

% a defined BER(′). Specifically:

P
(

BER (′) < BER(′)
l

)
= 0.05 and P

(
BER (′) > BER(′)

h

)
= 0.05 . (39)
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These scatterplots includes BER(′)
l = f (SNR) and BER(′)

h = f (SNR) curves for the analogous
configuration. All the points should be found in 90 % of cases in the space between these
curves if the tests were performed in a laboratory in the presence of only additive white
Gaussian noise. However, as shown in Figures 6 and 7, it should be noted that in all

scatterplots points are located outside the space bounded by the curves BER(′)
l and BER(′)

h
and shifted about 2 dB to higher SNRs. This shift is due to different causes: (i) interference
and no Gaussian noise, (ii) channel: multipath, Doppler, fading, etc., (iii) etc. The optimization
of testbench algorithms could mitigate this loss of performance, but in any case we must take
into account this shift when performing the design from a theoretical point of view.

Each scatterplot is accompanied by two histograms which derive from it. The first of these
histograms shows, for each SNR, the percentage of receptions with BER(′) = 0 of the total
number of receptions BER(′) = 0. It is noted that the higher the SNR the higher the probability
of demodulating with BER(′) = 0, but simultaneously that SNR is less likely. This first
histogram shows, therefore, the values of SNR at which the experiment is more successful.
The second histogram shows, for each SNR, the percentage of receptions with BER(′) = 0 of
the total number of receptions at that SNR. This figure allows us to evaluate at which SNR the
probability of receiving a burst without errors is above a given value.

The results are discussed in terms of comparison with expected theoretical values. Specifically,
in Figure 6 a scatterplot shows the effect of the variation in bandwidth and in Figure 7 the
use of modulation is studied. Furthermore, in Figure 8 frequencies with best percentage of
receptions of bursts with BER(′) = 0 per hour are shown and in Figure 9 the hours with best
percentage of receptions of bursts with BER(′) = 0 at each frequency are also shown.

3.4.1 Bandwidth

Figure 6 compares the use of configuration (L, M, QS, Mod): (63, 64, yes, QPSK) with
coded bits using a bandwidth of 3125 Hz (left column) and the same configuration using a
bandwidth of 6250 Hz (right column). It is observed that the benefits obtained are slightly
better for high bandwidth: for instance for SNR= -6 dB about 25 % of the receptions are
BER(′) = 0 when fchip= 3125 Hz, whereas this amount is over 40 % when fchip = 6250 Hz
(the percentages are also better in the second case for higher SNRs: -5 dB, -4 dB, -3 dB, etc.).
This fact may be partly explained by a better performance of the RAKE receiver when working
with higher multipath resolution.

3.4.2 Modulation

Figure 7 compares the application of QPSK modulation with a configuration with no
modulation based on a system with (L, M, QS): (63, 64, yes) with coded bits and a bandwidth

of 3125 Hz. Curves BER(′)
l and BER(′)

h indicate that theoretical maximum benefits are almost
identical (slightly better when not using any modulation). The histograms confirm this
estimation, where small deviations of about 5 % or 10 % to the no modulation option are
observed.

It is worth noting that when using modulation the channel must be estimated and the use of a
RAKE module is advised. Therefore, computational complexity is slightly increased while
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spectral efficiency improves without additional energy cost. In this context, we highlight
the fact that the results of degradation of 2 dB observed between theory and experimental
outcomes appear in both cases: modulation and no modulation. Therefore, this malfunction
can be attributed to detection algorithms rather than the channel estimator and combiner
algorithms.

3.4.3 Best frequencies

Figure 8 shows frequencies with best BER(′) percentage, based on configuration (L, M, QS,
Mod): (63, 64, yes, QPSK) with coded bits and a bandwidth of 3125 Hz. It should be noted that
this configuration experimentally obtained BER(′) = 0 for SNR above -6 dB with probability
greater than 80 % (see Figure 7). If we compare this figure with frequency availability results
presented in (Vilella et al., 2008), which indicates the frequency with highest availability at a
given SNR in a 3 kHz bandwidth, we can highlight that: (a) The distribution of frequencies
with best availability rates is very similar in both studies: above 15 MHz between 18 and 22
UTC, from 9 MHz to 11 MHz between 23 and 6 UTC, and again about 15 MHz between 7 and
11 UTC. Therefore, there is a very good correspondence between channel sounding results
and the analysis of data transmissions. (b) If we focus on specific values of percentages,
we observe that (b.i) there are a set of hours, mostly belonging to the evening and morning
(20, 21, 23, 2, 5, 6, 7, 8, 10 UTC) when the probability of overcoming -3 dB (measured by
channel sounding) coincides, with high accuracy, with the probability of obtaining BER(′) = 0
(measured by data analysis). (b.ii) There are a number of hours at night (0, 1, 3, 4 UTC) when
the probability of obtaining BER(′) = 0 is approximately 45 % below the prediction made
by narrow-band sounding. (b.iii) Finally, a set of hours in both measures show mixed results
(18, 22, 9 UTC). 18 and 9 UTC are noteworthy because the channel study shows very low
availability (less than 5 %), whereas data analysis gets BER(′) = 0 with rates around 20%.

One possible explanation for these results could be derived from the following two arguments:
(i) SNR measurements conducted by channel sounding consider noise everything that is not
the transmitted signal (Gaussian noise and interference). During evening (18 to 22 UTC) and
morning (07 to 11 UTC) the weight of interference power with respect to the total noise power
is lower than during full night (23 to 06 UTC). It is precisely in the evening and morning
when the two measurements (channel and data) are more similar. From this statement
we can conclude that, rather than Gaussian noise, interference is the main factor on signal
degradation. (ii) At full night and low frequencies (6 MHz to 10 MHz) channel time dispersion
is greater than during evening and morning at high frequencies (14 MHz to 16 MHz) and,
therefore, it is more difficult to obtain good performance for the same SNR (Vilella et al., 2008).

3.4.4 Best hours

Figure 9 shows the hours with highest percentage of BER(′) = 0 at each frequency, based
on the configuration (L, M, QS, Mod): (63, 64, yes, QPSK) with coded bits and a bandwidth
of 3125 Hz. This plot is especially useful when trying to use a directive antenna tuned to a
particular frequency. It is found that the best results are achieved at high frequencies (around
16 MHz) in the early hours of night (21 UTC).
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Fig. 6. Comparison of bandwidths (3125 Hz and 6250 Hz): (i) Scatterplot of BER(′) versus
SNR estimation before despreading (top row), (ii) histogram of the percentage of receptions
with BER(′) = 0 to total receptions with BER(′) = 0 (middle row); (iii) histogram of the
percentage of receptions with BER(′) = 0 to total receptions at that SNR (bottom row). The

curves BER(′)
l and BER(′)

h are included on the scatterplots
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Fig. 7. Comparison of modulation (none and QPSK): (i) Scatterplot of BER(′) versus SNR
estimation before despreading (top row), (ii) histogram of the percentage of receptions with
BER(′) = 0 to total receptions with BER(′) = 0 (middle row); (iii) histogram of the percentage
of receptions with BER(′) = 0 to total measurements at that SNR (bottom row). The curves

BER(′)
l and BER(′)

h are included on the scatterplots
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Fig. 8. Frequencies [MHz] with highest percentage of measurements with BER(′) = 0 per
hour. The plot is based on the following configuration (L, M, QS, Mod): (63, 64, yes, QPSK)
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Fig. 9. Hours [UTC] with highest percentage of measurements with BER(′) = 0 at each
carrier frequency. The plot is based on the following configuration (L, M, QS, Mod): (63, 64,
yes, QPSK) with channel coding
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4. Conclusions

Throughout this chapter we have studied, both theoretically and experimentally, the
feasibility of low rate data transmission over a very long ionospheric link. The ionosphere
may be used as a communications channel available from anywhere on the Earth. Hence it
can be adopted as a solution to cope with deficient or non-existent satellite coverage range.
We have focused our research work on the link between the Spanish Antarctic Base Juan
Carlos I and Spain. It has a length of approximately 12700 km along the surface of the
Earth and passes over 4 continents in a straight line. The system is currently applied to
the transmission of data of a geomagnetic sensor that generates a maximum of 5120 bits
per day. The special conditions found in Antarctica have impaired several aspects of the
transmission. To conserve energy, maximum transmit power is set at 250 watts. In addition,
to prevent further environmental impact, a non directive antenna (a monopole) requiring
minimal infrastructure and installation was chosen to be placed at the SAS.

We have reviewed current HF communication standards and noted that none of them are
intended for links with negative SNR. Thus we propose a novel system to be used on the
physical layer of a ionospheric link based on a Direct Sequence Spread Spectrum technique.
The determining factors for the use of this technique were its robustness to multipath and
narrowband interference, its ability to transmit with low power spectral density, and its
flexibility in terms of spectral efficiency in scenarios with negative SNR.

We propose a mode of transmission outside of current ITU standards, designed to cause
minimal interference to primary and secondary services defined by the official agencies, able
to operate in the presence of high values of noise power and interference, and robust to
time and frequency channel dispersion. Hence, we suggest a transmission system based on
sporadic short bursts of low density spectral power, focusing on increasing spectral efficiency
and energy savings at the expense of a higher complexity receiver.

Several variants of DS-SS have been evaluated: signaling waveform, quadrature spreading
and the impact of the modulation (BPSK and QPSK), all of them from the point of view of
BER versus SNR per bit and spectral efficiency. We then conclude that:

• The DS-SS M-ary signaling technique allows an increase in spectral efficiency. The higher
the number of sequences (M) the lower the SNR per bit required to achieve a given BER.
In practice, if we use Gold spreading sequences, the maximum value of M is limited by the
length of the spreading sequences (M ∼ L). However, for a given bit-rate, if we increase
M, the computational complexity at the receiver side increases.

• The combined use of modulation (BPSK and QPSK) and DS-SS M-ary signaling reduces
the minimum required SNR per bit to achieve a certain BER. A greater reduction can be
achieved with QPSK than with BPSK. However, modulation techniques require channel
estimation (except for differential modulation) and, optionally, a RAKE combiner.

• If we add quadriphase spreading to DS-SS M-ary signaling (without modulation), gain
can be doubled while maintaining BER and spectral efficiency performance. When using
modulation, the use of quadriphase spreading results in energy inefficiency.

We assessed the suitability of studying a channel code based on the use of a Turbo code (rate
= 1/3), with inner interleaver, that converts a burst of 320 bits into 972 coded bits. Simulations
(not shown here for reasons of brevity) demonstrate that coding gain is only achieved for BER
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values below 10−4. The reasons for using coding techniques will therefore depend, among
other factors, on the size of the burst of bits and on the desired probability of error free.

We have defined a testbench to experimentally evaluate various configurations and to
compare experiment outcomes with theoretical predictions. The testbench includes: (i)
the definition of a header adapted to time and frequency channel dispersion to perform
synchronization and channel estimation, (ii) the definition of a data frame, (iii) the design
of a set of algorithms: encoding/decoding, synchronization, spreading/despreading, RAKE
combiner, demodulator and SNR estimation.

The outcomes gathered from this testbench have shown that, for instance, with a SNR of -5
dB, this ionospheric data transmitter is able to transmit data (6 kHz and 320 bits burst size)
with a rate of 397 bits per second (error free) with a successful probability of approximately
95 % (see Table 1 and Figure 6). It is noted that this rate would suffice to send the amount of
data required by the application (5120 bits per hour), with sporadic frequency transmissions.

Experimental tests have been performed for different configurations and at different
bandwidths in a frequency range between 8 MHz and 16 MHz and a time interval between
18 and 12 UTC. From the experimental results and comparison, with theoretical predictions
in terms of BER versus SNR, the following conclusions can be drawn:

• There is a loss of about 2 dB of SNR between the theoretical and experimental BER.
This loss may be attributable to several factors: non-Gaussian noise, interference, channel
dispersion, and so on.

• For a given SNR, the probability of receiving a burst without error is slightly higher for
higher bandwidths. This improvement may be due to better performance of the RAKE
combiner due to higher multipath resolution (this result should be confirmed in later
experiments).

• Experimental results confirm that for a given SNR at the receiver, the use of modulation
added to signaling techniques (thus increasing the bitrate without increasing the
transmitted power) does not affect the BER performance.

• Regarding the frequencies that are more likely to transmit error free bursts, we observe
that they correspond with great accuracy to those with highest availability, measured by
channel studies ((Vilella et al., 2008)): above 15 MHz in the evening (18 to 22 UTC) and
morning (7 to 11 UTC), and below 11 MHz in the early morning (23 to 6 UTC). Regarding
specific percentages of bursts without errors, it appears that they are very similar to those
equivalent measurements done by channel studies during the evening and morning, but
are worse at night and early morning. This is mainly attributed to the increased amount of
interference at night.

According to experimental results we make the following recommendations: (i) integrate
the loss of 2 dB of SNR into theoretical calculations, (ii) prioritize larger bandwidths, use
modulation (QPSK rather than BPSK) and use coding techniques, (iii) use modulation plus
M-ary signaling without quadriphase spreading, (iv) optimally attempt to establish the data
link at 21 UTC (at 16 MHz), or from 23 to 6 UTC (within the range 9-11 MHz).
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A Contribution to the Reduction of Radiometric 
Miscalibration of Pushbroom Sensors 

Christian Rogaß* et al.** 

Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences,  
Germany 

1. Introduction 

Imaging spectroscopy is used for a variety of applications such as the identification of surface 
cover materials and its spatiotemporal monitoring. Contrary to multispectral instruments 
more spectral information can be incorporated in the differentiation of materials. New 
generations of sensors are based on the pushbroom technology, where a linear array of sensors 
perpendicular to the flight direction scans the full width of the collected data in parallel as the 
platform moves. Contrary to whiskbroom scanners that collect data one pixel at a time 
pushbroom systems can simply gather more light as they sense a particular area for a longer 
time. This leads to a better Signal-to-Noise Ratio (SNR). In addition, the two dimensional 
photo detector array in pushbroom systems may enable different readout configuration 
settings, such as spatial and/or spectral binning, allowing a better control of the SNR. It 
follows from this that low reflective materials can be potentially sensed as well as high 
reflective materials without saturating the detector elements. However, the use of detector 
arrays requires a precise radiometric calibration as different detectors might have different 
physical characteristics. Any miscalibration results in visually perceptible striping and 
uncertainties increase in preceding analyses such as classification and segmentation (Datt et 
al., 2003). There are various reasons for miscalibration, for instance temporal fluctuations of the 
sensor temperature, deprecated calibration coefficients or uncertainties in the modelling of the 
calibration coefficients. In addition, ageing and environmental stresses highly affect the 
mechanical and optical components of a sensor system; its reliability is thus not such to grant 
unchanged calibration accuracies for the entire mission life span.  

Radiometric calibration and the estimation of the calibration coefficients can be considered 
as the assignment of known incident at-sensor radiance to measured digital numbers (DN). 
For this, physically known, different reflective targets are artificially illuminated by 
electromagnetic radiation of a specific spectrum and the reflected radiation is then recorded 
by the sensor that consists of a number of detectors. Then, the response of each detector is 
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modelled with respect to the incident radiation, the reflective target and the defined 
illumination of the target. The mathematical modelling is often performed by applying a 
linear least squares regression. Contemporary, differences of detectors are balanced. 

Consequently, calibration coefficients are obtained – shortly named as offset and slope. 
Offsets incorporate the unwanted detector-dependent dark current that is caused by 
thermally generated electrons (Oppelt and Mauser, 2007). In turn, slopes directly relate 
radiance to DN. Offsets are often measured before any image acquisition, but may change 
due to instabilities in the cooling system. Mechanical stress or uncertainties in foregoing 
laboratory calibration can cause changes in the physical characteristics of detectors as well. 
In order to support laboratory calibration, in-flight calibrations complement the calibration 
procedure, verifying the results obtained in the laboratory and, in addition, allowing the 
measurement of parameters that are only obtainable during flight (i.e. stability 
measurements, solar calibration, etc).  

For this, physically known targets have to be sensed and incident illumination should be 
measured during the overflight. Uncertainties in the measurement of hemispheric incident 
solar radiation and in the incorporation of illumination, sensing and wavelength dependent 
response of imaged calibrations targets on incident light aggravate then this type of calibration 
and may also lead to miscalibrations or visually perceptible image stripes. Hence, any striping 
reduction or retrieval of calibration coefficients should reduce stripes and at the same time the 
spectral characteristics of the imaged surface materials have to be preserved.  

In the literature, specific approaches for destriping of slope stripes, offset stripes or both 
exist, and these are primarily based on methods such as interpolation (Oliveira and Gomes, 
2010; Tsai and Chen, 2008), local or global image moments (Datt et al., 2003; Cavalli et al., 
2008; Le Maire et al., 2008; Liu et al., 2009), filtering (Garcia and Moreno, 2004; Shen et al., 
2008; Simpson et al., 1995, Simpson et al., 1998) or complex image statistics of log 
transformed slopes (Bouali and Ladjal, 2010; Carfantan and Idier, 2010; Gomez-Chova et al., 
2008). Most methods replace original, miscalibrated radiances. This should be only applied 
if information is completely missing or erroneous. 

In the following, a framework that efficiently reduces linear as well as nonlinear 
miscalibration is reviewed concurrently preserving the spectral characteristics of sensed 
surface cover materials. This framework, originally proposed by Rogass et al. (2011) and 
named as Reduction of Miscalibration Effects (ROME), consists of a linear and a nonlinear 
slope reduction and an offset reduction that are consecutively performed and does not 
require a priori information or scene and sensor specific parameterisation.  

Before any radiometric miscalibration reduction is applied, image gradients that are not 
orthogonal to the image are excluded if they do not represent the image content. Here, 
Minkowski metrics, gradient operators and edge extraction algorithms are combined to 
exclude discontinuities if they do not dominate the image content (Canny, 1986; Haralick et 
al., 1987; Rogass et al., 2009). The linear and the nonlinear slope reduction of ROME are 
performed for each detector element and band without any information from other detector 
elements. The offset reduction of ROME considers adjacent image columns and refers to a 
predefined image column (first column per default) that is assumed to be the reference. 
Specific image quality metrics, such as the change in SNR (Gao, 1993; Atkinson et al., 2005), 
were used to evaluate the necessity of such preceding reduction.  



 
A Contribution to the Reduction of Radiometric Miscalibration of Pushbroom Sensors 

 

153 

After these preceding reductions the image is radiometrically band wise rescaled to recover 
the radiometric scale. This is necessary since uncertainties in the estimation of parameters 
(e.g., detector resolution in the linear slope reduction) and in the incorporation of 
miscalibrated reference areas (e.g., potential miscalibration of the first image column as 
reference for the offset reduction) remain. The rescaling of ROME assumes that image 
columns that were less corrected than others can be used as reference for the whole image. 
After all reductions a detrending is performed reducing across track brightness gradients 
caused by reduction related frequency undershoots of low SNR bands. In this work an 
extension of ROME’s detrend approach is presented evidencing an effective reduction of 
undershoots when compared to the original approach. 

In order to test the robustness of the algorithm due to different types of miscalibration, four 
grey valued images as well as 12 multispectral and hyperspectral scenes were considered. 
The grey valued images were randomly striped by linearly varying slope and/or offset. One 
HyMAP scene was three times differently and artificially striped by offset stripes. The 
simulated EnMAP scene was not corrected for nonlinear effects and, hence, the nonlinear 
correction facilities were tested. Miscalibrated scenes acquired by AISA DUAL (3 scenes), 
Hyperion (2 scenes), ASTER (1 scene), CHRIS/Proba (1 scene) and APEX (1 scene) were 
additionally processed. 

2. Materials 

In Rogass et al. (2011) four grey valued images (Fig. 1) from the image database of the Signal 
and Image Processing Institute (SIPI) of the University of California (Weber, 1997), 512 × 512 
pixels in size, and six hyperspectral scenes (3 AISA DUAL, 2 Hyperion and 1 EnMAP) were 
selected to test and to evaluate the performance of the proposed ROME framework. The 
grey valued samples as well as the EnMAP scene were considered as noise free. However, 
the ‘Lenna’ image (Fig. 1a) and the ‘Mandrill’ image (Fig. 1b) are excluded from further 
considerations due to their unique spectral and spatial properties as detailed described in 
Rogass et al. (2011). 

 

    
a) b) c) d) 

Fig. 1. Grey scaled image samples from the USC SIPI image data base considered in the 
following as a) ‘Lenna’, b) ‘Mandrill’, c) ‘Aerial’ and d) ‘Sailboat on lake’ 

To simulate different types of miscalibrations and to evaluate their impact on the proposed 
work, the two grey valued images (Fig. 1 c and d) and the EnMAP scene were artificially 
degraded. The grey valued images were randomly degraded by applying 800 different sets 
of multiplicative (slope) and/or additive (offset) Gaussian white noise (Box and Muller, 
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1958). These 800 noisy matrices were transformed to provide always a mean equal to zero 
and standard deviations ranging from 0.0001 to 10000 for the multiplicative parts and from -
10000 to 10000 for the additive part. Such high noise levels were chosen to also simulate low 
SNR scenarious that are noise dominated. More details on the noise matrices and the 
hyperspectral scenes are given in Rogass et al. (2011). 

In this work additional scenes from APEX, ASTER and CHRIS/Proba were inspected, 
destriped and evaluated. Contemporary, one HyMAP scene was selected and three times 
artificially and additively degraded by Gaussian white noise to extend the testing of 
correction facilities for airborne sensors. After degrading three mean SNR levels of 7.6, 76 
and 760 were simulated.  

The HyMAP sensor is a hyperspectral whiskbroom airborne sensor that consists of one 
detector column and, hence, offset miscalibrations cannot be perceived as image stripes 
since each image column has the same offset. Therefore, HyMAP image acquisitions can be 
used to test correction approaches for pushbroom sensors. 

In the following, an image column or across track is considered as x and an image row or 
along track is considered as y. 

3. Methods 

3.1 Calibration basics 

Radiometric calibrations are often performed in laboratory and basically assign known 
incident at-sensor radiance to measured digital number (DN). The association is usually 
realised by a linear least squares regression that minimises the difference between modelled 
at-sensor radiance and known at-sensor radiance. The regression coefficients are also used 
in the reverse process to assign measured DN to at-sensor radiance that is considered as 
radiometric scaling (Chander et al., 2009).  

However, uncertainties in the laboratory measurements, in the mathematical modelling and 
in the incorporation of temporal changes of the detector characteristics lead to 
miscalibrations and, hence, to visually perceptible image stripes in y-direction. In the 
following it will be exemplarily shown how to suppress miscalibrations in accordance with 
the ROME framework. This framework consists of multiple steps that are consecutively 
processed (Fig. 2). 
 

 
Fig. 2. Workflow of ROME destriping per band 

Pushbroom sensors have detector arrays. Each detector pixel of the array has different 
physical characteristics. It follows from this that an uncalibrated hyperspectral image is 
striped. The radiometric calibration and the reverse process - radiometric scaling - aim at the 
assignment of incident radiance to DN and vice versa. Usually, radiometric calibration can 
be performed in-flight, vicariously (Biggar et al., 2003; Bruegge et al., 2007), over a flat field 
(Bindschadler and Choi, 2003) or in laboratory.  
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In the process of calibration each detector of the detector array must be solely considered. 
Known incident radiation reaches a detector pixel and once the incident photons have 
sufficient energy to excite electrons into a certain energy level, electron-hole pairs are 
generated – a phenomenon that is known as the photoelectric effect. These free charges are 
then transmitted and read out through sensor electronic. Dispersive optics placed in front of 
the sensor disperses the incident radiation into different wavelenghts that is further 
projected into each row of the detector array. The physical response, considered as signal S 
in electrons, of one detector element of a pushbroom sensor to incident radiation L can be 
approximated by a nonlinear relation (Dell`Endice, 2008; Dell`Endice et al., 2009): 
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where L is the at-sensor-radiance, A is the optical aperture of the sensing instrument, FOV is 
the field of view, T is the integration time, SSI is the Spectral Sampling Interval in respect to 
the Full Width at Half Maxima, h is the Planck constant, c is the speed of light, ne−is the 
number of collected electrons, τ is the optical transmission, λ is the centre wavelength, η is 
the quantum efficiency and F is the filter efficiency. This can be then related to the recorded 
digital number DN as follows: 
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where N is a noise term incorporating Shot-Noise, read-out noise and dark noise, DNmax is 
the radiometric resolution, FWC is the Full Well Capacity that defines the detector 
saturation and DN0 is the dark current. To enable a mathematical modelling relating 
incident radiation and measured DN, either the illumination is changed in a defined way or 
the integration time is changed or targets of different reflective properties are sensed. The 
association of at-sensor radiance L to DN is broadly considered as radiometric calibration or, 
reversely, as radiometric scaling (Chander et al., 2009). To reduce the influence of noise, a 
specific number of measurements is required. Then, the association can be realised, e.g., by 
least squares polynomial fit that minimises the differences between modelled and measured 
at-sensor radiance (Barducci et al., 2004; Xiong and Barnes, 2006). The minimisation of the 
merit function gives then the transformation coefficients for the association. This can be 
achieved by applying the following model: 
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where Ntargets denotes the number of calibration targets, c0 is the offset regarding the dark 
current, and M is the polynomial degree. The more the detector response differ from a linear 
response, the more it is necessary to use a polynomial degree higher as one. Mostly, detector 
responses can be mathematically modelled. Potential changes in the characteristics of 
detectors require frequent calibrations that are not practicable.  
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However, if then along track stripes in radiometrically scaled images are perceptible 
miscalibration is indicated. In that case, it is necessary to determine the type of 
miscalibration – multiplicative or additive – linear or nonlinear. In ROME this is performed 
by comparing the output SNR to the input SNR due to the specific processing step (Brunn et 
al., 2003; Gao, 1993). If the SNR is increased, a successful operation is indicated and finally 
applied. In the following the stripe types are distinguished with respect to equation 3 – 
additive c0 and multiplicative c1..M miscalibration and reduction. In any case the reduction of 
miscalibration should be applied before rectification. 

3.2 Edge exclusion 

Discontinuities such as impulse noise, edges or translucent objects like tree vegetation 
should be excluded from further processing unless they contribute a high spatial 
distribution. This is relevant for approaches that aim on the reduction of miscalibration by 
relying on statistical analyses of spatial and spectral differences in homogeneous regions. 
Edges can be generally excluded if they do not coincide with along track or across track 
direction. Since uncertainties in the impact of edges on the reduction process remain edges 
should be excluded if they do not dominate image content (compare Fig. 1b). In ROME this 
is performed by a combination of edge detection algorithms with morphological dilation 
with respect to Minkowski metrics. Potential edge detection algorithms for single banded 
images must be then adapted to incorporate only along track gradients, because gradients of 
radiometric miscalibration might superimpose across track gradients. In Rogass et al. (2011) 
the Canny algorithm (Canny, 1986) is used for single banded images and the Hyperspectral 
Edge Detection Algorithm (HEDA) is used for multi banded images (Rogass et al., 2010). 
After obtaining binary edge maps morphological dilations (Haralick et al., 1987; Rogass et 
al., 2009) are additionally applied to minimise edge adjacency effects caused by Point Spread 
Function (PSF) related blooming of edges into adjacent regions. The reversed edge map 
gives then the mask. In case of tree vegetation indices are computed and pixel wise 
thresholded by the highest two likelihood quartiles of containing vegetation. This binary 
vegetation map is reversed and multiplied with the reversed binary edge map. Hence, edges 
and translucent vegetation is excluded. Related equations are given in Rogass et al. (2010) 
and Rogass et al. (2011). The application of the reverse edge map gives than an edge filtered 
image. 

3.3 Linear c1 slope reduction 

In case of linear miscalibration each pixel of one detector (one column) of the same channel 
is scaled by the same c1 slope (the term ‘gain’ is often misleading used and corresponds to 
the maximisation of the radiometric resolution; Chander et al., 2009). A simple differential 
operation between two pixels from the same column leads to the mathematical elimination 
of the c0 offset. This difference is then equivalent to the difference of radiance levels. This 
corresponds to the c1 slope of this detector times the spectral difference of surface cover 
materials constrained by the detector resolution. Hence, a reduction of c1 miscalibration 
must recover both c1 slope and the spectral characteristics of the surface cover material. In 
ROME this is performed per detector or column and band by applying a multistep 
approach. Here, the radiances are sorted in ascending order. Then, unique radiance values 
are extracted and ascendingly sorted. Next, all adjacent differences are extracted, i.e. the 
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second unique value is subtracted from the first one, the third unique value from the second 
one and so on. Then, the probability distribution of these differences is estimated by a 
histogram. The first frequency category (first bin) contains the smallest difference of unique 
values. The smallest difference is given as the minimum of all differences of this bin and 
represents the slope times the smallest difference of unique values (SDUV) of a perfectly 
calibrated band. The SDUV can be considered equivalent t0 the spectral detector resolution 
of the considered band. To estimate the slope, it is now necessary to assess the SDUV. This 
can be straightforwardly performed by computing the median of all binned differences. 
After dividing this smallest difference by the SDUV the slope for this band and detector is 
recovered. This is performed for each band and detector. After obtaining the slope 
coefficients the applicability is validated. This is performed by considering adjacent detector 
columns. For this, the shapes of the histograms of adjacent columns are inspected. If the 
number of frequency categories and the positions of the maxima are not equal, then the 
slope reduction is applied for the considered column. This evaluation bases on the 
assumption that significant different slopes of similar and adjacent detectors cause stretches 
(broadening) and shifts in the histogram since considered columns mostly cover the same 
regions and the related point spread functions (PSF) of each detector are stable during 
image acquisition and, hence, contribute to their neighbouring pixels the same fraction of 
their center pixel. In presence of c0 offset miscalibration these offsets are reduced 
concurrently to c0/c1. Subsequently, SNR is computed to indicate whether previous 
operation is necessary or not. However, radiometric rescaling is then applied to reduce 
uncertainties in the estimation of SDUV (see section 3.5). 

3.4 Linear c0 reduction 

In the following it is assumed that the thermally induced offset is constant during one image 
acquisition and that homogeneous regions are spectrally homogeneous. It follows from this 
that the offset of one detector element and wavelength contributes the same fraction to all 
pixels of one detector column and wavelength. Hence, spectral homogeneous regions that 
appear spectrally different indicate c0 miscalibration if linear c1 or nonlinear c2..M reductions 
were performed beforehand. To reduce c0 miscalibration, it is necessary to spectrally 
compare adjacent image columns and to relate succeeding reduction to a predefined column 
(ROME uses per default the first column). In ROME the differences between adjacent 
columns are computed and binned in a histogram. Then, it is assumed that the bin 
(frequency category) with the highest frequency most likely contain the offset difference. To 
finally assess the offset difference, it is only necessary to average the differences of each bin 
by the median, to weight the bin according its frequency and to sum all weighted and 
averaged differences. After c0 reduction a radiometric rescaling should be applied as in 
ROME to avoid erroneous radiometric levelling due to the used reference column. However, 
after applying an offset reduction, it is necessary to check whether this operation was 
necessary or not. In ROME this is performed by considering the evolution of the SNR. 

3.5 Radiometric rescaling 

Previous described approaches to correct data for miscalibration can change the mean 
radiation of a band that is only acceptable if the new mean is closer to a perfect calibrated 
band compared to the mean of the uncorrected band. This is not known yet and, hence, it is 
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necessary to recover the physical meaning of such. A simple rescaling to the old maximum 
and minimum cannot be applied since it can be assumed that the old maximum and 
minimum are biased or erroneous due to miscalibration. In order to preserve the spectral 
characteristics a specific approach was proposed within the ROME framework as detection 
of lowest reduction zones. In this approach the correction vectors are inspected in a moving 
window. In each window the mean of the first and last reduction is rationed by the middle 
window reduction. After computing all windowed ratios the ratio that is closest to one is 
selected as reference. Then, the middle column of the reference is considered with regard to 
its maximum and minimum. The old maximum and minimum, i.e. before any reduction, is 
compared with the extrema of the reference. These are used to obtain linear transformation 
coefficients for the whole band that are subsequently applied. 

3.6 Extended detrending 

In Rogass, et al. (2011) a detrending approach is proposed that aims on the reduction of 
across track brightness gradients that are caused by offset reduction related frequency 
undershoots or by material, illumination and viewing geometry dependent surface 
responses on incident light. These undershoots have a medium frequency on average in 
comparison to the spatial distribution of the image content.  

In ROME the detrending is realised per band by computing the median average of each 
column, by smoothing and mean normalising this column to its related average vector and 
by applying this vector on the image by row wise division. 

However, lower frequencies are not considered in ROME as they can be perceived as broad 
brightness gradients. In this work, the new detrending approach is extended to capture 
lower frequency undershoots. For this, the column median per band of the uncorrected 
image and the corrected image is computed. This then gives one vector per band and image 
of the same length as the number of detectors. Each vector is then fitted to a second order 
polynomial with regard to least squares principles. Consequently, polynomial coefficients 
for each vector and image are obtained. The polynomial coefficients of the uncorrected 
image are subtracted from the coefficients of the corrected image. This gives differential 
coefficients for each band of the corrected image. After this an index vector is created that 
contains the same number of elements as detectors and consists of detector numbers (i.e. 0, 
1, 2, 3… etc.). This could be considered as a x-vector. The x-vector is used to obtain 
functional values of the differential polynomials. This then gives the differential low 
frequency trend of this band with respect to the corrected and the uncorrected image. This 
trend is applied contrary to the detrending of ROME by row wise addition. Both the original 
detrending of ROME and this extension of the detrending enable a correction for medium 
and low frequency undershoots. A comparison of this approach and the originally proposed 
approach of ROME will be given in the results chapter. 

3.7 Image quality metrics 

In Rogass et al. (2011) several image quality metrics were combined to evaluate destriping 
results on the one hand and to avoid potential drawbacks associated with relying on a single 
type of evaluation on the other hand. In this work the same metrics are used. Those were the 
global Peak-Signal-to-Noise-Ratio (PSNR) (Rogass et al., 2010; Wang and Bovik, 2009), the 



 
A Contribution to the Reduction of Radiometric Miscalibration of Pushbroom Sensors 

 

159 

global Shannon Entropy (Rogass et al., 2010, Frank and Smith, 2010) and the local Modified 
Structural Similarity Index (MSSIM) (Tsai and Chen, 2008; Wang and Bovik, 2009, Wang et 
al., 2004). In case of available ground truth as for the HyMAP scene the metrics were applied 
on the result and on ground truth. In case of missing ground truth the metrics were applied 
on both the input and the output, but can only be relatively considered. 

4. Results and discussion 

The ROME framework is the most recent approach to recover radiometric calibration in 
presence of miscalibration. In this work more tests were included to show that ROME is able 
to reduce miscalibration of broadly used sensors. The summarised results of Tab. 1 show 
how miscalibration was reduced that is detailed discussed per newly considered sensor in 
the next sections. All newly tested sensors were miscalibrated due to varying dark current. 
 

Sensor Scene PSNR Entropy MSSIM Average 

APEX 1 4 % 19 % 1 % 8 % 

ASTER 1 4 % 19 % 1 % 8 % 

CHRIS 1 1 % 0 % 3 % 1 % 

HyMAP SNR=7.6 -5 % 4% 6 % 5 % 

 SNR=76 0 % 3 % 5 % 3 % 

 SNR=760 0 % 2 % 5 % 2 % 

AISA1,2 1 -2 % 9 % 8 % 5 % 

EnMAP1,2 1 2 % 8 % 7% 6 % 

Grey images1,2 3,4 4 % 4 % 2 % 3 % 

Hyperion1,2 1 2 % 5 % 7 % 5 % 

1 compared to ground truth; 2 from Rogass et al. (2011) 

Table 1. Destriping results 

4.1 Grey valued images 

The grey valued images that have been selected for testing in Rogass et al. (2011) cover a 
broad range of spectral and spatial image properties. In this work 2 out of 4 of the test 
images were selected due to their similar spatial and spectral distributions compared to 
remote sensing scenes. The ‘Aerial’ image is characterised by leptokurtic grey value 
distribution. The ‘Sailboat on lake’ image has a balanced grey value distribution and edge 
quantity. With regard to Rogass et al. (2011) ROME achieved a destriping accuracy of 97 % 
(compare Tab. 1 and Fig. 3) for the two grey test images. As perceptible in Fig. 3 all stripes 
were removed and the results differ from ground truth (Fig. 1c and d) only by 3% on 
average (Tab. 1). 

4.2 Artificial striped HyMAP 

The HyMAP whiskbroom sensor was three times differently offset striped, ROME destriped 
and the results were evaluated based on the metrics of section 3.7. The offset stripes were 
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generated as described in Rogass et al. (2011) and scaled to achieve an overall SNR of 7.6, 76 
and 760. The offset stripe type was selected since this type is most common to broadly used 
pushbroom sensors. However, about 97 % of a perfect calibration could be recovered 
(compare Tab. 1). Hence, the accuracy assumption of Rogass et al. (2011) that 97 % of a 
perfect calibration can be recovered by ROME is confirmed. With regard to the results 
visually presented in Fig. 4 the stripes were completely removed.  

 

  
a) b) 

Fig. 3. Striped (left) and destriped images (right) for a)’Aerial’ and b) ‘Sailboat on lake’ 

 

   
a) b) c) 

   
d) e) f) 

Fig. 4. False coloured image subset of band 30 (874 nm) of a HyMAP scene (subset a and 
zoom d), striped representation with a SNR of 7.6 (subset b and zoom e) and the ROME 
result adaptively detrended (subset c and zoom f) 

Uncertainties remain in the assessment of the true radiometric scale as well as in the correct 
trend. This is visualised in Fig. 5. Considering both the transect and the spectral profile of 
Fig. 5 leads to the perception that small differences between ground truth and the destriping 
result persist. These differences approximately amounts 3% due to Tab. 1. This underlines 
the robustness of the ROME approach and contemporary shows that miscalibration can be 
efficiently suppressed. 
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Fig. 5. Random arbitrary transect a) and spectral profile for a random point due to the 
subsets of Fig. 4 a), b) and c) 

4.3 ASTER 

The ASTER sensor was selected for destriping since it has broader bands as an typical 
hyperspectral sensor and the potential miscalibration is often underestimated in the 
literature. However, the visible and near infrared bands were selected since these bands 
were mostly preceptible miscalibrated as exemplarily shown in Fig. 6. With regard to the 
results of Tab. 1 the destriping of the ASTER scene improved the radiometric calibration by 
8 % on average. That is significant in comparison to the CHRIS/Proba related destriping 
results. As perceptible in Fig. 6 all stripes were removed.  

As shown in Fig. 6 and 7 miscalibration is mostly visually perceptible in contrary to 
arbitrary transects as presented in Fig. 7a). However, the ROME framework and the 
adaptive detrending reduced the miscalibration. In consequence, the spectral profile has 
changed as given in Fig. 7 b). Contrary to airborne sensors miscalibrations of satellite 
sensors such as ASTER slowly vary over time. It follows from this that correction sets 
obtained by the ROME framework can be reused for scenes that are timely close. 

4.4 CHRIS/Proba 

As shown in Fig. 8 the test scene acquired by the CHRIS sensor is well calibrated. However, 
remaining miscalibration is visually perceptible as given in Fig. 8 c).  

With regard to Tab. 1 ROME improved the radiometric calibration by 1 % on average. This 
shows on the one hand that the scene of this sensor was well calibrated and on the other 
hand that ROME is also able to detect and to reduce small variations of miscalibrations.  
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a) b) 

  
c) d) 

Fig. 6. False coloured image subset of band 3 (807 nm) of a striped ASTER scene (subset a 
and zoom c) and the ROME result adaptively detrended (subset b and zoom d) 
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Fig. 7. Random arbitrary transect a) and spectral profile for a random point due to the 
subsets of Fig. 6 a) and b) 
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a) b) 

  
c) d) 

Fig. 8. False coloured image subset of band 44 (803.8 nm) of a striped CHRIS/Proba scene 
(subset a and zoom c) and the ROME result adaptively detrended (subset b and zoom d) 
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Fig. 9. Random arbitrary transect a) and spectral profile for a random point due to the 
subsets of Fig. 8 a) and b) 
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The transect as well as the spectral profile given in Fig. 9 show that ROME preserved spatial 
and spectral shapes. Contrary to ASTER it appears that the ROME destriping of 
CHRIS/Proba scenes is only necessary if succeeding processing consider adjacent image 
columns. In relation to Rogass et al. (2011) 97 % of a perfect calibration can be recovered by 
ROME. It follows from this that the decision whether ROME is applied on CHRIS/Proba or 
not should be application driven. 

4.5 APEX 

The APEX sensor belongs to the recently developed pushbroom sensors and offers a high 
SNR for a broad set of applications. However, as most pushbroom sensors APEX 
acquisitions also show perceptible variations in dark current as offset stripes although it is 
well calibrated like CHRIS/Proba. These stripes are difficult to be detected due to the high 
SNR of APEX and to the overall low contribution of miscalibration to image spectra. To 
additionally test the new detrending approach, a subset of a scene (400 lines) was used. In 
consequence, the results of Tab. 1 that show an overall improvement of calibration of about 
8 % are not fully representative for the APEX sensor. In this case it is assumed that 97 % of a 
perfect calibration has been achieved. The respective results are exemplarily represented in 
Fig. 10 and 11. Comparing the along track transect of Fig. 11 a) and the spectral profile of 
Fig. 11 b) with the false coloured image representations of Fig. 10 it appears that changes of 
spectra are mostly visually perceptible. That supports the assumption that APEX 
acquisitions are not dominated by dark current variations contrary to Hyperion or AISA 
DUAL. The assumption that potential frequency undershoots caused by, e.g. offset 
reductions, are minimised by the new detrending approach is also supported (compare also 
next chapter). 

 
 

  
a) b) 

  
c) d) 

Fig. 10. False coloured image subset of band 19 (557.3 nm) of a striped APEX scene (subset a 
and zoom c) and the ROME result adaptively detrended (subset b and zoom d) 
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Fig. 11. Random arbitrary transect a) and spectral profile for a random point due to the 
subsets of Fig. 10 a) and b) 

4.6 Results for extended detrending 

The ROME framework as proposed in Rogass et al. (2011) has limited facilities for short 
scenes. In this work the impact of short scenes is inspected and an extension to its 
detrending proposed. Since the effect varies from scene to scene and sensor to sensor it is 
not possible to quantify the impact. To qualify the impact of short scenes on ROME, one 
artifically offset striped HyMAP scene subset (SNR=7.6) was destriped. Then, the result was 
ROME detrended and detrended by the nex approach. The respective results are given Fig. 
12 and 13. As perceptible in Fig. 12 b) and e) compared to Fig. 12 c and f significant 
reduction related brightness gradients are significantly reduced by the new approach. 

 

   
a) b) c) 
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d) e) f) 

Fig. 12. False coloured, small image subset of band 30 (874 nm) of a HyMAP scene (subset a 
and zoom d) that war artificially offset striped (SNR=7.6), ROME result (subset b and zoom 
e) and the ROME result adaptively detrended (subset c and zoom f) 

The across track transect as well as the spectral profile given in Fig. 13 clearly show the 
impact of the detrending on the spectral scale. Comparing the old detrending approach with 
the new detrending approach leads to the perception that the new detrending preserves the 
spectral profile in both directions the spatial domain - across track (correction direction) and 
the spectral domain – along the spectrum. 
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Fig. 13. Random arbitrary transect a) and spectral profile for a random point due to the 
subsets of Fig. 10 a) and b) 

It follows from this that relatively short scenes are more difficult to correct as long scenes. In 
Rogass et al. (2011) it was assumed that the ROME correction facilities are dependent on the 
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along track dimension. This is supported and can be clearly demonstrated, e.g. by transects 
and spectral profiles of corrected short scenes as presented in Fig. 12 and 13. The subsets for 
detrending comparisons had a size of 400 lines. 

5. Conclusions 

Pushbroom sensors must be carefully calibrated and miscalibrations aggravate succeeding 
operations such as atmospheric correction (Richter, 1997), classification and segmentation 
(Datt et al., 2003). Therefore, it is necessary to efficiently reduce them. The ROME 
framework and the extended detrending proposed in this work significantly reduce 
miscalibrations of any type. Like other methods there are also limitations. These limitations 
mostly relate to offset and nonlinear reductions, not the linear slope reduction. 

However, a calibration recovery rate of about 97 % still remains uncertainties. High spatial 
densities of translucent objects such as trees reduce offset reduction facilities and should be 
excluded beforehand. Tests with different data sets also showed that dense haze or clouds 
may hinder offset reduction. These effects can be minimised by destriping subsets and by 
applying estimated correction coefficients on the whole image. In case of clouds or dense 
haze a reference column for offset reduction that is haze or cloud free is suggested. 

With regard to tests of Rogass et al. (2011) and tests performed for this work it can be 
assumed that the ROME framework is capable to reduce miscalibrations for most 
pushbroom sensors. With regard to the high processing speed and the freedom of 
parameters it can be operationally used. The nonlinear correction has to be improved but 
represents the current state of the art method as the other methods implemented in ROME. 
However, further research is necessary. This is particularly applicable for high frequency 
undershoots that are currently not considered. 
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1. Introduction 
1.1 Overview 

As coastal regions around the world continue to grow and develop, the threat to these 
communities from tropical cyclones also increases. The predicted sea level rise over the next 
decades will certainly add to these risks. Developed low-lying coastal regions are already of 
major concern to emergency management professionals. While hurricane forecasting is 
available, improved predictions of storm intensity and track are needed to allow the time to 
prepare and evacuate larger cities. The predictions and forecasts of the intensity and track of 
tropical storms by regional numerical weather models can be improved with the addition of 
large spatial coverage and frequent sampling of sea surface barometry. These data are 
critically needed for use in models.  

This chapter will present recent advances in the development of a microwave radar 
instrument technique to remotely sense barometric pressure over the ocean and may 
provide the large-scale sea surface barometric pressure data needed to substantially 
improve the tropical storm forecasts. The chapter will include a brief introduction, a 
discussion of the applications of remote sensing of sea surface barometric pressure, a 
discussion of the theoretical basis for the differential absorption radar concept, the results of 
laboratory and flight testing using a prototype radar, and a detailed discussion of the 
performance challenges and requirements of an operational instrument. 

1.2 Background 

Surface air pressure is one of the most important atmospheric parameters that are regularly 
measured at ground based surface meteorological stations. Over oceans, sea surface air 
barometric pressures are usually measured by limited numbers of in-situ observations 
conducted by buoy stations and oil platforms. The spatial coverage of the observations of 
this dynamically critical parameter for use by weather forecasters is very poor. For example, 
along the east coast of the United States and Gulf of Mexico, only about 40 buoys are 
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available under the NOAA Ocean Observing System (NOOS) of the NOAA National Data 
Buoy Center (NDBC; http://www.ndbc.noaa.gov/). The tropical atmosphere ocean (TAO) 
program only has 10 sites from which the barometric pressure is measured. For severe 
weather conditions, such as tropical storms and hurricanes, these NOOS and TAO buoy 
systems usually cannot provide spatially desirable in-situ measurements due to either the 
lack of buoy stations along the actual track of the storm or malfunctions of buoys caused by 
the severe weather itself.  

Under tropical cyclone conditions, including tropical depression, tropical storm, hurricane, 
and super-typhoon cases, the surface barometric pressure is one of the most important 
meteorological parameters in the prediction and forecast of the intensity and track of tropical 
storms and hurricanes. The central air pressure at sea level of tropical cyclones is the most 
commonly used indicator for hurricane intensity. The classification of tropical storms and 
hurricanes on the Saffir-Simpson Hurricane Scale (SSHS) is based on the maximum sustained 
surface wind speed that is a direct result of the interaction between the central air pressure and 
the pressure fields surrounding tropical storms. Because intensity predictions and landfall 
forecasts heavily rely upon them, measurements of the central pressure of tropical storms are 
extremely important. The only method currently available for use is a manned aircraft 
dropsonde technique. The problem with the dropsonde technique is that each dropsonde 
supplies only one spatial point measurement at one instant of interest during the passage of 
the storm. This limits data to the number of dropsondes used and their spatial distribution and 
thereby leaves most of the storm area unmeasured. Furthermore, dropsondes are difficult to 
precisely position and cannot be reused. Figure 1 shows the current capability for sea surface 
barometric measurements; all of them are in situ observations. 

To improve predictions and forecasts of the intensity and track of tropical storms, large 
spatial coverage and frequent sampling of sea surface barometry are critically needed for 
use in numerical weather models. These needed measurements of sea surface barometric 
pressure cannot be realized by in-situ buoy and aircraft dropsonde techniques. One 
approach that may provide barometry in large spatial and temporal scales over oceans is the 
use of remote sensing techniques including those on board manned aircraft, unmanned 
aerial vehicles (UAVs), and satellite platforms. 

During the last two decades, the development of remote sensing methods, especially 
airborne and satellite techniques, for large and global scale sea surface pressure 
measurements significantly lagged methods for other important meteorological parameters,  

 
Fig. 1. Drift Buoy (left), Moored Buoy (middle), and Dropsonde (right). 
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such as temperature and humidity. There have been suggestions for using satellite oxygen 
A-band methods, both passive and active, to measure pressure (Barton & Scott, 1986; Korb 
& Weng, 1982; Singer, 1968; Wu, 1985; and references therein). The active instruments rely 
on the operation of complicated, highly-stable laser systems on a space platform and are 
thus technically difficult. Passive methods are restricted to daytime measurements and areas 
of low cloud cover (Barton & Scott, 1986). Although substantial research efforts have been 
underway, there are no realizations of remote sensing measurements for atmospheric 
surface pressure presently available. 

This chapter will describe the development of an active microwave radar working at 
moderate to strong O2 absorption bands in the frequency range of 50~56 GHz for surface 
barometric pressure remote sensing, especially over oceans. The sensor concept and flight 
testing of a proof-of-concept O2-band radar system for sea surface air pressure remote 
sensing will also be discussed. At these radar wavelengths, the reflection of radar echoes 
from water surfaces is strongly attenuated by atmospheric column O2 amounts. Because of 
the uniform mixture of O2 gases within the atmosphere, the atmospheric column O2 
amounts are proportional to atmospheric path lengths and atmospheric column air 
amounts, thus, to surface barometric pressures. Historically, (Flower & Peckham, 1978) 
studied the possibility of a microwave pressure sounder using active microwave techniques. 
A total of six channels covering frequencies from ~25GHz to ~75GHz were considered. A 
major challenge in this approach is the wide spectral region and the significant additional 
dependence of radar signals on microwave absorption from liquid water (LW) clouds and 
atmospheric water vapor (WV) over this range of frequencies. Atmospheric and cloud water 
temperatures also have different effects on the absorptions at different wavelengths (Lin et 
al., 1998a, 1998b, 2001). The complexity in matching footprints and obtaining accurate 
surface reflectivities of the six different wavelength channels makes their system 
problematic (Barton & Scott, 1986). Recently, (Lin & Hu, 2005) have considered a different 
technique that uses a dual-frequency, O2-band radar to overcome the technical obstacles. 
They have outlined the characteristics of the novel radar system, and simulated the system 
performance. The technique uses dual wavelength channels with similar water vapor and 
liquid water absorption characteristics, as well as similar footprints and sea surface 
reflectivities, because of the closely spaced spectra. The microwave absorption effects due to 
LW and WV and the influences of sea surface reflection should be effectively removed by 
use of the ratio of reflected radar signals of the two channels. Simulated results (Lin & Hu, 
2005) suggest that the accuracy of instantaneous surface air pressure estimations from the 
echo ratio could reach 4 – 7 millibars (mb). With multiple pressure measurements over less 
than ~1km2 sea surface spots from the radar echoes, the pressure estimates could be 
significantly reduced to a few millibars, which is close to the accuracy of in situ 
measurements and very useful for tropical storm and large scale operational weather 
modeling and forecasting over oceans.  

2. Sea surface barometric pressure measurements for hurricane forecasts 
One of the proposed applications of the Differential Absorption Barometric Radar, hereafter 
called DiBAR, is to improve weather forecasts and predictions, especially for tropical 
storms. To address the usefulness of sea surface barometric measurements from DiBAR, we 
use weather prediction models to simulate predicted hurricane intensities and tracks. 
Predicted results with sea surface air pressure data incorporated are compared with those 
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without the pressure measurements. These surface pressures were obtained from later 
analysis of in-situ measurements and the assimilated data of the actual hurricane events. 
During these actual hurricane events, these sea surface pressure data were not available a 
priori for modeling and prediction. Quantitative potential improvements in the forecasts 
and predictions of studied hurricane cases are evaluated. We emphasize that the sea surface 
air pressure data injected into weather prediction models are not exactly the same as those 
from later analysis of in-situ measurements and the assimilated data of the actual hurricane 
events. Some uncertainties exist in the injected pressure data in our simulations to reflect 
potential DiBAR remote sensing errors, according to our current understanding of DiBAR 
systems and retrieval uncertainties. This section provides a brief description of the weather 
forecast model used to simulate the impact of pressure data consistent with our instrument 
concept, as well as, the results of our study to simulate the improved track and intensity 
predictions that result from the inclusion of the simulated DiBAR pressure data. 

2.1 Weather forecast model description 

The numerical weather forecast model used in this study is the Advanced Regional 
Prediction System (ARPS) developed by the Center for Analysis and Prediction of Storms 
(CAPS) of the University of Oklahoma and adopted by NASA Langley Research Center 
(Wang et al., 2001; Xue et al., 2003; Wang & Minnis, 2003). The forward prediction 
component of the ARPS is a three-dimensional, non-hydrostatic compressible model in a 
terrain-following coordinate system. The model includes a set of equations for momentum, 
continuity, potential temperature, water vapor, and turbulence kinetic energy (TKE). It also 
includes five conservation equations for hydrometeor species: cloud water (small cloud 
liquid droplets), cloud ice (small ice crystals), rain, snow, and hail (Tao & Simpson 1993). 
The cloud water and cloud ice move with the air, whereas the rain, snow, and hail fall with 
their terminal velocity. It has multiple-nested capability to cover the cloud-scale domain and 
mesoscale domain at the same time. The model employs advanced numerical techniques 
(e.g., a flux-corrected transport advection scheme, a positive definite advection scheme, and 
the split-time step). The most unique physical processes included in the model system are a 
scheme of Kessler-type warm-rain formation and 3-type ice (ice, snow, and hail) 
microphysics; a soil-vegetation land-surface model; a 1.5-order TKE-based non-local 
planetary boundary layer parameterization scheme; a cloud-radiation interaction 
atmospheric radiative transfer scheme; and some cumulus parameterization schemes used 
for coarse grid-size. Furthermore, a sophisticated long- and short-wave cloud-radiation 
interaction package (Chou, 1990, 1992; Chou & Suarez, 1994) has been applied to the ARPS 
model. The ARPS can provide more physically realistic 4D cloud information in very-high-
resolution of spatial (cloud processes) and temporal (minutes) scales (Figure. 2). 

The ARPS model was run in a horizontal domain of 4800 km, east-west and 4000 km, south-
north, and a vertical domain of 25 km. The horizontal grid spacing is 25 km, and the vertical 
grid space varies from 20 m at the surface to 980 m at the model top. These spatial 
resolutions are used because they are comparable to those of the models used in the Global 
Modeling and Assimilation Office, NASA Goddard Space Flight Center. The options for ice 
microphysics and atmospheric cloud-radiation interactive transfer parameterization were 
both used in the model. Because of the use of the relatively coarser grid-size of 25 km, the 
new Kain & Fritsch cumulus parameterization scheme was used together with explicit ice 
microphysics. 
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Fig. 2. ARPS: a regional cloud-scale modeling/assimilation system. 

2.2 Forecast improvements with the addition of storm central pressure measurements 

The analyzed case here is hurricane Ivan (2004). Ivan was a classical, long-lived Cape Verde 
hurricane that reached Category 5 strength (SSHS) three times and caused considerable 
damage and loss of life as it passed through the Caribbean Sea. Ivan developed from a large 
tropical wave accompanied by a surface low-pressure system that moved off the west coast 
of Africa on 31 August 2004. The development of the system continued and became tropical 
storm Ivan at 0600 UTC 3 September and a hurricane at 0600 UTC 5 September. After 
passing Grenada and moving into the southeastern Caribbean Sea, the hurricane's intensity 
leveled off until 1800 UTC on 8 September when a brief period of rapid intensification 
ensued. Reconnaissance aircraft data indicated Ivan reached its second peak intensity -- 140 
kt and category 5 strength (SSHS) -- just 12 hours later. This was the first of three occasions 
that Ivan reached the category 5 level.  

We choose the forecast period from 0000 UTC 8 Sept. to 0000 UTC 11 Sept. 2004 to examine 
effects of the central sea surface air pressure on predicting the hurricane track. For the 
control run (referred as CTL), the model started at 0000 UTC 8 Sep 2004 with the NOAA 
NCEP Global Forecast System (GFS) analysis fields as the model initial condition. For the 
central sea level air pressure experiment run (referred as SLP), only the observed central 
pressure was added to the initialization, using the GFS analysis as the first guess. The lateral 
boundary conditions for both simulations came from the GFS 6-hour forecasts. The same 
model physics options were used for the two experiments. 

As shown in Figure 3, from run CTL, the hurricane central pressure at the initial time of 
0000 UTC 8 Sept 2004 is about 998.7 hPa (obtained from the NOAA/NCEP GFS global large-
scale analysis), which is ~15 hPa lower than normal conditions. Although this simulated 
pressure drop is much smaller than the real hurricane center air pressure depression (see 
below) and relatively weak for a hurricane, it still could be well captured with our proposed 
O2-band radar systems. At 0000 UTC 8 Sept 2004, based on the report of the National 
Hurricane Center, hurricane Ivan was located at 12.0 N and 62.6 W, and the value of 
central sea level pressure of the hurricane is actually 950 hPa. This observation-based central 
pressure estimate was assimilated into the model analysis system. The assimilated 
initialization field shown in Figure 4 is used as the initial condition in run SLP. The value of 
the central pressure of the hurricane now is about 951.5 hPa, much closer to the observed  
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Fig. 3. The sea level air pressure at the initial time of 0000 UTC 8 Sep 2004 for the control run 
CTL. It is directly interpolated from GFS analysis. 

950 hPa and within the error bar of observations. Compared to Figure 3, the change in the 
initial hurricane center sea level pressure is about 47mb, which significantly improves the 
predicted hurricane intensity.  

The model was integrated for 72 hours at a time step of 15-seconds and used to estimate the 
storm track. It is not surprising that both of the experiments capture the hurricane track 
much better than the operational GFS global forecasting (Figure 5). This is mainly because 
the regional numerical model is non-hydrostatic with explicit cloud/ice-physics 
parameterizations, cloud-radiation interaction, as well as advanced turbulence schemes, and 
land-surface interaction. This kind of advanced regional model can better resolve multi-
scale atmospheric processes, especially for organized convective cloud systems. A 
significant improvement in the predicted hurricane track resulted from the use of the 
observations of the central surface pressure in the initialization of SLP, as shown in Figure 5. 
The SLP experiment generated a more realistic hurricane track, especially for the first two 
forecasts. The results of our sensitivity tests suggest that it is possible to make better 
predictions of hurricane track by using surface pressure observations/measurements within 
the targeted tropical cyclone region. 
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Fig. 4. The sea level pressure at the initial time of 0000 UTC 8 Sep 2004 for the experimental 
run SLP. The observed central pressure was used for the initialization with GFS analysis as 
the background. 

2.3 Forecast improvements when pressure fields are ingested into model 

The results of typical weather predictions for a tropical cyclone, using not only center sea 
surface air pressures but also large area pressure fields, is shown in Fig. 6 for 1996 hurricane 
Fran, which occurred from 0000UTC September 3 to 0060 UTC September 6, 1996 (Xiao et al. 
2000). Due to the lack of data, the model standard run (control run; CTL curve) started with 
a location error of about 100km, and gradually deviated from the observed hurricane track 
(OBS curve) up to about 350km for the predicted landfall site. With pressure data and 
calculated wind fields as inputs, the assimilations with 54km (A80 curve) and 18km (B80 
curve) spatial resolution significantly reduced the errors in predicted storm tracks. 
Comparing the 3 day forecasts, the high-resolution model (18 km, B80) had a small starting 
location error of about 10 km that increased to about 100 km at the predicted landfall site, 
and the low-resolution model (54 km, A80) had a starting error of about 35 km and 
predicted landfall with a 170 km error. Such greatly improved predictions could make 
hurricane preparation and evacuation much easier, especially for the high resolution 
forecast (B80) case.  



 
Remote Sensing – Advanced Techniques and Platforms 

 

178 

km
 

km

Control 
SLP 
NOAA/NCEP 
Best Observed track

 
Fig. 5. The predicted hurricane tracks from 0000 UTC 8 Sep 2004 to 0000 UTC 11 Sep 2004. 

 
Fig. 6. Predicted tracks of 1996 hurricane Fran by CTL, B80, and A80, along with 
observations, from 0000 UTC 3 Sep to 0600 UTC 6 Sep. Predicted landing times are also 
indicated in the figure. 
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Storm intensity predictions can also be improved with knowledge about the storm center 
pressure, pressure gradients, and derived wind fields. As expected, the intensity of the B80 
prediction is very close to observations at the landfall site (Xiao et al., 2000). The hurricane 
eye, rain band, and precipitation intensity determined from radar reflectivity simulations (a) 
and radar observations (b) are very similar (Figure 7). The similarity between these 
predicted hurricane intensity fields, using pressure fields as one of critical initial conditions, 
and fields based on observations is remarkable. Unfortunately, there have been no 
operational, or even experimental, surface air pressure measurements over open oceans  

 

 
Fig. 7. Radar reflectivity (dBZ) (a) predicted by B80 at 0000 UTC 6 Sep 1996 and (b) captured 
at Wilmington, NC, at 0028 UTC 6 Sep 1996. 
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from both in-situ and remote sensing instruments, and thus it remains difficult to predict the 
tracks and intensities of tropical storms with high accuracies (within 100km landfall site for 
3-day forecasts).  

The results of the above simulations suggest that tropical storm forecasts of landfall and 
intensity at landfall may be improved by adding pressure field data consistent with the 
DiBAR measurement concept. With the pressure measurements of the center and whole 
field of tropical storms, our simulations using regional weather forecast models show that 
the prediction of hurricane tracks and intensities can be significantly improved. For the 
hurricane Fran case, model prediction reduces the landfall site errors from ~350km in the 
standard prediction to ~100km for 3 day forecasts, which could improve hurricane 
preparation and evacuation. 

An operational airborne instrument could provide unprecedented barometric sampling in 
terms of spatial coverage and repeat rates. Assuming similar operational flights a DiBAR 
instrument would be expected to provide data at the same pressure resolution but much 
higher spatial density. If UAV is used, the cost of providing the needed barometric 
measurements could be significantly lower than that of current operations using in-situ 
techniques with the accompanying increase in personnel safety. Future space borne systems 
may further improve the pressure field sampling, albeit with a more coarse spatial 
resolution. Furthermore, the availability of these data could result in improved weather 
forecasts for catastrophic events and could significantly reduce human loss and property 
damage.  

3. Measurement approach 
The DiBAR instrument is based on the retrieval of the differential absorption near the O2 
line complex (frequencies: 50–56 GHz). This selection of frequencies provides large changes 
in absorption for the reflected radar signals as a function of the frequency of the radar due in 
part to the different atmospheric O2 attenuation coefficients. In the atmosphere, O2 is 
generally uniformly mixed with other gases. The O2 in the column observed by the radar is 
proportion to column air mass, the column air mass is proportional to the surface air 
pressure, and the reflected power measured by the radar can be approximated as (Lin and 
Hu 2005) 
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where the first term in equation (1) includes frequency dependent characteristics of the 
radar, which must be determined by instrument calibration: PT is the transmitter power and 
G represents the transmitter and receiver antenna gain. The second term includes changes in 
the surface reflectivity, , over the radar frequency, and the last term represents the 
atmospheric absorption, where M0 is the mixing ratio of O2 to total air and Po is the surface 
pressure. Thus, if the frequency response of the radar is well characterized from 50 -56 GHz, 
and the absorption characteristics due to liquid water and water vapor, and spatial 
resolution of the radar are similar over this range of frequencies, then the ratio of the radar 
received powers from two frequencies is then, 
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where C(f) is the frequency dependent radar characteristics. Further, if we define the 
differential absorption index, Ri(f1, f2), as the logarithm of the radar return ratio shown in 
equation (2), then the surface pressure can be written as,  
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or defining terms for a linear relationship between Ri and Po, 

      21211210 ,,, ffRiffCffCPo   (4) 
The term C0(f1,f2) includes the instrument residual calibration error. The differential 
absorption index, Ri(f1,f2), is the logarithm of the ratio of the radar return exclusive of the 
frequency response of the radar. From equation 4, it can be seen that a simple near-linear 
relationship between surface air pressure and the differential absorption index is expected 
from the O2 band radar data. The linear relationship between Ri and the surface pressure 
was firstly suggested by the results of modeled differential absorption for several 
frequencies in the range of interest here (Lin and Hu 2005). Further, Lin and Hu 2005 suggest 
that the accuracy of instantaneous surface air pressure estimations from the measured Ri 
could reach 4 – 7 mb. However, the O2 absorption increases at higher frequencies and the 
receiver Signal to Noise Ratio (SNR) may limit the retrieval accuracy as this loss increases. 
For a fixed transmit power the optimum frequencies for the surface pressure measurement 
will depend on the received power, which depends on the atmospheric loss and surface 
reflectivity. The flight testing of the DiBAR instrument discussed in Section 4 is intended to 
measure the atmospheric attenuation as a function of frequency and the differential 
absorption index Ri(f1,f2). These measurements can then be compared to predicted values to 
assess the measurement approach and the affect of receiver noise on the measurement of 
barometric pressure. 

In addition to the above analysis a multiple layered atmospheric microwave radiative 
transfer model was also employed to simulate the atmospheric loss. The technique used to 
simulate the propagation of radar signals within the atmosphere is based on a plane-
parallel, multiple layered atmospheric microwave radiative transfer (MWRT) model that has 
been used to determine cloud liquid/ice water path, column water vapor, precipitation, 
land surface emissivity and other parameters over land and oceans ( Ho et al., 2003; Huang 
et al., 2005; Lin & Rossow, 1994, 1996, 1997; Lin et al. 1998a, 1998b; Lin & Minnis, 2000). To 
avoid complexities of microwave scattering by precipitating hydrometeors and surface 
backscattering, this study deals only with non-rain weather conditions and homogeneous 
backgrounds (such as sea surface). Thus, transmission and absorption of radar signals 
within each atmospheric layer are the major radiative transfer processes considered in the 
model calculations. For the absorption process, this MWRT model carefully accounts for the 
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temperature and pressure dependences of cloud water and atmospheric gas absorptions 
(Lin et al., 2001). At microwave wavelengths, temperature dependences of gas and water 
absorptions are significant, and produce some difficulties for MWRT modeling. The several 
models available to account for gas absorption differ mainly in their treatment of water 
vapor continuum absorption. The Liebe model i.e., MPM89 was used here (Liebe, 1989). It 
yields results that differ negligibly from those of the (Rosenkranz, 1998) model at the O2 
bands. Liquid water absorption coefficients were calculated from the empirical water 
refractive index formulae of (Ray, 1972), which agree well (relative differences < 5%) with 
those from (Liebe et al., 1991) for T > 15 C. For colder clouds, the uncertainties in the 
absorption coefficients could be larger by more than 15% (Lin et al., 2001) because of a lack 
of direct measurements of the refractive index.  

Current MWRT model is consistent of 200 constant-thickness layers from surface to 40km. 
There is virtually no gas absorption above the modeled top-of-atmosphere (TOA) at our 
considered spectra. The atmospheric profiles of temperature, pressure, humidity and gas 
amount are obtained from NOAA 1988 (NOAA’88) global radiosonde measurements. This 
NOAA’88 data set is widely used in radiation simulations and satellite remote sensing (e.g., 
Seemann et al., 2003) and covers both land and oceans. The data set has more than 5000 
profiles, and about 1/3 of them are for cloudy skies. In cloudy cases, the NOAA’88 profiles 
can have up to two layers of clouds. Thus, the simulated results represent both clear and 
cloudy conditions. Since the model TOA (40km) height is much higher than that of 
radiosonde measurements, whenever there are no radiosonde upper atmospheric 
observations, interpolated climatological values of the upper atmosphere (McClatchey et al., 
1972) are used. The weighting functions for the interpolation are decided from the surface 
air temperatures and pressures to meet the radiosonde measured weather conditions. In 
order to have large variations in surface air pressure, for each NOAA’88 measured profile, 
the surface pressure is randomly shifted by a Gaussian number with standard deviation 
12mb, and the ratio of the shifted surface air pressure to the measured surface pressure is 
calculated. The atmospheric pressures in the measured profile above the surface are, then, 
adjusted to the values using the same ratio as that of the surface pressure.  

For the analysis in this section, the radar system is assumed to fly on an aircraft at 15 km 
altitude with velocity 200 m/s, downward-looking and having a beamwidth of 3, which 
produces a footprint of 785 m. The NOAA hurricane reconnaissance aircraft generally fly 
above 10 km height through and/or over hurricanes. Since this study is the first step in the 
model simulations for the radar system to show feasibility of the radar remote sensing for 
sea surface barometry, the 15 km altitude simulations provide us sufficient theoretical and 
technical insights for the radar sea surface pressure measurements. For other altitudes, the 
radar retrievals should have similar accuracy to those simulated here. During our 
simulation, since all wavelengths used in the radar system are very close to each other, we 
assume the surface reflection (or 0) to be the same (11 dB) for all frequency channels 
(Callahan et al., 1994). As we have showed in the previous section, the absolute magnitude 
of the surface reflectivity is not very important for surface pressure estimation as long as the 
spectrum dependence of 0 within the O2 bands is negligible. 

Simulated signals are analyzed in the form of relative received power (RRP), i.e., the ratio of 
the received and transmitted powers of the considered radar system. Since the system works 
at the O2 absorption bands, the relative received powers are generally weak. Certain signal 
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coding techniques for carrier frequencies, correlators for signal receiving and long-time 
(0.2s) averages of received powers are useful components for consideration for the radar 
system. Preliminary studies have disclosed advantages from a number of commonly 
employed radar techniques. 

The radar-received signals reflected from sea surfaces, i.e. RRP values, used in this section 
are simulated through the complicated MWRT calculations discussed previously. With the 
RRP values, we calculate the radar differential absorption index, Ri, defined in equation 4. 
As shown above, the index and sea surface air pressure have a near-linear relationship, 
which points out the basic directions and sensitivities for surface air pressure remote 
sensing.  

Atmospheric extinctions (or attenuations) vary dramatically at the O2 band radar 
frequencies between 50.3 and 55.5 GHz. At the lowest frequency (50.3GHz), the atmospheric 
extinction optical depth is about 0.5, and at the highest frequency (55.5GHz), the optical 
depth goes sharply up to about 9. These two frequency cases represent the two extreme ends 
of weak and strong, respectively, atmospheric O2 absorptions for our considered active 
microwave remote sensing of sea surface barometric pressure. With a weak O2 absorption 
(i.e., small optical depth) radar signals would have significant influence from environments, 
such as atmospheric water vapor, cloud water amount and atmospheric temperature profile 
but transmitted powers used might be lower. While the atmospheric O2 absorption is too 
strong, most of radar-transmitted powers would be close to attenuation, and small changes 
in surface air pressure (or column O2 amount) would not produce significant differences in 
the received powers. This might be offset somewhat by using higher transmitted power. 
Thus at constant transmitter power levels, wavelengths with moderate to reasonably strong 
O2 absorptions in the atmosphere are expected to serve our purpose best by giving a 
reasonable compromise between transmission and visibility.  

Figure 8 shows examples of atmospheric extinction optical depths counted from TOA under 
clear conditions using the standard profiles (McClatchey et al. 1972). The three different color  

 
Fig. 8. Atmospheric extinction optical depths for various atmospheric temperatures and 
moisture levels at 52.8 and 54.9 GHz. 
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curves represent atmospheric surface temperatures of 280, 290 and 300K, respectively. It can 
be seen that these curves are very close each other, indicating atmospheric temperature 
effects are minimal. For channel 2 (i.e. 52.8GHz, left panel) cases, the optical depths for 
moist atmospheres (solid curves) with 40mm column water vapor are about 1.25 and only 
0.1 higher than those of dry atmospheres. At 54.9GHz (right panel), the optical depths are 
increased considerably to about 6, and different temperature and moisture conditions have 
little effect on the total extinctions. For this frequency, the atmospheric extinctions of radar 
received signals due to double atmospheric path lengths reach about 50dB. This may require 
enhancements to the radar signals to control end to end noise, as mentioned before.  

For tropical meteorological cases, such as hurricane cases, the changes in temperature and 
moisture profiles are even much smaller than those shown in the figure due to limited 
temperature and humidity conditions for the tropical storm development. To test accuracies 
of surface pressure measurements, a 15 dB SNR (signal-to-noise ratio) for radar-received 
signals is assumed for this primary study. 

Figure 9 shows the simulated relationship between the differential absorption index (the 
logarithm of the radar return ratio of relative received powers at wavelengths 53.6 and 54.4 
GHz and sea surface air pressure. Each point in the figure represents one adjusted NOAA’88 
profile. As discussed above, good linear correlations of the two variables are further 
established by these simulations. A linear regression gives the root mean square (rms) error 
in sea surface air pressure estimates about 7.5 mb, which may be suitable for many 
meteorological uses. For frequencies of 53.6 and 54.9 GHz (Figure 10), simulated results (5.4 
mb) are close to current theoretical O2 A-band results. The best results (in Figure 11) we 
found are those from the differential absorption index 52.8 and 54.9GHz. The rms error in 
this case is about 4.1 mb. The tight linear relation between the sea surface air pressure and 
differential absorption index provides a great potential of remote sensing surface air 
pressure from airborne radar systems. Note that in Figs. 9-11, the dynamic range of sea 
surface barometric pressure is only from ~ 960mb to ~1050mb. The low end of the dynamic  

 
Fig. 9. Simulated relationship between the differential absorption index, the logarithm of the 
radar spectrum ratio at wavelengths 53.6 and 54.4 GHz , and surface air pressure.  
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Fig. 10. Similar to Fig. 9, except frequencies are changed to 53.6 and 54.9 GHz. 

 
Fig. 11. Same as Fig. 10, except for 52.8 and 54.9GHz. 

range of the sea surface pressure is significantly higher than some sea surface air pressures 
of hurricane centers. NOAA 1988 profiles were measured in generally average weather and 
meteorological environments, and were not taken from tropical storm cases. Thus, there 
were no extreme low sea surface air pressures in the NOAA data set. Actually, for tropical 
storm cases, the signal strength and SNR of the radar measurements at all O2 band channels 
would be higher than those in normal conditions due to low atmospheric radar attenuation 
caused by low O2 amounts (or the low hurricane center pressures). Also, the hurricane 
centers are generally clear skies. So, the accuracy of radar retrievals of the sea surface 
barometric pressure for hurricane center cases would be higher than those shown in the 
figures. The key to reach high accuracies of sea surface barometric pressure measurements is 
to have a high SNR of radar received powers reflected from sea surfaces.  
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This theoretical and modeling study establishes a remote sensing method for sea surface air 
pressure. Simulated results show that with an airborne radar working at about 53~55GHz 
O2 absorption bands, the rms errors of the radar surface pressure estimations can be as small 
as 4~7mb. The considered radar systems should at least have 2 frequency channels to obtain 
the relative received power ratios of the two wavelengths. For the best simulated 
combination of 52.8 and 54.9 GHz channels, the power loss of radar received signals due to 
dual atmospheric path length absorptions could be as high as about 50 dB. High signal-to- 
noise ratios for radar reflected powers after these atmospheric absorptions will require 
modern radar technologies. In addition, careful radar design to insure stable instrument 
gain will be required.  

4. DiBAR demonstration instrument 
The goal in developing the demonstration instrument was to use commercial-of-the-shelf 
hardware wherever possible to develop the capability to collect differential absorption data 
that would verify the simulated differential absorption results, and to allow various 
measurement approaches to be assessed. An important operational characteristic for the radar, 
and determining factor in most design tradeoffs for the DiBAR system, is the SNR. The 
optimum channel to use in the O2 absorption band from 50 ~ 56 GHz is a function of the radar 
SNR, which depended on the surface reflectivity and the total atmospheric absorption. Thus, 
rather than selecting a set of frequencies bases on the microwave atmospheric absorption 
model, the demonstration instrument will have the flexibility to vary the measurement 
frequencies, and even to measure the differential absorption from 50 to 56 GHz and allow 
multiple processing and data analysis strategies to be evaluated for the same data set. 

The basic instrument concept utilizes a Vector Network Analyzer (VNA) and a millimeter 
wave Up/Down Converter subsystem to enable operation from 50 ~ 56 GHz. The millimeter 
wave Up/Down Converter will translate the VNA measurements to the O2 absorption band, 
and provide very flexible signal processing options. As shown in Figure 12, the Up/Down 
Converter provides a millimeter power amplifier for the transmitter and a Low Noise 
Amplifier (LNA) for the receiver. The transmit power is selectable but the maximum is 
limited by the Q-band output amplifier to +14 dBm. The maximum transmit power and the 
receiver noise figure, 5.3 dB, will establish the SNR for our selected flight altitude. Our 
analysis indicates that for altitudes below 1000 m the SNR will be sufficient to verify the 
differential absorption across the O2 absorption band. The transmit power can also be 
reduced during the flight to assess the impact of SNR on various data analysis approaches. 
Finally, to maximize isolation and eliminate the need for a Q-band transmit/receive (T/R) 
switch, the demonstration instrument transmitter and receiver are each fitted with an 
antenna. 

The DiBAR demonstration instrument is extremely versatile and can be operated in several 
modes to emulate a wide range of radar modes and processing concepts. Several modes of 
operation can be used to collect absorption band data to increase probability of success and 
provide additional insight into the concept of differential absorption. The anticipated data 
sets will also provide insight into other phenomenon, at these frequencies, such as sea 
surface scattering. The instrument can be retrofitted with microwave switches to allow 
hardware gating, if required, to reduce any radar return other than the ocean surface. This 
option is not presently implemented. 
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Fig. 12. DIBAR demonstration instrument block diagram.  

For the data discussed here, the DiBAR instrument was operated in a stepped Continuous 
Wave (CW) mode using Fourier transform and windowing to produce software gating in 
the time domain. This processing minimized the effect of radar returns other than from the 
sea surface, or leakage between the transmitter and receiver.  

4.1 Preliminary functional testing 

Laboratory functional testing of the system such as, characterization of system linearity, 
noise figure, antenna gain, and isolation between antennas has been completed and reported 
elsewhere (Lawrence et al. 2007; Lin et al., 2006). Results of these tests were nominal with 
two minor exceptions. The frequency response of the Up/Down Converter, shown in figure 
12, varied over the frequency range of 50 and 56 GHz by more that 12 dB. This change with 
frequency was larger that expected. However, it has been assumed that low altitude DiBAR 
data would be used to characterize the frequency response of the instrument during the 
flight tests. Therefore, as long as frequency response is stable, this should not affect the 
DiBAR demonstration flight tests. The leakage from the transmitter to the receiver within 
the Up/Down Converter enclosure was larger than mutual coupling between antennas. The 
impact of this leakage is minor. Our stepped CW measurement approach allowed software 
gating to suppress this term as long as the range to the target is more than about 10 to 15 m. 
Again, this had no impact on flight tests. 

The assembled DiBAR demonstration radar is shown in figure 13 during a quick test using a 
water tower as a target to verify the operation of the radar. The DiBAR instrument collected 
16001 stepped CW measurements for frequencies from 53 to 56 GHz. The Fourier transform 
of these data then results in a time domain representation of the radar return as a function of 
range. The resulting time domain data is shown in figure 14 and the large return from the 
water tower as well as the internal leakage term can clearly be seen in the figure. 

The data in figure 14 may be helpful in illustrating the DiBAR measurement approach. The 
DiBAR instrument must provide precision measurements of the variation in the radar return 
as a function of frequency. Using a similar stepped CW measurement approach over the 
ocean, we can transform the data to the time domain, and then use windowing to minimize 
the effects of clutter. The windowed time domain data can then be transformed back to the 
frequency domain to measure the differential absorption index. An important assumption 
for our test flight planning is that the frequency response of the instrument will be  
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Fig. 13. DiBAR Demonstration Radar 

 

50 100 150 200 250 300 350 4000

53 GHz to 56 GHz

Range (m)

R
ec

ei
ve

d 
Po

w
er

 R
at

io
 (d

B
) 

50 100 150 200 250 300 350 4000

53 GHz to 56 GHz

Range (m)

R
ec

ei
ve

d 
Po

w
er

 R
at

io
 (d

B
) 

50 100 150 200 250 300 350 4000

53 GHz to 56 GHz

Range (m)

R
ec

ei
ve

d 
Po

w
er

 R
at

io
 (d

B
) 

 
Fig. 14. Radar return from water tower vs. range 

characterized by comparing stepped CW data at various flight altitudes. This of course 
assumes stability of the instrument frequency response. In order to verify the stability of the 
frequency response, the DiBAR instrument was moved into an anechoic chamber to  

measure the backscatter from a conductive sphere in a stable and controlled environment. 
Unfortunately, the available chamber was not designed for millimeter wave frequencies, so 
precision radar cross section measurements or absolute calibration of the DiBAR instrument 
was not possible. However, while clutter was apparent in the radar measurements, the 
facility did provide a stable environment and was useful for the primary objective of 
characterizing the stability of the instrument. 
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The data was collected in the stepped CW mode using 16001 points from 50 to 56 GHz over 
several hours. The time domain result of a measurement of a 35.5 cm diameter sphere is 
shown in figure 15. The sphere can be seen at a range of approximately 22 m. The leakage 
term appears near zero range and the back wall of the facility is only a few meters further 
downrange than the sphere. Windowing was used to reduce the error due to these 
contaminating signals and the data is then transformed back to the frequency domain. 
Assuming the sphere is stationary, any change in the measured response can be attributed 
to variation in the end-to-end frequency response of the DiBAR demonstration instrument. 
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Fig. 15. Radar return from sphere vs. range  

4.2 DIBAR flight test results 

The initial flight-testing to verify the differential loss was accomplished utilizing a helicopter 
that provided several test flights over water in varying atmospheric and sea conditions. 
Several modifications to the DiBAR instrument were required for these tests. The integration 
of the DiBAR instrument on board the helicopter required the high gain antennas to be 
replaced with smaller horn antennas. The reduction in antenna gain results in reduced 
system dynamic range, and limits the maximum altitude where sufficient signal to noise 
ratio is available for useful pressure measurements. To minimize the impact of the antenna 
modification, the frequency sweep was increased from 53-56 GHz to 50-60 GHz for these 
flights. While the spectral response of the DiBAR instrument decreases above 56 GHz, the 
increased O2 attenuation at these frequencies may be useful for the lower altitude 
operations. Analysis using an instrument model developed from laboratory testing and the 
microwave absorption model described in (Lin & Hu, 2005, Lawrence et al., 2007) suggests 
that this configuration of the instrument will provide an estimate of the differential O2 
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absorption for an altitude of approximately 3000 feet (ft). Note that within US aviation 
industry aircraft altitude is reported in feet. Since this is the value recorded by the flight 
crew, altitude will be reported in feet in this description.  

The demonstration DiBAR instrument was installed on a helicopter (Figure 16) for several 
test flights. Data was collected with in-situ estimated barometric pressure ranging from 1007 
to 1028 mb. At each measurement site, the DiBAR instrument made three to five 
measurements of radar return for frequencies from 50 to 60 GHz. These measurements were 
performed while the helicopter was in a hover and each measurement set included altitudes 
from 500 to 5000 ft. These measurements were performed at each altitude with the 
helicopter at nominally the same location. The 500 ft altitude measurements for each 
measurement set was used to provide correction for sea surface reflectivity variations and 
spectral calibration of the instrument. 

 

 
 

Fig. 16. DiBAR Instrument Installed in vehicle for initial flight tests.  

The results for a data set performed on a day with an in-situ estimated barometric pressure 
at the measurement location of approximately 1018mb are shown in figure 17. DiBAR data 
for 2000, 3000, and 5000 ft altitudes is shown, as well as the modeled radar return. Three 
DiBAR measurements were performed at each altitude, and are indicated by the three 
different symbols in Figure 17. The predicted radar return (solid curve) is estimated using 
the radar equation for an extended target (sea surface) and the microwave absorption model 
adapted from (Lawrence et al., 2007; Lin & Hu, 2005). The measured transfer function of the 
DiBAR instrument was then combined with these models to estimate the expected radar 
return, shown in Figure 17 as the solid curve. The DiBAR measurements for each altitude 
are very repeatable, suggesting that the DiBAR instrument and the sea surface scattering 
characteristics were sufficiently stable. The reduced radar return as the measurement 
frequency increases can clearly be seen in Figure 17. This reduction is partially due to the 
increased O2 attenuation discussed in section 3. 
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Fig. 17. Comparison of DiBAR measured return and model predictions 

The measured results agree very well with the model for 2000 ft altitude measurements. The 
results for 3000 ft also agree well with the model for frequencies from 50 to 58 GHz. The 
difference between the measured and predicted values above 58 GHz is likely due to the 
noise floor of the modified DiBAR instrument. That is, due to the reduced antenna gain the 
signal to noise ratio of the DiBAR is insufficient at frequencies above 58 GHz at 3000 ft 
altitude and above 56 GHz at 5000 ft altitude. It appears that the optimum trade off between 
sufficient O2 absorption (path length) and the noise floor of the DiBAR instrument for these 
flights occurs at an altitude of approximately 3000ft. Future flights with the high gain 
antennas will not have this limitation. 

DiBAR data for 3000 ft from three difference days are shown in Figure 18. Three 
measurements are indicated for each day (symbols) as well as the predicted values (solid 
line). The increase in attenuation with increasing frequency can be seen in the data for all 
three days. Further, the attenuation appears to increase with increasing barometer pressure 
as would be expected. The difference between barometric pressures for each day is 
approximately 10 mb. While no statistical analysis was performed, the variation in the 
measured attenuation above 57 GHz appears to be on-the-order of the variation between 
each day. That is, the measurement-to-measurement variation was on the order of ± 5 mb  

2000 ft

3000 ft
5000 ft
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Fig. 18. Measured radar return and model predictions for three pressure days. 

for the 3000 ft altitude data. The stability of these measurements over several minutes 
indicates that sea surface scattering can be assumed constant for these conditions. As 
discussed in Section 3 this increase in attenuation is expected to result in a linear change in 
differential absorption, Ri(f1,f2) defined in equation 4. 

The differential absorption index is also provided by DiBAR measurements. The DiBAR 
demonstration instrument measures the radar return over the entire frequency band from 50 
to 60 GHz. However, the differential attenuation index can be extracted from the data where 
the radar signals are sufficiently above the noise floor. For example, the differential 
absorption for f1= 53 GHz and f2=58 GHz, or Ri(53,58), can be found from Figure 18 by  

subtracting the radar return for 58 GHz from that for 53 GHz. Figure 19 shows Ri(53,58)  
measured at altitudes of 1000, 2000, 3000, and 4000 ft. The measured data for the three 
pressure days are shown in the figure as well as the predicted Ri(53,58) using the instrument 
model and microwave atmospheric attenuation model discussed above. The figure 
illustrates the affect of increasing altitude. As the altitude increases the increased path 
length increases proportionality constant between Ri and Po in equation (4). Thus, ignoring 
the receiver SNR, a less precise estimate of Ri is required for the same surface pressure 
precision at higher altitudes. Conversely, at 1000 ft larger changes in barometric pressure 
would be required to produce a detectable change in Ri. This demonstrates the impact of the 
reduction in antenna gain and limiting the useful measurement altitude to 3000 ft. However, 
the differential absorption index shown in Figure 19 agrees well with the predicted values 
for Ri, through 3000 ft altitude.  
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Fig. 19. DiBAR derived and predicted differential absorption coefficients. 

5. Conclusions 
The goal of the initial flight testing was to demonstrate differential radar measurement 
approach. The DiBAR measurements for the Chesapeake Bay at multiple altitudes 
demonstrated very good agreement between measured and predicted results for altitudes 
below approximately 3000 ft and for frequencies below 56 GHz. In addition, multiple 
measurements at these altitudes indicate little change over several minutes. This suggests 
that changes on the surface reflection coefficient over these time scales can be ignored for 
these surface conditions and spatial resolution. As expected, above 3000 ft the reduced 
antenna gain resulted in insufficient signal to noise ratio. However, the measured 
differential absorption index was in general agreement with the modeled values. Further, 
although beyond the scope of these initial flight tests, variations in the DiBAR 
measurements for 3000 ft measurements appear to be in the range ± 5 mb. These results are 
encouraging and consistent with our accuracy goal. Future flight testing should include an 
assessment of the barometric pressure measurement for high altitude and future satellite 
operations.  

The initial flight testing described above successfully demonstrated the measurement 
approach. To fully demonstrate the measurement of surface level pressure will likely 
require flight data at altitudes between 5 kft and 15 kft using the original high gain 
antennas. An onboard calibration system should also be developed to eliminate the need for 
low altitude data to correct for changes to the spectral response of the instrument. In 
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addition, while the existing demonstration DiBAR instrument is suitable to demonstrate the 
concept, a radar processor should be developed specifically for the differential absorption 
measurement to eliminate the need for the PNA. This would substantially reduce the weight 
and size of the instrument. This modification should not only eliminate the PNA, but should 
also be designed to enhance the stability of the instrument and enable the pulse operation to 
eliminate one of the antennas. While eventually funding will be required to develop an 
operational DiBAR instrument capable of operation at altitudes of 40 kft, these 
improvements may lead to moderate altitude flight opportunities. 
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1. Introduction

Wireless sensor network (or sensor network, for brevity in the following) comes into practice,
thanks to the recent technological advancement of embedded systems, sensing devices and
wireless communication. A typical sensor network is composed of a number of wirelessly
connected sensor nodes distributed in a sensed area. In the network, sensor nodes sense their
surroundings and record sensed readings. The sensed readings of individual sensor nodes are
then collected to present the measurement of an entire sensed area. In many fields including
but not limit to, military, science, remote sensing Vasilescu et al. (2005), industry, commerce,
transportation Li et al. (2011), public security Faulkner et al. (2011), healthcare and so on,
sensor networks are recognized as important sensing, monitoring and actuation instruments.
In addition, many off-the-shelf sensor node products Zurich (n.d.) and supporting software
such as TinyOS Group (n.d.) are available in the market. Now sensor network application
development is much facilitated. Many sensor networks are anticipated to be deployed soon.

Over those years, the computational capability and storage capacity of sensor nodes have
been considerably improving. Yet, the improvement of battery energy is relatively small.
Since battery replacement for numerous deployed sensor nodes is extremely costly and
even impossible in hostile environments, battery energy conservation is a critical issue to
sensor networks and their applications. Accordingly, how to effectively save battery energy
is a challenge to researchers from academia, government agencies and industries. One
common practice is to keep sensor nodes in sleep mode whenever they are not in use.
During sleep mode, some hardware components of sensor nodes are turned off to minimize
energy consumption. For instance, MICAz needs only 1μA when wireless interface is off
and less than 15μA for processor in sleep mode Musaloiu-Elefteri et al. (2008). Besides,
wireless communication is very energy consuming. For instance, MICAz consumes 17.4mA
and 19.7mA in data sending and receiving, respectively, whereas it only needs 8mA for
computation when its wireless interface and processor are on. Thus, reducing the amount
of data transmitted between sensor nodes is another important means to save battery energy.

In many sensor network applications, data acquisition that collects sensed readings from
remote sensor nodes is an essential activity. A primitive approach for data acquisition
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can be collecting all raw sensed readings and maintaining them in a data repository for
centralized processing. Alternatively, a large volume of raw sensed readings are streamed
to a processing site where analysis and data processing are directly applied on streamed
sensor readings Madden & Franklin (2002). However, costly wireless communication can
quickly use up sensor nodes’ battery energy. In other words, such a centralized approach
is not energy efficient and thus undesirable in practice. As in the literature, a lot of original
ideas and important research results have been developed for energy efficient data acquisition.
Among those, many new techniques have been developed based on the idea of in-network
query processing. Through in-network query processing, queries are delivered into sensor
networks and sensor nodes evaluate the queries locally. By doing so, (partial) query results
are transmitted instead of raw sensed readings. Since (partial) query results are in smaller size
than raw sensed readings, energy cost can be effectively saved. Subject to the types of queries
and potential optimization opportunities, various in-network query processing techniques
have been developed and reported in the literature.

In this chapter, we review the main concepts and ideas of many representative research
results on in-network query processing, which include some of our recent works such as
itinerary-based data aggregation Xu et al. (2006), materialized in-network view Lee et al.
(2007), contour mapping engine Xu et al. (2008) and in-network probabilistic minimum
value search Ye, Lee, Lee, Liu & Chen (to appear). As briefly described, itinerary-based data
aggregation is a new access method that navigates query messages among sensor nodes to
collect/aggregate their sensed readings. Materialized in-network view is a novel data caching
scheme that maintains (partial) query results in queried sensor nodes. Then, subsequent
queries issued by different base stations can access cached results instead of traversing query
regions from scratch to determine query results. Contour mapping engine derives fairly
accurate contour line segments using data mining techniques. Besides, only the coefficients of
equations representing contour line segments, which are very compact, are transmit. Finally,
probabilitistic minimum value search is one of recent efforts in probabilistic sensed data
aggregation. It finds the possible smallest sensed reading values in a sensor network.

The details of those works will be discussed in the following sections. First of all, we present
a system model that our reviewed research results are based upon. Then, we discuss research
results in in-network data aggregation and in-network data caching as well as in-network
contour map computation. We further discuss recent results on in-network probabilistic data
aggregation. Last but not least, we summarize this chapter and discuss some future research
directions.

2. System model

Without loss of generality, a sensor network is composed of a number of battery powered
stationary sensor nodes deployed over a sensed area. The spatial deployment of sensor nodes
in a target sensed area is one of the research problems in sensor networks; and many research
works (e.g. Bojkovic & Bakmaz (2008)) were proposed to maximize the area coverage by a
given quantity of sensor nodes while providing required network connectivity among sensor
nodes. The issue of sensor node deployment is usually considered to be independent from
others. As will be discussed in the following, research works on data acquisition mostly
assume that sensor networks are already set up and all sensor nodes are with identical
hardware configurations.
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In a typical sensor network, some senor nodes in the sensor network are directly connected
to computer terminals; and they are called base stations. Through base stations, computer
terminals can issue commands to administer sensor nodes and collect their sensed readings.
Besides, all sensor nodes are wirelessly connected, e.g., MICAz uses 2.4GHz IEEE 802.15.4
radio. That means messages are all sent through wireless broadcast. When a node delivers
a message, other sensor nodes within its radio coverage range can receive the message.
Messages can be conveyed transitively from a sender sensor node to a distant target receiver
node Xu et al. (2007). On the other hand, because of shared radio frequencies, simultaneous
messages from closely located sensor nodes may lead to signal interference. Moreover, due to
ad hoc connectivity and sensor node failure, which is common in practice, connections among
sensor nodes are mostly transient and unreliable. Thus, other than regular data messages,
every sensor node periodically broadcasts a special message called beacon to indicate its
liveness to its neighboring sensor nodes. Also, data messages are sent through multiple paths
from a sender sensor node towards a destination to deal with possible message loss Xu et al.
(2007). As a result, those extra messages incur additional energy costs.

To save battery energy, sensor nodes stay in sleep mode for most of the time; and each of
them periodically wakes up to sense its surrounding and record its measurements as sensed
readings. For data acquisition, an entire sensor network (i.e., a set of sensor nodes N) presents
a set of sensed reading values V, notationally, V = {vn | n ∈ N} where vn is a sensed reading
value provided by a sensor node n. Based on V, data analysis is conducted to understand
the entire sensed area. As already discussed, it is very costly to collect V from all sensor
nodes. Accordingly, some research results were reported in the literature exploring techniques
to collect a subset of sensed readings V ′(⊂ V) from a subset of sensor nodes N′ (⊂ N),
while collected readings may only provide approximate analytical results. The following
are two sorts of techniques. Sampling is the first technique that sensed readings are only
collected from some (randomly) selected sensor nodes Biswas et al. (2004); Doherty & Pister
(2004); Huang et al. (2011). Those unselected sensor nodes do not need to provide their
sensed readings. The sampling rate is adjustable according to the energy budget. The second
technique is based on a certain prediction model Silberstein et al. (2006) that, some sensed
readings can be omitted from being sent as long as they can be (approximately) predicted
according to other sensed readings, which can be from some neighboring sensor nodes, or
from the previous sensed reading values of the same sensor nodes. Meanwhile, another
important research direction for energy efficient data acquisition based on in-network query
processing Hellerstein et al. (2003) has been extensively studied; and we shall review some of
the representative works in the coming four sections.

3. In-network data aggregation

Data aggregation is often used to summarize a large dataset. With respect to all sensed
readings V from all sensor nodes N, an aggregate function f is applied on V to obtain a
single aggregated value, i.e., f (V). Some commonly used aggregate functions include SUM,
COUNT, MEAN, VARIANCE, MAX and MIN etc. Aggregated data can provide a very small
summary of sensed readings (e.g., the highest, average and lowest temperature) in a sense
area. In many situations, it can be sufficient for scientists to know about a remote sensed
area. Besides, aggregated data is usually small to transmit and data aggregation is not very
computationally expensive for sensor nodes to perform so that in-network data aggregation

199Energy Efficient Data Acquistion in Wireless Sensor Network



4 Will-be-set-by-IN-TECH

is very suitable to sensor networks. In the following, we discuss two major strategies, namely,
infrastructure-based approaches and itinerary-based approaches, for in-network data aggregation.

3.1 Infrastructure-based data aggregation

As their name suggests, infrastructure-based approaches build certain routing structures
among sensor nodes to perform in-network data aggregation. TAG Madden et al. (2002)
and COUGAR Yao & Gehrke (2003) are two representative infrastructure-based approaches.
They both form a routing tree to disseminate a query and to derive aggregated sensed
readings in divide-and-conquer fashion. The rationale behind these approaches are two
ideas. First, some aggregate functions f are decomposable so that f (V) can be transformed
to f ( f (V1), f (V2), · · · f (Vx)), where V1, V2, · · ·Vx are sensed reading values from x disjointed
subsets of sensor nodes and the union of all of them equals V, and f can be applied
to readings from individual subsets of sensor nodes and to their aggregated readings.
For example, SUM(V), where SUM adds all sensed reading values, can be performed as
SUM(SUM(V1), SUM(V2), · · · SUM(Vx)). Second, the connections among sensor nodes can be
organized as a tree topology, in which the root of any subtree that covers a disjointed subset of
some sensor nodes can carry out local aggregation on data from its descendant nodes. In other
words, in-network data aggregation incrementally computes aggregated values at different
levels in a routing tree.

Base station

Q1

n1 (2)
n2 (4)

n3 (5)n4 (3)

2
4

5

14

n5

sensor nodes

root

(a) Routing tree

Base station

Q1

Q-node

(b) Itinerary-based Approach

Fig. 1. Strategies for in-network data aggregation

Figure 1(a) exemplifies a routing tree formed for data aggregation. In brief, upon receiving
a SUM query for the total of sensed reading values from its connected computer terminal, a
base station disseminates the query to sensor nodes within a specified queried region. The
specified queried region can be a small area or an entire sensed area. With the queried region,
sensor nodes join the routing tree when they receive the query. A node becomes the parent
node of its neighboring nodes in a routing tree if those nodes receive the query from it. In
a routing tree, the first queried node within the region serves as the root. Meanwhile, every
non-root tree node should have another sensor node as its parent node, and non-leaf nodes
are connected to some other nodes as their child nodes.

After the tree is built, data aggregation starts from leaf nodes. The leaf nodes send their sensed
reading values to their parent nodes. Thereafter, every non-leaf node derives an aggregated
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value based on (aggregated) sensed reading values received from its child nodes and its own
sensed reading value. As shown in Figure 1(a), some leaf nodes n1, n2, n3 first send their
reading values of 2, 4 and 5, respectively, to their parent node n4. Then, n4 calculates the sum
of their values and its own sensed reading values of 3, i.e., 14, and propagates it to its parent
node n5. Eventually, the root derives the final sum among all sensor nodes in the region and
reports it to the base station.

3.2 Itinerary-based data aggregation

The infrastructure-based approaches relies on an infrastructure to perform in-network data
aggregation, incurring two rounds of messages for both query dissemination and data
collection. However, in presence of sensor node failure, queries and aggregated sensed
readings would be lost making these approaches not very robust and reliable. Some additional
research works Manjhi et al. (2005) were proposed to improve the robustness and reliability
of routing trees by replicating aggregated values and sending them through different paths
towards the root. However, it incurs extra data communication cost. To save the quantity of
messages, we have recently developed itinerary-based data aggregation Xu et al. (2006).

The basic idea of itinerary-based data aggregation is to navigate a query among sensor nodes
in a queried region as illustrated in Figure 1(b). In every step, a query message that carries
both a query specification and an immediate query result is strategically sent from one sensor
node to another along a designed space filling path called itinerary. The width of an itinerary is
bounded by a maximum radio transmission range. Sensor nodes participating in forwarding
a query message are called Q-nodes. After it receives a query message, a Q-node asks its
neighboring nodes for their sensed readings. Then, the Q-node incorporates all received
sensed readings and its own reading into the immediate query result. Thereafter, it forwards
the query message with a new intermediate query result to a succeeding Q-node. Here, the
succeeding Q-node is chosen by the current Q-node. If a Q-node fails, its preceding Q-node
can detect it and re-propagates the query message to another sensor node as a replacement
Q-node. As such, the itinerary can be resumed from that new Q-node. The evaluation of a
query completes when a specified region is completely traversed. Finally, a query result is
returned to the base station.

Base station

Q1

Q-nodesplit
combine

(a) Parallel Itinerary

split

combine

Base station

Q1

Q-node

(b) Hybrid Itinerary

Fig. 2. Parallel and hybrid itinerary
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On the other hand, the length of an itinerary directly affects the query processing time. A
single itinerary takes a very long processing time, especially in a large query region. Thus,
as opposed to single itinerary as shown in Figure 1(b), parallel itinerary has been developed
to improve query processing time. As depicted in Figure 2(a), an itinerary is split into four
threads scanning four rows in a region. Their immediate query results are then aggregated at
the end of the rows. However, wireless signal from two adjacent threads may lead to signal
interference, message loss and finally data retransmission. As a result, longer time and more
energy are consumed. To address this issue, a hybrid itinerary has been derived accordingly.
Here, a query region is divided into several sections that contain multiple rows. Inside each
section, a single itinerary scans all the rows. For instance, as in Figure 2(b), a query region
is partitioned into two sections, each covering two rows. Within each section, a sequential
itinerary is formed. Now, because of wider separation, the impact of signal interference is
minimized while a higher degree of parallelism is achieved, compared with single itinerary.

Through simulation, our developed itinerary-based approach is demonstrated outperforming
infrastructure-based approaches Xu et al. (2006). Besides, the idea of itinerary-based
in-network query processing has also been adopted for other types of queries and applications
such as tracking nearest neighbor objects Wu et al. (2007).

4. In-network data caching

Data caching is widely used in distributed computer systems to shorten remote data
access latency. In sensor networks, data caching has one more important benefit that is
saving communication energy cost. Many existing research works focused on strategies
of replicating frequently accessed sensed readings in some sensor nodes closer to base
stations Ganesan et al. (2003); Liu et al. (2004); Ratnasamy et al. (2002); Sadagopan et al.
(2003); Shakkottai (2004); Zhang et al. (2007). In presence of multiple base stations, a research
problem of finding sensor nodes for caching sensed readings is formulated as determining
a Steiner tree in a sensor network Prabh & Abdelzaher (2005). In a graph, a Steiner tree
is a subgraph connecting all specified vertices and providing the smallest sum of edge
distances Invanov & Tuzhilin (1994). By caching data in some sensor nodes as internal vertices
(that connect more than one edge) in a Steiner tree, the communication costs between those
sensor nodes providing sensed readings and base stations are guaranteed to be minimized.

On the other hand, existing data caching schemes do not support data aggregation.
Accordingly, we have devised a new data caching scheme called materialized in-network view
(MINV) to support SUM, AVERAGE, COUNT, VARIANCE aggregate functions Lee et al.
(2007). Specifically, MINV maintains partially computed aggregated readings in some queried
sensor nodes. Then, subsequent queries, which are issued by different base stations and which
cover queried sensor nodes, can be fully or partially answered by cached results.

Figure 3(a) shows a motivating example of MINV. In the figure, a SUM query Q1 adds up
the sensed readings of all sensor nodes in a query region at time t1. At a later times t2 and
t3, two other SUM queries, Q2 and Q3, respectively, are issued to summarize readings from
sensor nodes in two other queried regions overlapping Q1’s. Without cache, all queries are
processed independently. Ideally, if Q1’s answer can be maintained and made accessible, Q2
and Q3 can be answered by some cached data to save the energy costs of an entire sensor
network.
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(c) Processing Q2 on MINV
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Fig. 3. Materialized in-network view

On the other hand, two major issues are faced in the development of MINV. The first and
most critical issue is the presentation and placement of queried results. This directly affects
the usability of cached data for any subsequent query. Another issue is about how a query can
be processed if its answer is partially or fully available from the cache.

In MINV, we consider a sensed area structured into a grid as shown in Figure 3(b), as opposed
to building any ad hoc routing structure that favors queries issued by some base stations at
query time. Within every grid cell denoted by cell(x, y), sensor nodes form a cluster and
one of the sensor nodes is elected as a cluster head. Upon receiving a query, the cluster
head collects sensed readings from all cluster members. Based on this setting, we can treat
a sensor network as a grid of cluster heads. To answer aggregation queries, we assume
parallel itinerary-based data aggregation as discussed in the previous section. Here, cluster
heads serve as Q-nodes, forwarding queries and computing intermediate results. Additional
to query processing, cluster heads cache every intermediate query result it receives and that it
send. For grid cell cell(x, y), we denote the received intermediate query result as init(x, y) and
the sent intermediate query result as f inal(x, y). As shown in Figure 3(b), intermediate results
derived and maintained for a SUM query (called partial sum) are accumulated and cached
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in cluster heads within queried regions. In the figure, cluster head at cell(3, 4) maintains
an initial partial sum (i.e., init(3, 4)) and a final partial sum (i.e., f inal(3, 4)) as 7 and 10,
respectively, while its local reading is 3. Based on cached partial sums, the sum of sensed
readings in all cell between cell(x, y) and cell(x′, y) in the same row y can be determined as
f inal(x′, y) − init(x, y). As in the figure, the sum of sensed readings of sensor nodes from
cell(3, 4) through cell(7, 4) can be calculated as 31− 7 = 24.

To answer another SUM query Q2 whose region is fully covered by Q1’s, Q2 can simply
traverse the border of its query region to collect cached partial sums. In Figure 3(c), Q2 sums
up init(3, 3), init(4, 3), init(5, 3) and init(6, 3), i.e., 3 + 7 + 2 + 3 = 15, from the left side of
its query region. Thereafter, it calculates the sum of f inal(6, 7), f inal(5, 3), f inal(4, 3) and
f inal(3, 7), i.e., 19 + 18 + 31 + 17 = 85 from the right side of the region, and subtracts 15 from
it. Now the final sum is 70. Notice that only cluster heads on the border of a query region
are accessed for cached partial sums and participate in query passing. By using the cache,
messages between cluster heads and their members are saved. Besides, some internal grid
cells inside a given query region are not accessed at all, further reducing energy costs.

Some queries may have their query regions partially covered by previous queries. In these
cases, those queries need to be decomposed into subqueries, which each subquery covers one
disjointed subregion. The final query result is then computed by aggregating those subquery
results. For instance, Q3’s region is partially covered by Q1’s. Thus, it is partitioned into three
subqueries Q3a, Q3b and Q3c as illustrated in Figure 3(d). While Q3a is totally answered by
the cached partial sums, Q3b and Q3c are performed as separate SUM queries. The answer of
Q3 is then obtained by adding the sums from these subqueries.

Thus far, cache information has been implicitly assumed to be available to every base stations
in the above discussion. In fact, it is not energy efficient to make cache information available
everywhere. In MINV, we consider that the cache information is only maintained with initial
and final intermediate results in queried grid cells. In this setting, cache discovery is an
issue to consider. To determine whether a cache is available for a query, we introduced a
probing stage in every query evaluation as illustrated in Figure 3(d). The main idea of this
probing stage is described as follows. When a query reaches the (nearest) corner of a query
region, it traverses to the diagonally opposite corner and checks if available cache is present
in the traversed cells on a diagonal line. If no cache is discovered, it means two possible
implications: (i) no cache is available inside the query region, or (ii) a cache if exists has a
small overlapped area with the query region, so that it is considered to be not useful to the
query. If no cache is used, the query is executed directly from the farthest corner. Otherwise,
the query is transformed into subqueries accessing the cache and deriving aggregated reading
values in remaining divided areas. Notice that this additional probing stage introduces a little
extra communication cost, compared to evaluating queries directly, which usually derives
query results at the farthest corners of query regions and sends the results from there back to
base stations. Besides, for some cases like entire query regions fully covered by a cache (e.g.,
Q2 as discussed above), probe stages can be omitted.

5. In-network contour map computation

As discussed in the previous two sections, data aggregation was used to compute a single
aggregated value representing the measurements for an entire sensed area or a query region.
For a large sensed area, certain measurements recorded by sensor nodes, e.g., temperature,
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wind speed, etc., should continuously change over the area. Data aggregation cannot
effectively represent such spatially varied measurements. Thus, some other presentations,
e.g., histogram, contour map, etc., should be used instead. Among those, contour maps are
often used to present the approximate spatial distributions of measurements. On a contour
map as illustrated in Figure 4(a), an area is divided into regions by some curves called
contour lines and every contour line is labeled with one value. Thus, on a contour map, all
measurements on a contour line labeled with v are equal to v, whereas measurements at some
points not on any contour lines can be determined through interpolation according to their
straight-line distances to adjacent contour lines.

10

20
30

10 20

(a) Contour map

base station

cluster 
head

cluster

contour line

(b) Clustered sensor network

(c) Contour line segment (d) Convex hulls in SVM

Fig. 4. Contour map computation

Very recently, the research of contour map computation in sensor networks has started to
receive attention Liu & Li (2007); Meng et al. (n.d.); Xue et al. (2006). An earlier work Xue et al.
(2006) was proposed to construct a contour map as a grid, in which each grid cell carries an
aggregated single value. This grid presentation can facilitate recognition and matching spatial
patterns of measurements with respect to some predefined patterns for event detection and
phenomenon tracking. However, the grid presentation cannot provide very precise contour
maps and it may incur a large communication cost to convey individual grid cell values,
especially when grids of very fine granularity are used.
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Motivated by the importance of contour map in sensor networks, we have developed a
Contour Map Engine (CME) to compute contour map in sensor networks Xu et al. (2008).
More precisely, CME computes contour lines, which can be represented by the coefficients
of certain curve/line equations, and thus are small to transmit. In a sensor network, every
small area is assumed to be monitored by a cluster of sensor nodes as shown in Figure 4(b).
Periodically, a cluster head collects sensed readings from all sensor nodes. Based on their
spatial locations and reported sensed readings, the cluster head determines a contour line
segment for the area and sends it to a base station. Finally, the base station connects all
received contour line segments and constructs a contour map.

Logically, a contour line with respect to a given vc divides a given area into subareas on
its two sides as in Figure 4(c). On one side, all sensor nodes provides reading values not
greater than vc, whereas all other sensor nodes on another side have their readings not smaller
than vc. Here, some sensor nodes reporting their sensed readings of vc may be distributed
around the contour line. Further, given the reading values and locations of individual sensor
nodes, partitioning an area by a contour line segment is somewhat equivalent to a binary
classification problem. In light of this, the design of CME uses support vector machine
(SVM) Christianini & Shawe-Taylor (2000), a commonly used data mining technique, to
determines contour line segments. In a cluster of sensor nodes N′, each sensor node n (∈ N′)
provides its location xn and its classified value yn, which can be either −1 or +1, according to

its own sensed reading vn and the contour line value vc. Here, yn =

{
+1 vn ≥ vc
−1 vn < vc

. Next, we

define the classification boundary (i.e., the contour line segment) as a hyperplane by a pair of
coefficients (w, b) such that wTx + b = 0. Based on this, we can estimate an expected ŷ for any
location x, which may not have any sensor node as

ŷ = sgn(wTx + b) =
{
+1 wTx + b ≥ 0
−1 wTx + b < 0

Now, the classification boundary in SVM is derived to maximize the margin between
the convex hull of the two sets, such that classification error for unknown locations can
be minimized as depicted in Figure 4(d). The distance between any location x and the

classification boundary is |w
Tx|

||w|| . The optimal classification boundary is derived by maximizing
the margin, which can be written with Largrange multipliers αn below:

max
α

W(α) = ∑
n∈N ′

αn − 1
2 ∑

n∈N ′
∑

m∈N ′
αnαmynymxT

n xm

subject to αn > 0 and ∑n∈N ′ αnyn = 0. Finally, maxα W(α) can be solved by traditional
quadratic optimization.

Thus far, our discussion has assumed a single linear contour line segment formed. To handle
non-linear classification, our CME utilizes space transformation to divide sensor nodes in a
sub-cluster, according to some sample training data. Then, contour line segments are derived
from individual sub-clusters. Interested readers can be refer the details in Xu et al. (2008).
Some other recent works (e.g., Zhou et al. (2009)) have been presented in the literature to
improve the precision of contour line segments by using more sophnicated techniques.
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6. In-network probabilistic data aggregation

Sensor reading values are inherently noisy and somewhat uncertain, because of possible
inaccurate sensing, environmental noise, hardware defeats, etc., Thus, data uncertainty is
another important issue in sensor data analysis. In the literature, uncertain data management
has been extensively studied and various models are developed to provide the semantics
of underlying data and queries Faradjian et al. (2002); Prabhakar & Cheng (2009). However,
existing works adopts centralized approaches Faradjian et al. (2002); Prabhakar & Cheng
(2009) that, however, is energy inefficient as already discussed. In-network uncertain data
aggregation appears to be new research direction.

Very recently, we have started to investigate a variety of in-network data aggregation
techniques for some common aggregation queries. In the following, we discuss one of
our recent works on probabilistic minimum value query (PMVQ) Ye, Lee, Lee, Liu & Chen
(to appear). A probability minimum value query searches for possible minimum sensed
reading value(s).

n1

n2 n3 n4

r3: {(4,0.4), (5,0.2), (6,0.4)}

r1: {(5,0.5), (6,0.5)}

r2: {(3,0.4), (4,0.6)}
r4: {(3,0.1), (4,0.1), (5,0.6), (6,0.2)}

base station

(a) An example sensor network of four sensor
nodes

Value v Pr[vmin = v]

3 0.46
4 0.54
5 0.00
6 0.00

(b) Minimum value
probability

Fig. 5. Example sensor network and minimum value probability

Figure 5(a) shows an example sensor network of four sensor nodes. Each sensor node ni
maintains a probabilistic sensed reading ri, i.e., a set of possible values {vi,1, · · · vi,|ri|}. Each
value vi,k is associated with a non-zero probability pi,k being a real sensed reading value. The
sum of all pi,k (1 ≤ k ≤ |ri|) equals 1. The sensed reading ri of each example sensor node
ni is shown next to the node. For n1, the actual sensed reading value may be either 5 with
a probability of 0.5 or 6 with the same probability. Since every sensed reading has different
possible values, it is apparently not trivial to say that 3, which is the smallest possible value
among all, is the minimum since it may not actually exist. On the other hand, 4 can be the
true minimum when 3 is not real. As such, more than one value can be the minimum value,
simultaneously. Thus, the minimum value probability for v being the minimum vmin among
all possible sensed reading values, denoted by Pr[vmin = v], is introduced and defined as
below:

Pr[vmin = v] = ∏
ni∈N

Pr[ri ≥ v]− ∏
ni∈N

Pr[ri > v]

In our example, Pr[vmin = 3] is equal to (1 · 1 · 1 · 1)− (1 · 0.6 · 1 · 0.9) = 0.46, Pr[vmin = 4] is
equal to (1 · 0.6 · 1 · 0.9)− (1 · 0 · 0.6 · 0.8) = 0.54, and both Pr[vmin = 5] and Pr[vmin = 6] are
0, as listed in Figure 5(b). Hence, the minimum value query result include 3 and 4 and their
minimum value probabilities are greater than 0.
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To evaluate PMVQ in sensor networks, we have devised two algorithms, namely, Minimum
Value Screening (MVS) algorithm and Minimum Value Aggregation (MVA) algorithm. Both of the
algorithms evaluate PMVQs in sensor networks organized as routing trees. We describe them
in the following.

MVS Algorithm. Suppose that there are two probabilistic sensed readings ri and rj from two
sensor nodes ni and nj, where ri = {vi,1, · · · vi,|ri|} and rj = {vj,1, · · · vj,|ri|}. A value vj (∈ rj) is
certainly not the minimum if ri has all its values smaller than it, i.e., ∀vi∈ri vi < vj. Then, vj can
be safely discarded. Based on this idea, we introduced a notion called MiniMax. Among
sensed readings from a subset of sensor nodes N′, a MiniMax denoted by MiniMax(N′)
represents the largest possible value, formally, MiniMax(N′) = min

ni∈N ′

{
max
vi∈ri

{vi}
}

.

n1

n2 n3 n4

r3: {(4,0.4), (5,0.2), (6,0.4)}
r4: {(3,0.1), (4,0.1), (5,0.6), (6,0.2)}

MiniMax=6

r2: {(3,0.4), (4,0.6)}
r4: {(3,0.1), (4,0.1), (5,0.6), (6,0.2)}

MiniMax=4

r3: {(3,0.4), (4,0.6)}
r3: {(4,0.4)}
r4: {(3,0.1), (4,0.1)}

(a) MVS algorithm

n1

n2 n3 n4

{(3,1.0), (4,0.9), (5,0.48), (6, 0.08)}

{(3,0.4), (4,0.6)}
{(3,1.0), (4,0.9), (5,0.8), (6,0.2)}

{(3,1.0), (4, 0.56)}

(b) MVA algorithm

Fig. 6. MVS and MVA algorithms

This MiniMax notion is used to screen out those values that should not be minimum values.
We use Figure 6(a) to illustrate how MiniMax is determined and used by MVS algorithm
to eliminate some values and their probabilities from being propagated in a routing tree.
First, n4 sends its sending reading values to n3, which in turn deduces MiniMax({n3, n4}),
i.e., 6. Thus, n3 propagates all its and n4’s sensed reading values to n1. On the other hand,
n2 submits its sensed reading values to n1. Now, n1, i.e., the base station, determines
MiniMax({n1, n2, n3, n4}), which equals 4. Thus, only n2’s {(3, 0.4), (4, 0.6)}, n3’s {(4, 0.4} and
n4’s {(3, 0.1), (4, 0.4)} are further propagated to the connected terminal. Later, it determines
the final result values according to their minimum value probabilities.

MVA Algorithm. MVA algorithm computes Pr[vmin = v] for each candidate value v
incrementally during data propagation since computation of Pr[vmin = v] is decomposable.
Recall that Pr[vmin = v] is computed based on two terms, i.e., ∏ni∈N Pr[ri ≥ v] and
∏ni∈N Pr[ri > v]. These two terms can be factorized when N is divided into x disjointed
subsets, i.e., N1, N2, · · ·Nx as follows:

∏
ni∈N

Pr[ri ≥ v] = ∏
i∈[1,x]

∏
ni∈Ni

Pr[ri ≥ v], ∏
ni∈N

Pr[ri > v] = ∏
i∈[1,x]

∏
ni∈Ni

Pr[ri > v]

Based on this, in any subtree covering some sensor nodes Ni, the root can calculate
∏ni∈Ni

Pr[ri ≥ v] and ∏ni∈Ni
Pr[ri > v] for every value v. Then, only the value and these
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two terms are sent to its parent instead of all individual sensed reading values as needed by
MVS algorithm.

Further, due to the fact that Pr[vmin = v] should be zero whenever ∏ni∈Ni
Pr[ri ≥ v] =

∏ni∈Ni
Pr[ri > v] for any non-empty Ni, it is safe to omit value v from being propagated.

In addition, for integer sensed reading values, ∏ni∈Ni
Pr[vmin > v] should be equal to

∏ni∈Ni
Pr[vmin ≥ v + 1]. Therefore, either ∏ni∈Ni

Pr[vmin > v] or ∏ni∈Ni
Pr[vmin ≥ v + 1]

can be sent to a parent node and the omitted probabilities can be deduced by the parent node.

Figure 6(b) illustrates MVA algorithm. First, n4 sends each of its value v and Pr[vmin ≥ v], i.e.,
(3, 1.0), (4, 0.9), (5, 0.8), (6, 0.2) to n3. Similarly, n2 sends (3, 1.0) and (4, 0.6) to n1. Then,
n3 calculates Pr[vmin ≥ v] for all its know values, i.e., 3, 4, 5 and 6. Next, n3 forwards
(3, 1.0), (4, 0.9), (5, 0.48) and (6, 0.8) to n1. Further, n1 computes Pr[vmin = v] as n3. However,
Pr[vmin = 5] and Pr[vmin = 6] are both 0, so 5 and 6 are filtered out. At last, n1’s Pr[vmin = 3]
and Pr[vmin = 4] are determined and they are equal to zero; and both 3 and 4 are the query
result.

Compared with MVS algorithm, MVA algorithm considerably saves communication costs
and battery energy. Through detailed cost analysis and simulation experiments as
in Ye, Lee, Lee, Liu & Chen (to appear), MVA algorithm provides costs linear to the number
of sensor nodes, while MVS incurs significantly large communication costs with respect to the
increased number of sensor nodes.

In addition to probabilistic minimum query, we have also investigated other
probabilistic queries in sensor networks, e.g., probabilistic minimum node query
(PMNQ) Ye, Lee, Lee, Liu & Chen (to appear) that searches for sensor nodes that provide
probabilistic minimum values and probabilistic top-k value query that search for k smallest
(or largest) values Ye, Lee, Lee & Liu (to appear).

7. Summary and future directions

Wireless sensor networks are important tools for many fields and applications. Meanwhile, in
sensor networks, data acquisition that collects data from individual sensor nodes for analysis
is one of the essential activities. However, because of scarce sensor node battery energy, energy
efficiency becomes a critical issue for the length of sensor network operational life. Over
those years, many research works have studied various in-network query processing as one
of the remedies to precious precious sensor node energy. By in-network query processing,
queries are disseminated and processed by sensor nodes and a small volume of (derived)
data is collected and transmitted rather than raw sensed readings over costly wireless
communication. Subject to the supported types of queries and potential optimizations, a
variety of in-network query processing techniques have been investigated and reported in
the literature.

This chapter is devoted to review representative works in in-network data aggregation, data
caching, contour map computation and probabilistic data aggregation. With respect to those
areas, we also discussed our recent research results, namely, itinerary-based data aggregation,
materialized in-network view, contour mapping engine and probabilistic minimum value
search. Itinerary-based data aggregation navigates a query among sensor nodes in a
queried region for an aggregated value. Compared with infrastructure-based approaches,
it incurs fewer rounds of messages and can easily deal with sensor node failure in the
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course of query processing. To boost the performance of multi-queries issued from different
base stations, materialized in-network views provide partial results for previous queries
to subsequent aggregation queries. It is different from existing works that cache sensed
readings independently and that cannot directly support data aggregation. Contour mapping
engine adopts data mining techniques to determine contour line segments in sensor networks,
whereas some other works relies on centralized processing or provide less accurate contour
maps. Last but not least, probabilistic minimum value search is the initial research result on
uncertain sensed data aggregation. As sensed reading values are mostly imprecise, handling
and querying probabilistic sensor data is currently an important on-going research direction.

In addition, recent research studies have shown uneven energy consumption of sensor
nodes that sensor nodes in some hotspot regions have more energy consumed than
others Perillo et al. (2005). Such hotspot problems are currently studied from the networking
side. Besides, heterogeneous sensor nodes are going to be very common in sensor networks.
Thus, we anticipate that future in-network query processing techniques should be able
to handle uneven energy consumption and to make use of super sensor nodes, while
many existing works mainly presume homogeneous sensor nodes and consider even energy
consumption.
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1. Introduction 

A lineament is a linear feature in a landscape which is an expression of an underlying 
geological structure such as a fault. Typically a lineament will comprise a fault-aligned 
valley, a series of fault or fold-aligned hills, a straight coastline or indeed a combination of 
these features. Fracture zones, shear zones and igneous intrusions such as dykes can also 
give rise to lineaments. Lineaments are often apparent in geological or topographic maps 
and can appear obvious on aerial or satellite photographs. The term 'megalineament' has 
been used to describe such features on a continental scale. The trace of the San Andreas 
Fault might be considered an example. The Trans Brazilian Lineament and the Trans-
Saharan Belt, taken together, form perhaps the longest coherent shear zone on the Earth, 
extending for about 4,000 km. Lineaments have also been identified on other planets and 
their moons. Their origins may be radically different from those of terrestrial lineaments due 
to the differing tectonic processes involved (Mostafa and Bishta, 2005; Semere and 
Ghebreab, 2006). 

Accurate geological features mapping is critical task for oil exploration, groundwater 
storage and understanding the mechanisms of environmental disasters for instance, 
earthquake, flood and landslides. The major task of geologists is documentation of temporal 
and spatial variations in the distribution and abundance of geological features over wide 
scale. In this context, the major challenge is that most of conventional geological surveying 
techniques are not able to cover a wide region of such as desert in the Earth’s surface. Quite 
clearly, to understand the mechanisms generations of geological features and their 
relationship with environmental disasters such as earthquake, landslide and flood, 
geological researchers must be able to conduct simultaneous measurements over broad 
areas of surface or subsurface of the Earth(Novak and Soulakellis 2000 and Marghany et al., 
2009a). 

This requires the collection of asset of reliable synoptic data that specify variations of critical 
geological environmental parameters over a wide region for discrete moments. In fact that 
geological features such as lineament and faults are key parameters that described the Earth 
generation or disaster mechanisms and significant indicator for oil explorations and 
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groundwater storages (Semere and Ghebreab, 2006). Fortunately, the application of remote-
sensing technology from space is providing geologists with means of acquiring these 
synoptic data sets.  

1.1 Satellite remote sensing and image processing for lineament features detection 

Lineaments are any linear features that can be picked out as lines (appearing as such or 
evident because of contrasts in terrain or ground cover on either side) in aerial or space 
imagery. If geological these are usually faults, joints, or boundaries between stratigraphic 
formations. Other causes of lineaments include roads and railroads, contrast-emphasized 
contacts between natural or man-made geographic features (e.g., fence lines), or vague "false 
alarms" caused by unknown (unspecified) factors. The human eye tends to single out both 
genuine and spurious linear features, so that some thought to be geological may, in fact, be 
of other origins (Semere and Ghebreab, 2006). 

In the early days of Landsat, perhaps the most commonly cited use of space imagery in 
Geology was to detect linear features (the terms "linear" or "photolinear" are also used 
instead of lineaments, but 'linear' is almost a slang word) that appeared as tonal 
discontinuities. Almost anything that showed as a roughly straight line in an image was 
suspected to be geological. Most of these lineaments were attributed either to faults or to 
fracture systems that were controlled by joints (fractures without relative offsets) (Wang et 
al. 1990; Vassilas et al. 2002; Robinson et al., 2007).  

Lineaments are well-known phenomena in the Earth's crust. Rocks exposed as surfaces or in 
road cuts or stream outcrops typically show innumerable fractures in different orientations, 
commonly spaced fractions of a meter to a few meters apart. These lineaments tend to 
disappear locally as individual structures, but fracture trends persist. The orientations are 
often systematic meaning, that in a region, joint planes may lie in spatial positions having 
several limited directions relative to north and to horizontal (Mostafa and Bishta, 2005). 
Where continuous subsurface fracture planes that extend over large distances and intersect 
the land surface produce linear traces (lineaments). A linear feature in general can show up 
in an aerial photo or a space images as discontinuity that is either darker (lighter in the 
image) in the middle and lighter (darker in the images) on both sides; or, is lighter on one 
side and darker on the other side. Obviously, some of these features are not geological. 
Instead, these could be fence lines between crop fields, roads, or variations in land use. 
Others may be geo-topographical, such as ridge crests, set off by shadowing. But those that 
are structural (joints and faults) are visible in several ways (Semere and Ghebreab, 2006; 
Zaineldeen 2011).  

Lineament commonly are opened up and enlarged by erosion. Some may even become 
small valleys. Being zones of weak structure, they may be scoured out by glacial action and 
then filled by water to become elongated lakes (the Great Lakes are the prime example). 
Ground water may invade and gouge the fragmented rock or seep into the joints, causing 
periodic dampness that we can detect optically, thermally, or by radar. Vegetation can then 
develop in this moisture-rich soil, so that at certain times of year linear features are 
enhanced. We can detect all of these conditions in aerial or space imagery (Majumdar and 
Bhattacharya 1998; Katsuaki et al., 1995; Walsh 2000; Mostafa and Bishta, 2005; Semere and 
Ghebreab, 2006). 
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Consequently, optical remote sensing techniques over more than three decades have 
shown a great promise for mapping geological feature variations over wide scale (Mostafa 
and Bishta, 2005; Semere and Ghebreab, 2006; Marghany et al., 2009a). In referring to 
Katsuaki et al., (1995); Walsh (2000) lineament information extractions in satellite images 
can be divided broadly into three categories: (i) lineament enhancement and lineament 
extraction for characterization of geologic structure;(ii) image classification to perform 
geologic mapping or to locate spectrally anomalous zones attributable to mineralization 
(Mostafa et al., 1995; Süzen and Toprak 1998); and (iii) superposition of satellite images 
and multiple data such as geological, geochemical, and geophysical data in a geographical 
information system (Novak and Soulakellis 2000; Semere and Ghebreab 2006). 
Furthermore, remote sensing data assimilation in real time could be a bulk tool for 
geological features extraction and mapping. In this context, several investigations 
currently underway on the assimilation of both passive and active remotely sensed data 
into automatic detection of significant geological features i.e., lineament, curvilinear and 
fault.  

Image processing tools have used for lineament feature detections are: (i) image 
enhancement techniques (Mah et al. 1995; Chang et al. 1998; Walsh 2000;Marghany et al., 
2009b); and (ii) edge detection and segmentation (Wang et al. 1990; Vassilas et al. 2002; 
Mostafa and Bishta 2005). In practice, researchers have preferred to use the spatial domain 
filtering techniques in order to get ride of the artificial lineaments and to verify disjoint 
lineament pixels in satellite data (Süzen and Toprak 1998). Further, Leech et al., (2003) 
implemented the band-rationing, linear and Gaussian nonlinear stretching enhancement 
techniques to determine lineament populations. Won-In and Charusiri (2003) found that 
High Pass Filter enhancement technique provides accurate geological map. In fact, the High 
Pass filter selectively enhances the small scale features of an image (high frequency spatial 
components) while maintaining the larger-scale features (low frequency components) that 
constitute most of the information in the image.  

Majumdar and Bhattacharya (1998) and Vassilas et al. (2002), respectively have used Haar 
and Hough transforms as edge detection algorithms for lineament detection in Landsat-
TM satellite data. Majumdar and Bhattacharya (1998) reported that Haar transform is 
proper in extraction of subtle features with finer details from satellite data. Vassilas et al. 
(2002), however, reported that Hough transform is appropriate for fault feature mapping. 
Consequently, Laplacian, Sobel, and Canny are the major algorithms for lineament feature 
detections in remotely sensed data (Mostafa and Bishta 2005; Semere and Ghebreab, 2006; 
Marghany 2005).Recently Marghany and Mazlan (2010) proposed a new approach for 
automatic detection of lineament features from RADARSAT-1 SAR data. This approach is 
based on modification of Lee adaptive algorithm using convolution of Gaussian 
algorithm.  

1.2 Problems for geological features extraction from remote sensing data 

Geological studies are requiring standard methods and procedures to acquire precisely 
information. However, traditional methods might be difficult to use due to highly earth 
complex topography. Regarding the previous prospective, the advantage of satellite remote 
sensing in its application to geology is the wide coverage over the area of interest, where 
much accurate and useful information such as structural patterns and spectral features can 
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be extracted from the imagery. Yet, abundance of geological features are not be fully 
understood. Lineaments are considered the bulk geological features which are still unclear 
in spite of they are useful for geological analysis in oil exploration. In this sense, the 
lineament extraction is very important for the application of remote sensing to geology. 
However the real meaning of lineament is still vague. Lineaments should be discriminated 
from other line features that are not due to geological structures. In this context, the 
lineament extraction should be carefully interpreted by geologists. 

1.3 Hypothesis of study 

Concerning with above prospective, we address the question of uncertainties impact on 
modelling Digital Elevation Model (DEM) for 3-D lineament visualization from 
multispectral satellite data without needing to include digital elevation data. This is 
demonstrated with LANDSAT-ETM satellite data using fuzzy B-spline algorithm 
(Marghany and Mazlan 2005 and Marghany et al., 2007). Three hypotheses are examined:  

 lineaments can be reconstructed in Three Dimensional (3-D) visualization;  
 Canny algorithm can be used as semiautomatic tool to discriminate between lineaments 

and surrounding geological features in optical remotely sensed satellite data; and 
 uncertainties of DEM model can be solved using Fuzzy B-spline algorithm to map 

spatial lineament variations in 3-D. 

2. Study area 

The study area is located in Sharjah Emirates about 70 Km fromSharjah city. It is considered 
in the alluvium plain for central area of UAE and covers an Area of 1800 Km2 (60 km x 30 
km) within boundaries of latitudes 24º 12′N to 24º.23'N and longitudes of 55º.51'E to 55º 59' 
E (Fig. 1). The northern part of UAE is formed of the Oman mountains and the marginal 
hills extends from the base of the mountains and (alluvium plain) to the south western sand 
dunes (Figs 2 and 3) such features can be seen clearly in Wadi Bani Awf, Western Hajar 
(Fig.2). Land geomorphology is consisted of structural form, fluvial, and Aeolian 
forms(sand dunes). According to Maged et al., (2009) structural form is broad of the Oman 
mountains and JabalFayah (Fig.4) which are folded structure due collusion of oceanic crust 
and Arabian plate (continental plate). Furthermore, the mountain is raised higher than 400 
m above sea level and exhibit parallel ridges and high–tilted beds. Many valleys are cut 
down the mountains, forming narrow clefts and there are also intermittent basins caused by 
differential erosion. In addition, the Valley bases are formed small caves. Stream channels 
have been diverted to the southwest and they deposited silt in the tongue -shaped which 
lies between the dunes. Further, Aeolian forms are extended westwards from the Bahada 
plain, where liner dunes run towards the southwest direction in parallel branching pattern 
(Fig. 3) with relative heights of 50 meters. Nevertheless, the heights are decreased towards 
the southeast due to a decrease in sand supply and erosion caused by water occasionally 
flowing from the Oman mountains. Moreover, some of the linear dunes are quite complex 
due to the development of rows of star dunes along the top of their axes. Additionally, inter 
dunes areas are covered by fluvial material which are laid down in the playas formed at the 
margins of the Bahadas plain near the coastline. The dunes changes their forms to low flats 
of marine origin and their components are also dominated by bioclastics and quartz sands 
(Marghany and Mazlan 2010). 
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Fig. 1. Location of Study area. 

 

 
 

Fig. 2. Geologic fault feature along Oman mountain. 
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Fig. 3. Dune forms on Oman mountain base. 

 

 
Fig. 4. Sand dune feature along Jabal Fayah. 

3. Data sets 

In study, there are two sort of data have been used. First is satellite data which is involved 
LANDSAT Enhanced Thematic Mapper (ETM) image with pixel resolution of 30 m which is 
acquired on 14:07, 18 December 2004 (Fig.5). It covers area of 24° 23′ N, 55° 52’ E to 24° 17′ N 
and 55° 59′ E (Fig.5). Landsat sensors have a moderate spatial-resolution. It is in a polar, sun-
synchronous orbit, meaning it scans across the entire earth's surface. With an altitude of 705 
kilometres +/- 5 kilometres, it takes 232 orbits, or 16 days, to do so. The satellite weighs 
1973 kg, is 4.04 m long, and 2.74 m in diameter. Unlike its predecessors, Landsat 7 has a 
solid state memory of 378 gigabits (roughly 100 images). The main instrument on board 
Landsat 7 is the Enhanced Thematic Mapper Plus (ETM+). 
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The main features of LANDSAT-7 (Robinson et al., 2007) are 

 A panchromatic band with 15 m (49 ft) spatial resolution (band 8). 
 Visible (reflected light) bands in the spectrum of blue, green, red, near-infrared (NIR), 

and mid-infrared (MIR) with 30 m (98 ft) spatial resolution (bands 1-5, 7). 
 A thermal infrared channel with 60 m spatial resolution (band 6). 
 Full aperture, 5% absolute radiometric calibration. 
 

                    
 

Fig. 5. LANDSAT satellite data used in this study 

Second is ancillary data which are contained digital topographic, geological maps, well logs 
and finally ground water data. Furthermore, ancillary data such as topography map of scale 
1: 122,293 used to generate Digital Elevation Model (DEM) of selected area. Bands 1,2,3,5 
and 7 are selected to achieve the objective of this study. According to Marghany et al., (2009) 
these bands can provide accurate geological information. Finally, the Digital Elevation 
Model (DEM) is acquired from SRTM data (Fig.6). 

4. Model for 3-D lineament visualization 

The procedures have been used to extract lineaments and drainage pattern from LANDSAT 
ETM satellite image were involved image enhancement contrast, stretching and linear 
enhancement which were applied to acquire an excellent visualization. In addition, 
automatic detection algorithm Canny are performed to acquire excellent accuracy of 
lineament extraction (Mostafa et al., 1995). Two procedures have involved to extract 
lineaments from LANDSAT ETM data. First is automatic detection by using automatic edge 
detection algorithm of Canny algorithm. Prior to implementations of automatic edge 
detection processing, LANDSAT ETM data are enhanced and then geometrically corrected. 
Second is implementing fuzzy B-spline was adopted from Marghany et al., (2010) to 
reconstruct 3D geologic mapping visualization from LANDSAT ETM satellite data. 
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Fig. 6. Topographic map of United Arab Emirates that created with GMT from SRTM data 

4.1 Histogram equalization 

Following Marghany et al., (2009) histogram equalization is applied to LANDSAT TM 
image to obtain high quality image visualization. An image histogram is an analytic tool 
used to measure the amplitude distribution of pixels within an image. For example, a 
histogram can be used to provide a count of the number of pixels at amplitude 0, the 
number at amplitude 1, and so on. By analyzing the distribution of pixel amplitudes, you 
can gain some information about the visual appearance of an image. A high-contrast image 
contains a wide distribution of pixel counts covering the entire amplitude range. A low 
contrast image has most of the pixel amplitudes congregated in a relatively narrow range 
(Süzen et al., 1998 and Gonzalez and Woods 1992). 

4.2 Canny algorithm 

According to Canny ( 1986),the Canny edge detector uses a filter based on the first 
derivative of a Gaussian, because it is susceptible to noise present on raw unprocessed 
image data, so to begin with, the raw image is convolved with a Gaussian filter. The result is 
a slightly blurred version of the original which is not affected by a single noisy pixel to any 
significant degree. According to Deriche (1987) the edge detection operator (Roberts, 
Prewitt, Sobel for example) returns a value for the first derivative in the horizontal direction 
(Gy) and the vertical direction (Gx). From this the edge gradient and direction (Ө) can be 
determined: 

 2 2 x yG G G  (1) 

In fact, equation 1 is used to estimate the gradient magnitude (edge strength) at each point 
can be found to find the edge strength by taking the gradient of the image. Typically, an 
approximate magnitude is computed using 
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  x yG G G  (2) 

Equation 2 is faster to be computed. 
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The direction of the edge θ is computed using the gradient in the Gx and Gy directions. 
However, an error will be generated when sum X is equal to zero. So in the code, there has 
to be a restriction set whenever this takes place. Whenever the gradient (G) in the x direction 
is equal to zero, the edge direction has to be equal to 90 degrees or 0 degrees, depending on 
what the value of the gradient in the y-direction is equal to. If Gy has a value of zero, the 
edge direction will equal 0 degrees. Otherwise the edge direction will equal 90 degrees 
(Deriche 1987).  

According to Gonzalez and Woods (1992),three criteria are used to improve edge detection. 
The first and most obvious is low error rate. It is important that edges occurring in images 
should not be missed and that there be NO responses to non-edges. The second criterion is 
that the edge points be well localized. In other words, the distance between the edge pixels 
as found by the detector and the actual edge is to be at a minimum. A third criterion is to 
have only one response to a single edge. This was implemented because the first 2 were not 
substantial enough to completely eliminate the possibility of multiple responses to an edge 
(Canny 1986). 

4.3 The fuzzy B-splines algorithm 

The fuzzy B-splines (FBS) are introduced allowing fuzzy numbers instead of intervals in 
the definition of the B-splines. Typically, in computer graphics, two objective quality 
definitions for fuzzy B-splines are used: triangle-based criteria and edge-based criteria 
(Marghany et al., 2009). A fuzzy number is defined using interval analysis. There are two 
basic notions that we combine together: confidence interval and presumption level. A 
confidence interval is a real values interval which provides the sharpest enclosing range 
for current gradient values.  

An assumption   -level is an estimated truth value in the [0, 1] interval on our knowledge 
level of the topography elevation gradients (Anile 1997). The 0 value corresponds to 
minimum knowledge of topography elevation gradients, and 1 to the maximum topography 
elevation gradients. A fuzzy number is then prearranged in the confidence interval set, each 
one related to an assumption level    [0, 1].  Moreover, the following must hold for each 
pair of confidence intervals which define a number: '' d d    .  

Let us consider a function ':f d d , of N fuzzy variables 1 2, ,...., nd d d . Where nd  are the 
global minimum and maximum values topography elevation gradients along the space.  
Based on the spatial variation of the topography elevation gradients, the fuzzy B-spline 
algorithm is used to compute the function f  (Marghany et al., 2010). Follow Marghany et al., 
(2010)  d(i,j) is the topography elevation value at location i,j in the region D where i is the 
horizontal and j is the vertical coordinates of a grid of m times n rectangular cells. Let N be 
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the set of eight neighbouring cells. The input variables of the fuzzy are the amplitude 
differences of water depth d  defined by (Anile et al. 1997): 

 0 , 1,........, 4N id d d N     (4) 

where the id , N=1, 4 values are the neighbouring cells of the actually processed cell d0 along 
the horizontal coordinate i. To estimate the fuzzy number of topography elevation  dj which 
is located along the vertical coordinate j, we estimated the membership function values   
and ' of the fuzzy variables id  and jd , respectively by the following equations were 
described by Rövid et al. (2004) 

   max min ( ) : ; 1...., 4pl i i im d d N N      (5) 

   ' max min ( ) : ; 1....,4LNl i i im d d N N      (6) 

Equations 5 and 6 represent topography elevation  in 2-D, in order to reconstruct fuzzy 
values of topography elevation in 3-D, then fuzzy number of digital elevation in z 
coordinate is estimated by the following equation proposed by Russo (1998) and Marghany 
et al., (2010), 

 1, , , 1 ,{ , }z LA i j i j LA i j i jd MAX m d d m d d       (7) 

where zd  fuzzy set of digital elevation values in z coordinate which is function of i and j 
coordinates i.e. ( , )z i jd F d d . Fuzzy number OF  for water depth in i,j and z coordinates then 
can be given by 

 
0 0

{min( ,..........., ),max( ,..........., )}O z z z zF d d d d
 

  (8) 

where  =1, 2, 3, 4, 

The fuzzy number of water depth OF  then is defined by B-spline in order to reconstruct 3-D 
of digital elevation. In doing so, B-spline functions including the knot positions, and fuzzy 
set of control points are constructed. The requirements for B-spline surface are set of control 
points, set of weights and three sets of knot vectors and are parameterized in the p and q 
directions.  

Following Marghany et al., (2009b) and Marghany et al., (2010), a fuzzy number is defined 
whose range is given by the minimum and maximum values of digital elevation along each 
kernel window size. Furthermore, the identification of a fuzzy number is acquired to 
summarize the estimated digital elevation data in a cell and it is characterized by a suitable 
membership function. The choice of the most appropriate membership is based on 
triangular numbers which are identified by minimum, maximum, and mean values of 
digital elevation estimated. Furthermore, the membership support is the range of digital 
elevation data in the cell and whose vertex is the median value of digital elevation data 
(Anile et al. 1997). 
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5. Three-dimensional lineament visualization 

5.1 3-D lineament visulization using classical method 

Fig. 4 shows the Digital Elevation Model is derived from SRTM data that covered area of 
approximately 11 km2. Clearly, DEM varies between 319-929 m and maximum elevation 
value of 929 m is found in northeast direction of UAE. Therefore, SRTM has promised to 
produce DEM with root mean square error of 16 m (Nikolakopoulos et al., 2006). In 
addition, Oman mountain is dominated by highest DEM value of 929 m which is shown 
parallel to coastal zone of Arabian Gulf. The DEM is dominated by spatial variation of the 
topography features such as ridges, sand dunes and steep slopes. As the steep slopes are 
clearly seen within DEM of 400 m (Fig,7). According to Zaineldeen (2011), the rocks are well 
bedded massive limestones with some replacement chert band sand nodules. The limestone 
has been locally dolomitized. 

 
Fig. 7. DEM for study area. 

Fig. 8 shows the supervised classification map of LANDSAT ETM satellite data. It clear that 
the vegetation covers are located in highest elevation as compiled with Fig. 7 while 
highlands are located in lowest elevation with DEM value of 660 m. The supervised  
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Fig. 8. Supervised map results. 

classification shows a great fault moves through a highland area. According to Robinson et 
al., (2007) , TM bands 7 (2.08–2.35 mm),4 (0.76–0.90 mm),and 2(0.50–0.60 mm)are 
appropriate for geological features detection because they have low-correlation and produce 
high-contrast. In this regard, band 2 is useful for rock discrimination, band 4 for land/water 
contrasts, and band 7 for discrimination of mineral and rock types. Further, TM bands 7 are 
also able to imagined crest dunes parallel with tens kilometres of length. This feature is clear 
in northern part of Fig.8 and located in high land of DEM of 900 m. This finding confirm the 
study of Robinson et al., (2007). 

Fig. 9 shows the output result mapping of lineaments using composite of bands 3,4 , 5 and 7 
in LANDSAT TM satellite data. The appearance of lineaments in LANDSAT TM satellite 
image are clearly distinguished. In addition, area adjacent to the mountainous from 
Manamh (northward), Flili village in the (southward) has high density of lineaments due to 
the westward compressive force between the oceanic crust and Arabian plate, such as 
fractures and faults and drainage pattern that running in the buried fault plains (filled 
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weathered materials coming from Oman mountains) (Fig. 9). The lineaments are associated 
with fractures and faults which are located in northern part of Fig. 9. In fact that Canny 
algorithm first is smoothed the image to eliminate and noise. It then finds the image 
gradient to highlight regions with high spatial derivatives. The algorithm then tracks along 
these regions and suppresses any pixel that is not at the maximum (non-maximum 
suppression). The gradient array is further reduced by hysteresis. According to Deriche 
(1987), hysteresis is used to track along the remaining pixels that have not been suppressed. 
Hysteresis uses two thresholds and if the magnitude is below the first threshold, it is set to 
zero (made a non-edge).  

 
Fig. 9. Lineament mapping using Canny algorithm. 

Further, If the magnitude is above the high threshold, it is made an edge. And if the 
magnitude is between the 2 thresholds, then it is set to zero unless there is a path from 
this pixel to a pixel with a gradient above threshold. In order to implement the canny 
edge detector algorithm, a series of steps must be followed. The first step is to filter out 
any noise in the original image before trying to locate and detect any edges. In fact, the 
Gaussian filter can be computed using a simple mask, it is used exclusively in the Canny 
algorithm. Once a suitable mask has been calculated, the Gaussian smoothing can be 
performed using standard convolution methods. According to Marghany et al., (2009), 
LANDSAT TM data can be used to map geological features such as lineaments and faults. 
This could be contributed to that composite of bands 3,4,5 able and 7 in LANDSAT TM 
satellite data are appropriate for mapping of geologic structures (Katsuaki and Ohmi 
1995; Novak and Soulakellis 2000; Marghany et al., 2009). Consequently, the ground 
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resolution cell size of LANDSAT TM data is about 30 m. This confirms the study of 
Robinson et al., (2007). 

Fig. 10 shows the lineament distribution with 3D map reconstruction using SRTM and 
LANDSAT TM bands 3,4,5, and 7. It is clear that the 3D visualization discriminates between 
different geological features. It can be noticed the faults, lineament and infrastructures 
clearly (Figure 10b). This study agrees with Marghany et al., (2009). It can be confirmed that 
the lineament are associated with faults and it also obvious that heavy capacity of lineament 
occurrences within the Oman mountain. This type of lineament can be named as mountain 
lineament.  

 
Fig. 10. (a) 3D image reconstruction using SRTM data and (b) lineament distribution over 3D 
image. 

According to Robinson et al., (2007) and Marghany et al., (2009) the mountain is raised 
higher than 400 m above sea level and exhibit parallel ridges and high-tilted beds. Many 
valleys are cut down the mountains, forming narrow clefts and small caves. The fluvial 
forms are consisted of streams channels which are flowed from Oman mountains have and 
spread out into several braided channels at the base of the mountains from the Bahada and 
Playa plains (Figure 11). Stream channels have been diverted to the southwest and they 
deposited silt in the tongue -shaped which lies between the dunes.  

Further, Aeolian forms are extended westwards from the Bahada plain, where liner dunes 
run towards the southwest direction in parallel branching pattern (Fig. 11) with relative 
heights of 50 meters. Nevertheless, the heights are decreased towards the southeast due to a  
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Fig. 11. 3D image and lineament distribution from Canny algorithm. 

decrease in sand supply and erosion caused by water occasionally flowing from the Oman 
mountains. Moreover, some of the linear dunes are quite complex due to the development 
of rows of star dunes along the top of their axes. Additionally, inter dunes areas are covered 
by fluvial material which are laid down in the playas formed at the margins of the Bahadas 
plain near the coastline. The dunes changes their forms to low flats of marine origin and 
their components are also dominated by bioclastics and quartz sands (Marghany et al., 2009 
and Zaineldeen 2011). 

5.2 3-D lineament visulization using fuzzy B-spline technique 

Fig. 12 shows the result acquires by using fuzzy B-spline algorithm. It is clear that the 3D 
visualization discriminates between different geological features. It can be noticed the faults, 
lineament and infrastructures clearly (Fig. 12c). This is due to the fact that the fuzzy B-
splines considered as deterministic algorithms which are described here optimize a 
triangulation only locally between two different points (Fuchs et al., 1977; Anile et al., 
1995;Anile, 1997; Marghany et al., 2010; Marghany and Mazlan 2011). This corresponds to 
the feature of deterministic strategies of finding only sub-optimal solutions usually. The 
visualization of geological feature is sharp with the LANDSAT TM satellite image due to the 
fact that each operation on a fuzzy number becomes a sequence of corresponding operations 
on the respective µ-levels and the multiple occurrences of the same fuzzy parameters 
evaluated as a result of the function on fuzzy variables Keppel 1975; Anile et al., 1995; 
Magrghany and Mazlan 2011). 

It is very easy to distinguish between smooth and jagged features. Typically, in computer 
graphics, two objective quality definitions for fuzzy B-splines were used: triangle-based 
criteria and edge-based criteria. Triangle-based criteria follow the rule of maximization or 
minimization, respectively, of the angles of each triangle (Fuchs et al., 1977). The so-called 
max-min angle criterion prefers short triangles with obtuse angles. This finding confirms 
those of Keppel 1975 and Anile 1997. Table 1 confirms the accurate of fuzzy B-spline to 
eliminate uncertainties of 3-D visualization. Consequently, the fuzzy B-spline shows higher 
performance with standard error of mean of 0.12 and bias of 0.23 than SRTM technique. In  
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(a) 

 
(b) 

 
(c) 

Fig. 12. (a): LANDSAT ETM satellite data and (b): 3D fuzzy B-spline visualization and (c): 
Zoom area of lineaments and fault 

fact, Fuzzy B-splines provide both a continuous approximating model of the experimental 
data and a possibilistic description of the uncertainty in such DEM. Approximation with 
FBS provides a fast way to obtain qualitatively reliable descriptions whenever the 
introduction of a precise probabilistic DEM is too costly or impossible. In this study, fuzzy 
B-spline algorithm produced 3-D lineament visulization without need to ground geological 
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survey. In fact fuzzy B-spline algorithm is able to keep track of uncertainty and provide tool 
for representing spatially clustered geological features. This advantage of fuzzy B-spline is 
not provided in Canny algorithm and DEM produced by SRTM data.  
 

Statistical Parameters 
3-D Visualization 

Fuzzy B-spline SRTM 

Bias 0.23 0.63 

Standard error of the mean 0.12 0.56 

Table 1. Statistical Comparison of 3-D computer visualization using Fuzzy-B-spline and 
SRTM. 

6. Conclusions 

This study has demonstrated a method to map lineament distributions in United Arab 
Emirates (UAE) using LANDSAT-TM satellite data. In doing so, 3D image reconstruction is 
produced using SRTM data. Then Canny algorithm is implemented for lineament automatic 
detection from LANDSAT TM bands of 3,4,5,and 7. The results show that the maximum 
DEM value of 929 m is found in the northeast direction of UAE. The vegetation covers are 
dominated feature in the highest DEM while highlands are located in lowest elevation of 
660 m. In addition, Canny algorithm has detected automatically lineament and fracture 
features. Therefore, 3D visualization is discriminated between lineament and fault features. 
The results show that the highest spatial distribution of lineaments are appeared in Oman 
mountain which are named by lineament mountain. In conclusion, the integration between 
Digital Elevation Model (DEM) and Canny algorithm can be used as geomatic tool for 
lineament automatic detection in 3D visualization. Further, a fuzzy B-spline algorithm is 
used to reconstruct Three Dimensional (3D) visualization of geologic feature spatial 
variations with standard error of mean of 0.12 and bias of 0.23. In conclusion, combination 
between Canny algorithm and DEM generated by using fuzzy B-spline could be used as an 
excellent tool for geologic mapping.  
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COMS, the New Eyes in the Sky for 
Geostationary Remote Sensing 

Han-Dol Kim et al. 
Korea Aerospace Research Institute (KARI) 

Republic of Korea 

1. Introduction 

With its successful launch on June 26, 2010, the Communication, Ocean, and Meteorological 
Satellite (COMS) is currently in the early stage of normal operation for the service to the end 
users, exhibiting exciting and fruitful performances including the image data from the two 
on-board optical sensors, Meteorological Imager (MI) and Geostationary Ocean Color 
Imager (GOCI), and the experimental Ka-band telecommunication. This chapter gives a 
comprehensive overview of COMS in terms of its key design characteristics, current status 
of in-orbit performances and its implied role in the geostationary remote sensing, and 
discusses its potential application and contribution to the world remote sensing community.  

2. COMS: Description and overview 

COMS is a multi-purpose, multi-mission, geostationary satellite. It has been designed and 
developed by the joint effort of EADS Astrium and Korea Aerospace Research Institute 
(KARI), and launched by Ariane 5 ECA L552 V195 of Arianespace on 21:41 (UTC) of June 26 
2010. COMS is the first South Korean multi-mission geostationary satellite, and also the first 
3-axis stabilized geostationary satellite ever built in Europe for optical remote sensing.  

The In Orbit Testing (IOT) of COMS was completed early part of 2011, and since then the 
satellite has been being successfully operated by KARI for the benefits of all 3 end users: the 
Korean Meteorological Administration (KMA), the Korea Ocean Research & Development 
Institute (KORDI) and the Electronics & Telecommunications Research Institute (ETRI).  

2.1 COMS overview 

COMS is a single geostationary satellite fulfilling 3 rather conflicting missions as follows: 

- A meteorological mission by MI 
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- An ocean imager mission by GOCI 
- An experimental Ka band telecommunication mission 

MI is the common imager with the flight heritage from the later series of GOES and MTSAT 
satellites, and GOCI is the world’ 1st ocean color imager to be operated in the geostationary 
orbit which has been newly developed for the COMS mission. The spacecraft launch mass is 
2460 kg and the size is 2.6 m x 1.8 m x 2.8 m in stowed configuration. The orbital location is 
128.2°E, mission lifetime is 7.7 years and design lifetime is 10 years. 

Fig. 1 shows COMS both in stowed and deployed configurations, where the MI and GOCI 
optical instruments located on the earth looking satellite floor can be found with both 
MODCS (Meteorology and Ocean Data Communication System) antenna and the two small 
telecommunication Ka band reflectors, along with the COMS flight model during AIT. 

  

  
Fig. 1. COMS, in stowed and deployed configurations and the flight model during the final 
stage of AIT (Assembly, Integration and Test) at KARI  

The following subsections give a succinct description of COMS system, in terms of its key 
design characteristics and its unique and salient features on the platform, with a little touch 
on its development history and with a certain emphasized details on GOCI, along with a 
brief description on the ground segment. 
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2.2 Description of COMS system 

The COMS system consists of the space segment, which is made up of a COMS spacecraft 
bus with the three payloads, and the various systems of the ground segment, as depicted in 
the Fig. 2.  

Images captured by MI and GOCI are first interleaved on board and downloaded in L band. 
Data are separated on ground; MI data are processed (radiometrically calibrated and 
geometrically corrected) and uploaded again in S-band to the satellite in two formats, LRIT 
(Low Rate Information Transmission) and HRIT (High Rate Information Transmission). 
These two new streams of data are again interleaved with the raw data and downloaded in 
L-band to end users by the satellite which acts as a specific data relay.  

 
Fig. 2. COMS system overview 

2.2.1 COMS spacecraft bus 

The COMS spacecraft bus is based on EADS Astrium‘s Eurostar-3000 bus design. The 
satellite features a box-shaped structure, built around the two bi-propellant tanks. Imaging 
instruments and MODCS antennae are located on the Earth floor (Fig. 1). A single-winged 
solar array with 10.6 m2 of GaAs cells is implemented on the south side, so as to keep the 
north wall in full view of cold space for the MI radiant cooler. The deployable Ka-band 
antenna reflectors are accommodated on the east and west walls.  

The COMS spacecraft is 3-axis stabilized. Attitude sensing in normal mode is based on a 
hybridized Earth sensors (IRESs; Infra-Red Earth Sensors) and gyros (FOGs; Fiber Optic 
Gyros) concept; in addition, sun sensors are being used during 3-axis transfer operations. 5 
reaction wheels (RDRs) and 7 thrusters (10 N) serve as actuators. Thrusters are also used for 
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wheel off-loading and for orbit control. The apogee firing boosts are provided by a 440 N 
liquid apogee engine.  

The key feature of COMS AOCS (Attitude and Orbit Control Subsystem) is the addition of 
EADS Astrium’s newly developed FOGs, Astrix 120 HR. The FOG allowed the requested 
performance boost in terms of pointing knowledge and stability to already excellent 
Eurostar-3000 AOCS design and its performances. 

The EPS (Electric Power Subsystem) makes use of GaAs solar cells and Li-ion batteries. A 
regulated power bus (50 V) distributes power to the various onboard applications through 
the power shunt regulator. During orbital eclipses, energy is provided by a 154 Ah Li-ion 
battery. The power at EOL (End Of Life) shall be greater than 2.5 KW. 

 
Fig. 3. Block diagram of COMS spacecraft functional architecture 

The heart of the avionics architecture is implemented in hot redundant spacecraft computer 
units, based on 1750 standard processors with Ada object-oriented real-time software. A 
redundant MIL-STD-1553-B data bus serves as the main data path between the onboard 
units. Interface units are being used for the serial links, namely the actuator drive electronics 
with the bus units (including thermal control), the modular payload interface unit with the 
Ka-band communication payload, and the MI interface unit with the MI instrument.  

A specific module (MODCS; Meteorology and Ocean Data Communication System) was 
developed for handling MI and GOCI images. It collects and transmits raw MI and GOCI 
data in L-band. HRIT/LRIT (High- and Low-Rate Information Transmission) formats are 
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generated on the ground from the MI raw data, and uploaded to the satellite in S-Band and 
relayed in L-band to MI end users. 

S-band is also used for satellite Telemetry and Telecommands. 

2.2.2 MI 

MI is a two-axis scan imaging radiometer from ITT. It senses basically the radiant and solar 
reflected energies from the Earth simultaneously and provides imagery and radiometric 
information of the Earth’s surface and cloud cover. It features 1 visible (VIS) channel and 4 
infra-red (IR) channels as a scanning radiometer. The design of it is derived from the GOES 
imager for COMS program.  

 

No. Channel Wavelength(μm) IFOV(μrad) GSD(Km) Dynamic Range 

1 VIS 0.55~0.80 28 1 0~115% albedo 

2 SWIR 3.50~4.00 112 4 110K~350K 

3 WV 6.50~7.00 112 4 110K~330K 

4 WIN1 10.3~11.3 112 4 110K~330K 

5 WIN2 11.5~12.5 112 4 110K~330K 

Table 1. Spectral channel characteristics of MI as requirement 

MI consists of three modules; sensor module, electronics module, and power supply module. 
The sensor module contains a scan assembly, a telescope and detectors, and is mounted on 
spacecraft with the shields, louver and cooler for thermal control. The electronics module 
which has some redundant circuits performs command, control, signal processing and 
telemetry conditioning function. The power supply module contains power converters, fuses 
and power control for interfacing with the spacecraft power system with redundancy.  

  
Fig. 4. COMS MI sensor module, in design and flight model configurations 

The servo-driven, two-axis gimbaled scan mirror of the MI reflects scene energy reflected 
and emitted from the Earth into the telescope of the MI as shown in the Fig. 5. The mirror 
scans the Earth with a bi-directional raster scan, which sweeps an 8 km swath along East-
West (EW) direction and steps every 8 km along North-South (NS) direction. The area of the 
observed scene depends on the 2-dimensional angular range of the scan mirror movement. 
The scene radiance, collected by the scan mirror and the telescope, is separated into each 
spectral channel by dichroic beam splitters, which allow the geometrically-corresponding 
detectors of each channel to look at the same position on the Earth. Each detector converts  
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Fig. 5. MI Scan Frame and Schematic design of Optics (BS:Beam Splitter, FM:Folding Mirror, 
FD: Full Disk, APNH:Asia and Pacific in Northern Hemisphere, ENH:Extended Northern 
Hemisphere, LSH:Limited Southern Hemisphere, LA: Local Area) 

the scene radiance into an electrical signal. The five channel detectors of the MI are divided 
into two sides, which are electrically redundant each other. Only one side operates at one 
time by choosing side 1 or side 2 electronics. The visible silicon detector array contains eight 
detector elements which are active simultaneously in the either side mode. Each visible 
detector element produces the instantaneous field of view (IFOV) of 28 rad on a side, 
which corresponds to 1km on the surface of the Earth at the spacecraft’s suborbital point. 
Each IR channel has two detector elements which are active simultaneously in the either 
side mode. The SWIR channel employs InSb detectors and the other IR channels use 
HgCdTe detectors. Each IR detector element produces the IFOV of 112 rad on a side, which 
corresponds to 4km on the surface of the Earth at the spacecraft’s suborbital point. The 8 
visible detector elements and 2 IR detector elements produce the swath width (8 km) of one 
EW scan line respectively.  

The passive radiant cooler with thermostatically controlled heater maintains the infrared 
detectors at one of the three, command-selectable, cryogenic temperatures. Visible light 
detectors are at the instrument ambient temperature. Preamplifiers convert low level 
outputs of all detectors into higher level, low impedance signals as the inputs to the 
electronics module. MI carries an on-board blackbody target inside of the sensor module for 
the in-orbit radiometric calibration of the IR channels. The blackbody target is located at the 
opposite direction to the nadir, so that the scan mirror is rotated 180 degrees in the NS 
direction from the imaging mode for the blackbody calibration. The full aperture blackbody 
calibration can be performed by the scan mirror’s pointing at the on-board blackbody target 
via ground command or automatically. The albedo monitor is mounted in the sensor 
module to measure the in-orbit response change of the visible channel over the mission life. 
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It uses sunlight through a small aperture as a source. In addition to the radiometric 
calibration, an electrical calibration is provided to check the stability and the linearity of the 
output data of the MI signal processing electronics by using an internal reference signal. MI 
has the star sensing capability in the visible channel, which can be used for image 
navigation and registration purposes. 

MI has three observation modes: global, regional and local modes, which are specialized for 
the meteorological missions. The global mode is for taking images of the Full Disk (FD) of 
the Earth. The regional observation mode is for taking images of the Asia and Pacific in 
North Hemisphere (APNH), the Extended North Hemisphere (ENH), and Limited Southern 
Hemisphere (LSH). The image of Limited Full Disk (LFD) area can be obtained by the 
combination of the images of ENH and LSH. The local observation mode is activated for 
Local Area (LA) coverage in the FD. The user interest of the MI observation areas for FD, 
APNH, ENH, LSH, LFD, and LA is shown in the Fig. 5. 

2.2.3 GOCI 

Geostationary Ocean Color Imager (GOCI), the first Ocean Colour Imager to operate from 
geostationary orbit, is designed to provide multi-spectral data to detect, monitor, quantify, 
and predict short term changes of coastal ocean environment for marine science research 
and application purpose. GOCI has been developed to provide a monitoring of Ocean Color 
around the Korean Peninsula from geostationary platforms in a joint effort by Korea 
Aerospace Research Institute (KARI) and EADS Astrium under the contract of 
Communication, Ocean, and Meteorological Satellite (COMS) of Korea. 

2.2.3.1 GOCI mission overview 

Main mission requirement for GOCI is to provide a multi-spectral ocean image of area 
around South Korea eight times per day as shown in Fig. 6. The imaging coverage area is 
2500x2500 km2 and the ground pixel size is 500x500 m2 at centre of field, defined at (130°E - 

  
Fig. 6. Target observation coverage of the GOCI 
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36°N). Such resolution is equivalent to a Ground Sampling Distance (GSD) of 360 m in 
NADIR direction, on the equator. The GSD is varied over the target area because of the 
imaging geometry including the projection on Earth and the orbital position of the satellite. 
The GOCI spectral bands have been selected for their adequacy to the ocean color 
observation, as shown in Table 2. 
 

Band Center Band-width Main Purpose and Expected Usage 

1 412 nm 20 nm Yellow substance and turbidity extraction 

2 443 nm 20 nm Chlorophyll absorption maximum 

3 490 nm 20 nm Chlorophyll and other pigments 

4 555 nm 20 nm Turbidity, suspended sediment 

5 660 nm 20 nm Fluorescence signal, chlorophyll, suspended sediment 

6 680 nm 10 nm Atmospheric correction and fluorescence signal 

7 745 nm 20 nm Atmospheric correction and baseline of fluorescence signal 

8 865 nm 40 nm 
Aerosol optical thickness, vegetation, water vapour 

reference over the ocean 

Table 2. GOCI spectral bands 

2.2.3.2 GOCI design overview 

The GOCI consists of a Main Unit and an Electronic Unit. Total GOCI Mass is below 78 Kg. 
Power needed is about 40W for the electronics plus about 60W for Main Unit thermal 
control. A Payload Interface Plate (PIP) is part of the Main Unit. It supports a highly stable 
full SiC telescope, mechanisms and proximity electronics. Fig. 7 shows the main unit which 
is integrated on the Earth panel of satellite through the PIP. The PIP is larger than the 
instrument to carry the satellite Infra-Red Earth Sensor (IRES). 

The main unit includes an optical module, a two-dimensional Focal Plane Array (FPA) and a 
Front End Electronics (FEE). The optical module of GOCI consists of a pointing mirror, a 
Three Mirror Anastigmat (TMA) mirrors, a folding mirror, and a filter wheel. The FEE is 
attached near the FPA in order to amplify the detector signal with low noise before 
digitization. 

  
Fig. 7. Design configuration of GOCI main unit and its flight model configuration during 
integration phase (without MLI) 
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The shutter wheel is located in front of pointing mirror carrying four elements: shutter which 
will protect optical cavity during non-imaging period, open part for the ocean observation, 
Solar Diffuser (SD) and Diffuser Aging Monitoring Device (DAMD) for solar calibration. A 
Quasi Volumic Diffuser (QVD) has been chosen for the SD and the DAMD among several 
candidates because it is known to be insensitive to radiation environment. The on-board 
calibration devices prepared for integration are shown in Fig. 8. The SD covering the full 
aperture of GOCI is used to perform in-orbit solar calibration on a daily basis. Degradation of 
the SD over mission life is detected by the DAMD covering the partial aperture of GOCI. 

         
              SD            DAMD     POM (without mirror) 

Fig. 8. On-board calibration devices SD, DAMD and pointing mirror mechanism POM 

The pointing mirror is equipped with a 2-axis circular mechanism for scanning over 
observation area. Fig. 8 shows the GOCI pointing mechanism (POM). The pointing mirror is 
controlled to achieve a Line of Sight (LOS) corresponding to a center of a predefined slot on 
the Earth. The principle of the pointing mechanism is an assembly of two rotating actuators 
mounted together with a cant angle of about 1°, the top actuator carrying also the Pointing 
Mirror (PM) with the same cant angle. When rotating the lower actuator the LOS is moved on 
a circle and by rotating the second actuator, a second circle is drawn from the first one. It is 
thus possible to reach any LOS position inside the target area by choosing appropriate angle 
position on each circle. The mechanism pointing law provides the relation between rotation of 
both actuators and the LOS with a very high stability. This high accuracy pointing assembly 
used to select slots centers is able to position the instrument LOS anywhere within a 4° cone, 
with a pointing accuracy better than 0.03° (500 μrad). Position knowledge is better than 10 
μrad (order of pixel size) thanks to the use of optical encoders. An incident light on the GOCI 
aperture is reflected by the pointing mirror and collected through the TMA telescope. Then the 
collected light goes to an optical filter through a folding mirror.  

The eight spectral channels are obtained by means of a filter wheel which includes dark 
plate in order to measure system offset. Fig. 9 shows the filter wheel integrated with eight 
spectral filters without a protective cover. The FPA for GOCI, which is shown in Fig. 9, is a 
custom designed CMOS image sensor featuring rectangular pixel size to compensate for the 
Earth projection over Korea, and electron-optical characteristics matched to the specified 
instrument operations. The CMOS FPA having 1432  1415 pixels is passively cooled and 
regulated around 10C. It is split into two modules which are electrically independent. The 
GOCI electronics unit, which is shown in Fig. 9, is deported on satellite wall about 1.5m 
from the GOCI main unit. It provides control of mechanisms (pointing mirror, shutter 
wheel, filter wheel), video data acquisition, digitization, mass memory and power. 
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           Filter wheel     CMOS detector       Instrument Electronics Unit  

Fig. 9. GOCI filter wheel without cover, CMOS detector package with temporary window 
and Electronics Unit 

The imaging in GOCI is done in the step and stare fashion, passing along the 16 slots, as 
shown in the Fig. 10. 

 
Fig. 10. GOCI imaging principle 

2.2.4 COMS INR system 

2.2.4.1 Overview of COMS INR system 

Achieving and maintaining a good geo-localization of the images on the ground is an 
essential part of the geostationary remote sensing satellite for the untilization of the remote 
sensing data to be a meaningful and fruitful one. To this purpose, the Image Navigation and 
Registration (INR) system should be in place, and in COMS, a novel approach to INR was 
developed, allowing a-posteriori location of the images on the geoid based on automatic 
identification of landmarks and comparison with a reference database of specific terrestrial 
features such as small islands, capes, and lakes. 

In this novel approach, INR is not directly dependent on the satellite and payload models 
and hence can avoid any indispensible modeling and prediction error in the process. The 
high reliance on the landmarks and the acquisition of sufficient number of good-quality 
landmarks, however, become the key part of the design in this approach and such 
acquisition must be secured for this approach to be practically successful. In COMS INR, 
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excellent landmark matching algorithm, fine-tuning of configuration parameters during IOT 
and the fine-tuning of newly established landmark database with ample landmark sites at 
the final phase of IOT rendered such acquisition of sufficient number of good landmarks. 

Fig. 11 shows the overall architecture of COMS INR. All the processing are done on ground 
except for the long term image motion compensation (LTIMC) and as can be seen here, the 
whole INR system is operated in close conjunction with the AOCS.  

Spacecraft Ground

Instrument Payloads 
(MI & GOCI)

AOCS

LTIMC

Image Quality 
Control

Navigation & Registration
Filter

Image  Observation 
Data Extraction

Landmark 
Catalog

LTIMC 
Coefficients

Radiometric 
Calibration

Front‐End 
Process Level 0 Data

Level 1A Data

Level 1B Data

Image Geometric 
Correction

Tie‐points

Pre‐Rectified 
Level 1A Image

Landmarks  & 
Tie‐points

FDS 
Orbit

State 
Vector

State 
Vector

Auxiliary Data
Attitude
Encoder
Dating

Landmark
Residuals 
Statistics

Wideband Data 
Formatting

Attitude Determination

Attitude Sensors
• Earth Sensor
• Sun Sensor
• Gyros (FOGs)

Attitude Control

Image 
Encoder

Raw Data     

Thermo‐elastic Data

Auxiliary
Attitude 
Data

 
Fig. 11. COMS INR overall architecture 

2.2.4.2 Description of COMS INR system and processing 

In this section, the description of each module and each processing which comprises the 
whole COMS INR system, as shown in the Fig. 10, is provided.  

2.2.4.2.1 Space Segment INR 

Attitude determination 

The on-board attitude determination estimates the spacecraft attitude from attitude sensors 
measurements (IRESs, Sun Sensors and FOGs) through filtering process. This process is 
performed at 10 Hz and sub-sampled at 1 Hz to insert into the MI wideband telemetry for 
use by the Navigation and Registration Filter Module on ground. 

Attitude control 

The on-board attitude control loop actuates momentum wheels, solar array, and thrusters. 
The control loop is designed to be robust to effect of disturbances on MI & GOCI field of 
views. Disturbances include: 

 Diurnal attitude pointing perturbation due to thermo-elastic distortion and solar 
torques. 

 Thruster firing for station keeping and wheel off-loading.  
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Long term image motion compensation (LTIMC) 

The on-board LTIMC is used to compensate pointing bias and long term evolutions 
(seasonal, ageing) to keep the area to be observed within the MI & GOCI field of views. 

Wideband data formatting 

Wideband data consists of MI & GOCI imagery/telemetry and AOCS auxiliary attitude data. 

2.2.4.2.2 Ground Segment INR 

The image observation data extraction module 

This module gathers all functions of data extraction from images: cloud cover detection, 
landmark detection from image/database matching, multi-temporal tie point detection from 
image/image matching, and multi-spectral tie point detection from band-to-band matching. 
A first “pre - rectification” of Level 1A images allows retrieving 2D local image coherence.  

The navigation and registration filter module 

This module gathers all functions of geometric models: localization model (including focal 
plane and scan mirror models), navigation filter, landmarks or tie points position prediction. 
This module performs state vector estimation through a hybridization filter that combines 
landmarks, thermo-elastic, orbit, and gyros data in the way that minimizes criteria on 
landmarks (for navigation) or tie points (for registration) residuals.  

The image geometric correction module 

This module gathers all functions relative to image resampling and Modulation Transfer 
Function (MTF) compensation. For each pixel of an image, the state vector allows computing 
the shift between raw geometry and reference geometry. Each pixel of the Level 1B image is 
computed through radiometric interpolation with respect to the neighbouring pixels around 
its corresponding pixel in the Level 1A image.  

The image quality control module 

Once the state filter estimation is performed, ground pixels corresponding to landmarks are 
localized. The result difference with respect to the landmark known position is called 
“residual”. It can be done on the landmark used for navigation, but also on “reference 
landmarks” which are used for the navigation accuracy control filter. All computed residuals 
are stored for further statistics. The statistics (average, standard deviation, max value) on 
residuals within the image gives instantaneous INR performance. The statistics over a set of 
image during a certain period gives INR performance relative to the period. The statistics 
relative to a specific landmark over a certain period gives information on quality and 
reliability for that landmark. This result will be used to periodically update landmark database 
with confidence rate that has to be taken into account for better accuracy of the navigation 
filter. All statistics are also computed with respects to context: date, time, cloud conditions.  

2.2.5 COMS ground segment 

The COMS GS (Ground Segment) consists of four GCs (Ground Centers); Satellite Control 
Center (SOC), National Meteorological Satellite Center (NMSC), Korea Ocean Satellite 
Center (KOSC), and Communication Test Earth Station (CTES) (KARI, 2006). 
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The SOC performs the primary satellite operation/monitoring and the secondary image 
data processing. The NMSC and KOSC have a role of the primary image data processing for 
MI (in NMSC) and GOCI (in KOSC), respectively, and The NMSC is also the secondary 
ground center for a satellite operation/monitoring. The CTES monitors RF (Radio 
Frequency) signals to check the status of Ka-Band communication system. 

The SOC has two functions of the COMS GS; MI/GOCI Image data processing (as the 
backup center) and satellite operation/monitoring (as the primary center). One of SOC 
function is implemented in IDACS (Image Data Acquisition and Control System) for Image 
data processing by three subsystem; DATS (Data Acquisition and Transmission Subsystem), 
IMPS (IMage Pre-processing Subsystem), and LHGS (LRIT/HRIT Generation Subsystem) 
(Lim et al., 2011).  

The other SOC function, satellite operation and monitoring, is implemented in SGCS 
(Satellite Ground Control System) by five subsystems; MPS (Mission Planning Subsystem), 
TTC (Telemetry, Tracking, and Command), ROS (Real-time Operations Subsystem), FDS 
(Flight Dynamics Subsystem), and CSS (COMS Simulator Subsystem) (Lee et al., 2006).  

Fig. 12 shows the essential architecture of COMS ground segment with key composing 
subsystems and Table 3 describes functions of subsystem for COMS ground segment; 
DATS, IMPS, LHGS (IDACS) MPS, TTC, ROS, FDS, and CSS (SGCS).  

 
Fig. 12. COMS ground segment architecture with key composing subsystems 

 
System Sub-System Functions 

IDACS DATS Reception and error correction of CADU 
Processing and dissemination of LRIT/HRIT 
Control and monitoring of IDACS  

IMPS CADU receiving and processing  
Radiometric correction (IRCM) 
Geometric calibration (INRSM) 
Payload status monitoring 
Interfaces among subsystems of the IDACS 

LHGS LRIT/HRIT generation 
Compression and encryption for LRIT/HRIT generation 
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System Sub-System Functions 

SGCS MPS Mission request gathering 
Mission scheduling 
Mission schedule reporting 

TTC Telemetry reception 
Command transmission 
Tracking and ranging 
Control and monitoring 

ROS Telemetry processing 
Telemetry analysis 
Command planning 
Telecommand processing 

FDS Orbit Determination and prediction 
Station-keeping and re-location planning 
Satellite event prediction 
Satellite fuel accounting 

CSS Satellite dynamic static simulation 
Command verification 
Anomaly simulation 

Table 3. Functions of the COMS ground segment 

3. COMS in-orbit performances 

3.1 COMS AOCS performances and platform stability 

The quality of images taken by on-board optical instruments is strongly dependent on the 
quality of the platform stabilisation. Three (3) strong requirements have been put on the 
COMS platform, all necessary to obtain the specified image quality. 

 pointing accuracy (pitch and roll) : this specification is essential to a priori know where 
the instrument line of sight is aiming at. This is important for Ka band payload operations, 
for GOCI operation (due to further stitching of small images to construct the large 
imaging area) and for MI which can be commended to frequently review some local areas. 

 pointing knowledge (pitch and roll) : the pointing knowledge is mainly driven by the 
INR in order to start the landmark matching processing with a sufficient accuracy.  

 pointing stability (pitch and roll) : this specification is mainly driven by the GOCI 
instrument, requesting integration times as long as 8 seconds, with a jitter less than 
10µrad.  

The first point is fulfilled by the heritage bus (E3000 platform), but the two last points have 
necessitated the implementation of a high precision Fibre Optic Gyro (Astrium’s FOG Astrix 
120 HR), furthermore the third point has been flown down to micro-vibration dampers 
under wheels, various AOCS tuning (solar array natural mode damping, optimised wheel 
zero crossing management), optimized manoeuvres (reaction wheel off loading, EW and NS 
manoeuvres, etc.), and few operational constraints (stop solar array rotation during GOCI 
imaging period, etc.). 
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The resulting performances are typified as the pointing knowledge of better than 0.003°, the 
pointing accuracy of better than 0.05°, and the pointing stability of better than 7µrad/8s, all 
in roll and pitch. Fig. 13 shows the typical example of the performance on the platform 
stability. 

 
Fig. 13. COMS platform stability, as measured for a period of 3 months and computed on a 
3-sigma basis 

3.2 Radiometric performances of MI and GOCI 

3.2.1 MI radiometric performances 

3.2.1.1 MI in-orbit SNR 

From the MI Visible dark noise analysis results, COMS MI in-orbit SNR at 5% albedo have 
been computed for both side 1 and side 2 of MI and the in-orbit SNR in both sides proved to be 
better than on ground measurement and significantly above the specification, SNR > 10 at 5% 
albedo. Table 4 shows both the on-ground and in-orbit SNR at 5% albedo for MI side 1.  

 

MI Side 1 
SNR 5% 

On Ground In Orbit 

Detector 1 24 27.18 

Detector 2 24 26.28 

Detector 3 23 26.20 

Detector 4 24 27.01 

Detector 5 23 25.24 

Detector 6 23 27.08 

Detector 7 23 26.00 

Detector 8 24 26.21 

Table 4. MI On-Ground and In-Orbit SNR results, MI side 1 
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3.2.1.2 MI in-orbit radiometric calibration 

COMS IOT (In-Orbit Test) MI calibration activities were divided into two main parts: MI 
visible channel and infrared channel calibrations. The visible channel calibration was 
conducted from July 11, 2010 after the COMS Launch (2010.6.26. 21:41 UTC). Calibration 
activity of the Infrared channels including the visible one was started from Aug 11, 2010 
after the completion of the out-gassing (removal of remnant volatile contaminants by 
heating). The functional and performance tests were performed for both two functional 
sides (SIDE1: primary, SIDE2: secondary) plus two patch temperatures (patch Low and Mid) 
of the MI payload. In addition to the images of MI channels, albedo monitor and moon 
images were also acquired and analyzed. The final performance verification was checked 
officially at the phase 1 & phase 5 end meeting (Jan 26, 2011) after the intensive MI 
radiometric calibration processes conducted from July, 2010 to Jan, 2011. Summary of the 
verifications at the meeting is listed as follows.  

1. Command and control tests for both sides (Side 1/Side2) were successful 
2.  Scan mechanism tests were successful 
3.  Image monitoring and acquisition tests were successful 
4.  The performance tests of MI visible channel were successful  
5.  The performance tests of MI infrared channels based on the payload real-time 

operational configuration modes were successful  

3.2.1.2.1 MI visible channel calibration process 

As shown in Fig. 14, the MI visible channel calibration process was simply verification of a 
linear visible calibration equation using the real data sets. After that, necessity of the 
normalization among eight detectors was checked. Albedo monitor data analysis and moon 
image processing were used for the detector's trend monitoring.  

 
Fig. 14. MI visible channel radiometric calibration process flow chart 

The pixel-to-pixel response non-uniformity (PRNU) were examined using the both space 
look and image data (Fig. 15). PRNU met the requirement specifications (denoted by red  
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Fig. 15. PRNU Check (SIDE1): Space-Look data 

lines). As a result, the normalization algorithm was not implemented on the visible channel 
calibration process. 

3.2.1.2.2 MI infrared channel radiometric calibration 

Different from the visible channel, the MI infrared channel calibration process has complex 
steps to get qualified data as shown in Fig. 16. First, coefficients of the basic (nominal) IR 
calibration equation were verified using the real data sets and then four major steps were 
taken: 1) Scan mirror emissivity compensation, 2) Midnight effect correction, 3) Slope 
averaging and 4) 1/f noise compensation. 

 
Fig. 16. MI infrared channel radiometric calibration process flow chart 

1. Scan mirror emissivity correction 

Based on the scan mirror emissivity (as a function of a scan angle), the effect of emitted 
radiances from the coating material on the scan mirror were compensated. The computed 
scan mirror emissivities according to different scan angles are shown in Fig. 17. 
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Fig. 17. Computation of the scan mirror emissivity for four different infrared chennels 
(1Dark Image, Side1, Patch Low, Det A, 2010.8.16). 

2. Midnight effect compensation 

Before and after four hours of near local midnight data were corrected using a mid night 
compensation algorithm (see Fig. 18). The estimated slope(open circles and squares) based on 
the regression between the black body slope and the selected optic temperature were used 
near midnight and the original slope values(thick lines) are used during the rest of time. 

 
Fig. 18. IR Midnight Effect: the result of slope selection (SWIR; Side 1/Patch Low)  

3. Slope averaging 

Slope averaging is a smoothing process to remove the responsivity variation of the detectors 
due to the diurnal variation of background radiation inside the sensor. The reference slope 
value were compared to that of the previous day and the residual between two were filtered 
by the slope averaging.  

4. 1/f noise compensation 

The 1/f noise compensation, which is a filtering of random noise on the lower frequency 
components was also conducted. After the 1/f noise compensation, the stripping effects on 
the water vapor channel were greatly removed. 
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3.2.1.2.3 The result of the MI IOT radiometric calibration processes 

The PRNU values from the radiometric indices computed from the real time MI data 
processing system of COMS (called IMPS) indicated that relative bias between detectors of 
infrared channels were minimal and thus the normalization process step on the infrared 
channels were skipped as same as the visible one. The complete COMS MI images resulted 
from the IOT (see Fig. 19) showed that the radiometric performance of the MI payload meets 
the all requirement specifications for the current operation configuration of MI (SIDE 1, 
Patch Low). 

 
Fig. 19. Calibrated MI FD Level 1A images (before INR), (Side 1, Patch Low, 2010.12.23) 

3.2.2 GOCI radiometric performances 

3.2.2.1 GOCI in-orbit SNR 

The GOCI was turned on for the first time in orbit on July 12, 2010 and captured it first 
image the day after. Both sides (primary and redundant) were successfully tested during 
about two weeks. After the successful functional tests such as the mechanism movement, 
detector temperature control, and imaging chain validity, the radiometric performance tests 
and radiometric calibration tests have been performed. The radiometric performance test is 
aimed to verify the validity of performance measured on ground. In-orbit offset and dark 
signal shows a quite good correlation with the ground measurements. Also the radiometric 
gain matrix, which has been measured in-orbit, is very similar to the ground gain. The SNR 
test results, which are provided in Table 5, show the performance exceeding the 
requirements in all 8 spectral bands by 25 to 40%. This is mainly due to the excellent quality 
of the CMOS matrix detector, and the design margin considered for worst case analysis. 

3.2.2.2 GOCI in-orbit radiometric calibration 

GOCI in-orbit radiometric calibration relies on a full pupil Sun Diffuser (SD), made of fused 
silica, known to be insensitive to radiations. The instrument is designed to allow a 
calibration every day. In practice, during IOT, two calibrations per week were 
performed. After IOT, the frequency of calibration was reduced to one per week. The  
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SNR specification
Band Mean SNR at GOCI level
B1 1476 1077
B2 1496 1199
B3 1716 1316
B4 1722 1223
B5 1586 1192
B6 1513 1093
B7 1449 1107
B8 1390 1009  

Table 5. GOCI In-Orbit SNR test result 

potential aging of the SD is monitored by a second diffuser (Diffuser Aging Monitoring 
Device: DAMD) used less frequency than the SD, typically once per month since the end of 
the IOT. When not in used, both SD and DAMD are well protected by the shutter wheel 
cover to minimise their exposure to the space environment. 

Through IOT period, about six months, the instrument calibration and the calibration 
stability were fully verified. The purpose of radiometric calibration test is to verify the in-
orbit calibration method which is based on two point measurements (Kang & Coste, 2010). 
The in-orbit radiometric gain matrix of GOCI is calculated by using two sun images, which 
are obtained through the SD with two different integration times. The imaging time for the 
sun has been specified according to the desired solar incident angle over 25 degree to 35 
degree. The actual solar incident angle of measured sun image is calculated by using the On-
Board Time (OBT) which is included in the secondary header of the raw data. During IOT, 
sun imaging for eight spectral bands has been performed over two days based on one week 
period. For each calibration, six sets of sun images with short and long integration time have 
been obtained for each spectral band over about 10 minutes. Variation of gains calculated by 
6 sets are very small (0.1 % to 0.3%) and are most probably due to processing noise (small 
errors in the ephemerides and in the calibration time) and also possibly to short term 
variations of the sun irradiance. Fig. 8 shows the gain evolution over eight months. For first 
three months, the gain shows a relatively rapid decrement. There is about 2% variation over 
eight months. Fig. 20 shows the aging factor of the SD over eight months. The trend 
provided in this Figure shows a sinusoidal variation over 8 months with about maximum 

   
            (a) Gain Stability      (b) SD Stability 

Fig. 20. In-orbit radiometric stability over 8 months  
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1% amplitude. This is probably not the real variation of SD. In addition the longitudinal 
solar incident angle to the GOCI shows the similar variation over the year. The reason for 
this sinusoidal variation is now under examination. The variations lower than 1% over 
almost one year shows the SD stability. All the variations observed in orbit up to now are 
within 1 to 2% which is very low and very satisfactory. Some evolutions seem to be 
correlated with the longitudinal solar incident angle. This opens the way to further 
improvement of the calibration model if necessary. 

The major performances (Modulation Transfer Function – MTF and Signal to Noise Ratio – 
SNR) are presented in this chapter, all other performances being well within the 
requirements. 

One of the major advantages of ocean observation with the GOCI is that continuous 
monitoring is possible with images provided every hour, which maximizes chance of clear 
observation of the whole field even in cloudy season. No sun glint occurs thanks to the 
angular position of the field of view during daytime, while it discards many observations in 
low orbit. 

3.3 Spatial and geometric performances of MI and GOCI 

3.3.1 GSD and MTF 

3.3.1.1 MI 

During IOT, the MI Ground Sampling Distance (GSD) and the spatial performance (MTF) 
have been fully checked and verified. The GSD has been verified as follows. The landmark 
matching results by the INRSM were used and the angular steps in both E/W and N/S were 
measured by best fit between level 1A image coordinates and landmark GEOS positions. 
Those angular steps were used to determine a projection function for each image (or sub-
image). Then, the specified GSD at Nadir was verified using the relevant projection 
function.  

Table 6 shows the measured MI MTF results. 

  
Table 6. Measured In-Orbit MI MTF  

3.3.1.2 GOCI 

During IOT, the GOCI GSD has been verified by the same method as with MI, and the 
imaging coverage and the slot overlap have also been fully verified. The spatial performance 
(MTF) has also been checked. Before launch, the GOCI MTF performance was tested 
through ground test at the payload level. The in-orbit MTF test would allow the validation 
of MTF at system level including the satellite stability performance. But the measurement 
accuracy for in-orbit test is much worse than the ground test depending on the availability 
and the quality of the transition patterns between bright and dark in the image. The GOCI 
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MTF is calculated by using the image having a radiometric transition (such as a coast line) 
which is equivalent to Knife Edge Function (KEF) measurement. Table 7 shows the GOCI 
MTF test result. Significant margins are demonstrated with respect to specifications; similar 
margins are present in all spectral bands. 

E W N S
Sample #1 0.34 0.42 0.38 0.30
Sample #2 0.27 0.43 0.37 0.36
Sample #3 0.29 0.33 0.42 0.33
Sample #4 0.28 0.45 0.37 0.32
Sample #5 0.35 0.37 0.37 0.26
Sample #6 0.40 0.42 0.38 0.31
Sample #7 0.31 0.44
Sample #8 0.43 0.34
Sample #9 0.32 0.28
Sample #10 0.32 0.36
Mean Value
Standard Error
Specification
(Mean - Spec.) / Spec.

Band 8
MTF @ Nyquist

0.36 0.35
0.06 0.04

0.30
16%

0.30
19%  

Table 7. Measured GOCI MTF in the band 8 

3.3.2 INR performances 

The INR IOT took a significant amount of time, as the final tuning requested. The first 
positive result obtained from the first images was the number of landmarks automatically 
extracted by the INR software. During the development, it had been demonstrated that a 
minimum of typically 100 landmarks were necessary, and sometimes more than 600 
landmarks could be found on images.  

The INR performance is evaluated on the basis on land marks residuals (statistical error 
after landmark best fit). In order to verify the validity of this approach, the coast line from 
the images is checked against an absolute coast line (based on GSHHS). The following 
figures in the Table 8 illustrate the typical performances of COMS INR as observed during 
the IOT. 

 

 
Table 8. COMS MI and GOCI INR performances (units in µrad) 
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Worth noting is the fact that the COMS AOCS pointing performaces, as described in section 
3.1, provide a significant contribution to the final INR performances. Also worth noting is 
the timeliness requirement put on the MI INR processing. As mentioned in section 2.2, the 
satellite serves as telecommunication relay to broadcast corrected data to end users in 
international formats called HRIT and LRIT. Both formats suppose to rectify the data both 
radiometrically and geometrically. An allowance of 15 minutes is given to perform the 
ground processing before uploading again the data to the satellite. After few inevitable 
tunings, the whole process is now performed in typically 12 minutes. For illustration 
purpose, two examples of shoreline matching are presented for MI vis channel and for one 
GOCI spectral band in the Fig. 21 and Fig. 22.  

 
Fig. 21. MI shoreline matching (FD, VIS) 

 
Fig. 22. GOCI shoreline matching. The reference shoreline is superimposed to the 
geometrically rectified GOCI image. Matching is better than 2 pixels over the whole area. 
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Further analysis and monitoring on INR performances have been performed since the start 
of normal operation of COMS for the service to the end users, and Fig. 23 and Fig. 24 
illustrate some of these typical COMS INR performances.  

 
Mode: ENH, Channel: VIS and IR, and negative correlation between the number of LMKs and the 
average of Residuals (courtesy of KMA) 

Fig. 23. MI INR performance during 1st April ~ 31th August.  

 
Mode: ENH, Channel: VIS and IR, and negative correlation between the number of LMKs and the 
average of Residuals: Twilight effects (courtesy of KMA) 

Fig. 24. MI INR performance during 1st April ~ 31th August.  

4. Application and suggestion 

It has been merely 8 months since the outset of the normal operation of COMS for the 
distribution and service of the images and image products to the end users and scientific 
communities. The activities in this period in terms of the data processing, calibration and the 
end product generation and the related studies and researches have been exceedingly 
interesting, proactive and imaginative, to say the least, and in a word ‘dynamic’ in a very 
positive and rewarding sense. This section describes the application aspect of the COMS 
image data from MI and GOCI, addresses some posing technical challenges at the present 
time on this course of data application, summarizes some of the representative end products 
both from MI and GOCI and discusses the way forwards with some suggestions.  
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4.1 MI 

4.1.1 Generation of MI end products 

As mentioned in the previous sections, COMS MI Level 1B data are generated through 
radiometric and geometric calibrations and then sixteen meteorological products(level 2) are 
produced by CMDPS (COMS Meteorological Data Processing System) as shown Fig. 25. 

 
Fig. 25. COMS Meteorological Products 

Parts of meteorological products from COMS MI have been generated operationally since 
April 1, 2011 together with COMS operation. Those products are cloud analysis (type, phase 
and amount), cloud top temperature/pressure, atmospheric motion vector, cloud detection, 
fog, and aerosol index. And then, four products, which are sea surface temperature, rain  
 

 
(a) 

 
(b) 

 
(c) 

Fig. 26. Examples of COMS meteorological products (a) cloud phase (b) atmospheric 
meteorological vector and (c) rain intensity. 
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intensity, outgoing longwave radiation, and upper tropospheric humidity, were generated 
additionally from 10 August 2011. These products are currently being validated through 
comparison between satellite-derived products and ground in-situ data. For example, 
detection area of Asian dust (aerosol index) occurred in 2011 April and May was compared 
with COMS GOCI and MODIS (Moderate Resolution Imaging Spectroradiometer) true color 
images or OMI (Ozone Monitoring Instrument) AOD (Aerosol Optical Depth). The other six 
products which are land surface temperature, sea ice/snow cover, total precipitable water, 
insolation, clear sky radiance, and aerosol optical depth will be operationally produced 
soon. 

4.1.2 Application to weather forecasting and analysis 

In Korean peninsula, annual losses and damages in human and material are enormous due 
to the convective cloud accompanying summer heavy rainfall, which is either flown from 
the West Sea or originated locally. COMS can monitor and watch the origination and 
development of this convective cloud since it can observe Korean peninsula with MI in a 
concentrative way eight times an hour. NMSC is supporting the weather forecasting with 
the developed technique for Very Short Range Forecasting utilizing COMS MI 
meteorological data, which was introduced and derived from the technique of convective 
cloud rainfall intensity calculation and monitoring by the SAFNWC (Satellite Application 
Facilities Nowcasting) of EUMETSAT (European Organization for the Exploitation of 
Meteorological Satellites).  
 

 
(a) 

 
(b) 

Fig. 27. Examples of COMS MI data applications (a) Convective rain intensity image 
combined with radar rain map (b) Predicted location of convective cloud and lightening 
image. 

To analyze the Typhoon, which passes through Korean peninsula two to three times a year, 
typically around July to September time, such elements as the Typhoon intensity, radius of 
strong winds, the maximum wind speed, low pressure, are needed. In this analysis, NMSC 
is utilizing the Advanced Dvorak Technique (ADT) in the site operations, which was 
developed by the Cooperative Institute for Meteorological Satellite Studies (CIMSS) of 
University of Wisconsin (UW). The algorithm in this technique classifies the evolution phase 
of the tropical cyclone according to its intensity, as the formation phase, the development 
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phase and the disappearance phase, based on the MI infrared (IR) images, and automatically 
analyses the Typhoon intensity through the experience in pattern recognition by applying 
the Fast Fourier Transform (FFT) on the resulting patterns from the different phase of the 
cyclone. 

COMS MI data are also to be used in the generation of aeoronautical meteorological 
products, as shown in the Fig. 28. These products may have a relatively low accuracy but 
have the advantage of observing the broader area every hour. They are providing the level 2 
information; such as the cloud phase, cloud height and the cloud top temperature in the air 
route and also the information from the convective cloud monitoring, and the other 
technique is under development for the information generation on the elements that can 
cause aircraft accidents, such as the icing and the turbulence.  
 

 
(a) 

 
(b) 

Fig. 28. Examples of COMS MI aeoronautical meteorological products (under 
developments) (a) turbulence distribution (b) icing on airplane area . 

4.2 GOCI 

The application of GOCI data is focused on the monitoring of long-term/short-term ocean 
change phenomena around Korean peninsula and north-eastern Asian seas. In daytime, the 
hourly-produced GOCI data will be used for the ocean/coast environmental monitoring 
and for the observation of ocean dynamics features and the management of ocean territory. 
Also, these GOCI data, when used in conjunction with ocean numeric models, would bring 
forth the increase of accuracy in ocean forecasting,. 

GOCI level 2 data products can be generated from GOCI level 1B with GDPS (GOCI Data 
Processing System) which is the data processing and analysis software developed by 
KORDI.  

This GDPS system derives the pure ocean signal (water leaving radiance) by atmospheric 
correction using aero-optics model and oceano-optics model developed and modified by 
KORDI. It can extract pure water signal as the normalized water leaving radiance which is 
corrected water leaving radiance by considering the satellite - sun relative geometry. For 
geostationary satellite, this relative position of the sun and the satellite changes all the time 
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and then the ocean signal is distorted. To resolve this issue of signal distortion, some 
research was performed. The system can generate the marine environment analysis data 
using specific algorithms for target region. The data processing algorithms applied to the 
existing ocean satellite optical sensor and new algorithms to the GOCI would produce the 
latest marine environmental analysis results. 

Table 9 shows the list of GOCI level 2 data products which are currently being generated 
and used for each application purpose, and Table 10 signifies the list of GOCI level 3 data 
products which can also be generated by GDPS. The algorithm to generate GOCI level 3 
data is under the final validation process. Fig. 29 shows some typical examples of these end 
products, in the case of TSS and CDOM. 
 

PRODUCTS DESCRIPTION APPLICATION 
Water-leaving  
Radiance (Lw)  

The radiance assumed to be measured 
at the very surface of the water under 
the atmosphere  

Indispensible for water color 
analysis algorithms  

Normalized 
water  
leaving radiance 
(nLw)  

The water leaving radiance assumed 
to be measured at nadir, as if there 
was no atmosphere with the Sun at 
zenith  

Input data for the water analysis 
algorithm  

Chlorophyll 
(CHL)  

Concentration of phytoplankton 
chlorophyll in ocean water  

Ocean primary production 
estimation, dumping site 
monitoring, climate change 
monitoring  

TSS  Total suspended sediment 
concentration in ocean water  

Coastal ocean environmental 
analysis and monitoring TSS 
movement and transfer monitoring  

CDOM  Colored dissolved organic matter 
concentration in ocean water  

Indicator of ocean pollution  
Ocean salinity estimation  

Optical 
properties  
of water  

K-coefficient  
Absorption coefficient(a)  
Backscattering coefficient(bb)  

Ocean optical properties analysis  

Red tide (RI)  Red tide index information  Ocean pollution and ecological 
monitoring  
Movement and transfer monitoring 
of red tide  

Underwater  
Visibility (VIS)  

Degree of clarity of the ocean 
observed by the naked eye  

Navy tactics, ocean pollution map, 
sea rescue work  

Atm. & earth  
environment  

Yellow dust, Vegetation Index  Atmospheric environment and land 
application  

Table 9. GOCI level 2 data products 

 

PRODUCTS DESCRIPTION APPLICATION 
Daily composite of 
CHL, SS, CDOM 

Daily 8 images composite 
for cloud free mosaic image  

Climate change trend analysis  

Fishing ground  
Information (FGI)  

Fishing ground probability 
index, fishing  
ground prediction  

Fishing ground detection  
Fishing ground environmental 
information  
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PRODUCTS DESCRIPTION APPLICATION 
Sea surface  
current vector (WCV)  

Sea surface current 
direction/speed  

Understanding of sea surface currents and  
estimation of pollutant movements  

Water quality  
Level (WQL)  

Coastal water quality level 
estimation  

Coastal ocean eutrophication  
Coastal water quality control/monitoring  

Primary  
Productivity (PP)  

The production of Organic 
compounds from  
carbon dioxide, principally 
through the process of 
photosynthesis  

Carbon cycle  
Long-term climate change monitoring  

Table 10. GOCI level 3 data products 

  
Fig. 29. Examples of GOCI level 2 end products, TSS (Total Suspended Sediment) and 
CDOM (Colored Dissolved Organic Matter) 

GOCI products such as ocean current vector and ocean color properties would be provided 
to the fishery and the related organization for the increase of the haul, the effective 
management of fish, and finally the increase of fisheries income. The GOCI data could also 
be useful for monitoring suspended sediment movement, pollution particles movement, 
ocean current circulation and ocean ecosystem. Also, it will contribute to the international 
cooperation system, such as GEOSS (Global Earth Observation System of Systems), for the 
long-term ocean climate change related research and application by the data exchange and 
co-research among related countries.  

The Korea Ocean Satellite Center (KOSC) in KORDI as the official GOCI operation agency, 
receives the GOCI data from the satellite directly, generates, stores, manages and distributes 
the processed standard products. And KOSC will continuously develop new ocean 
environmental analysis algorithms to apply to the imagery data of GOCI and the GOCI-II 
which is next generation of GOCI. 

Through the normal operation of GOCI, KOSC can provide the new, high-grade ocean 
environmental information in near-real time. It can be applied to the detection of freak 
phenomena of ocean nature such as the red-tide and the green-tide. The primary 
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productivity derived from the GOCI chlorophyll and other products is the key research 
information about ocean carbon circulation. The color RGB images and analysis images of 
GOCI products with high spatial resolution are clearer and more recognizable than the 
monochrome images from other existing geostationary earth monitoring satellite which has 
only 1 visible band. These images can be useful to land application and atmospheric remote 
sensing application like monitoring of typhoon, sea ice, forest fire, yellow dust, etc. 

 

Fig. 30. Standard RGB image of GOCI (left) and the analysis result of seawater chlorophyll 
density in the East Sea (right)  

Table 11 shows the overall scheme of GOCI data application, and Fig. 31 and Fig. 32 
exemplify some of the typical applications. In Fig. 32, several Images of different dates were 
mosaiced to realize this cloud-free picture and the numerical signals of the Yellow Sea (East 
China Sea), the East Sea (Japan Sea) and Northwestern Pacific were differently processed to 
maintain a balanced tone throughout the whole coverage area of the GOCI. 

 
Operation Application Items 

Carbon Circulation 
Monitoring 

- Analysis of marine primary productivity 
- Long-term climate change research in the ocean 
- Long-term analysis of climate change through research studies  

and utilized to secure carbon credits 
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Operation Application Items 

Red Tide 
Monitoring 

- Amounts of red tide, forecast to move through the path and spread 
of red tide-related damage contribute to the reduction 

Green Algae 
Monitoring 

- Amounts of green algae, forecast to move through the path and 
spread of green algae-related damage contribute to the reduction 

Oil spill monitoring - Oil spill and monitoring of movement and distribution of pollution 

Speculative waters, 
environmental 
monitoring 

- Ocean dumping in the waters of chlorophyll contained in 
phytoplankton  concentration and monitoring the amount of organic 
matter dissolved in seawater 

Turbidity Monitoring - Indicators of marine pollution 
- The total suspended inorganic material contained in seawater 

through the coastal marine environment observation analysis and 
monitoring 

Low-salinity water 
monitoring 

- Utilization of seawater salinity estimates (Low-salted water 
monitoring) 

- Which flows from China to determine the utilization of 
contaminant migration path 

Fishery Information - Fish and Fishery distribution 
- Fisheries and environmental monitoring and fisheries contribute to 

productivity improvement 

Fisheries and fish-
farm management 

- Long-term monitoring of marine ecosystems through the efficient  
management of fisheries resources 

Ecological monitoring 
tidal 

- Marine Biology / Ecological Survey, appeal / river forecasts, and 
productivity of aquatic organisms in the environment 

- Coastal fisheries resources management 

Hurricane watch - A hurricane tracking and navigation path 
- The impact of Hurricane directed by the ocean, producing flow 

information 

Sea-ice monitoring - Development of the area of sea ice observations and monitoring 
- Support fishing operations 

Forest fire monitoring - land management and forest fire monitoring, forest resources 
utilization 

Dust monitoring - Dust, vegetation, and the atmosphere and global environmental 
monitoring information 

- Dust weather analysis and forecasting, and utilized in the 
atmospheric environment  

Current surveillance - Balm of seawater, and the flow rate information production 
- Utilize coastal water quality management 

El Niño, La Niña 
monitoring 

- Estimated using ocean temperature and productivity monitoring 
long-term climate change 

 

Table 11. Application subjects of GOCI data 
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Fig. 31. Land and Sea Features expressed by natural color on the full scene of the GOCI. 

 
Fig. 32. Structure of Chlorophyll Distribution in the North-East Asian Seas. 
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5. Conclusion 

COMS is a unique bird in many ways, partially in that it is such a complex satellite 
accommodating three different payloads with rather conflicting missions into a single 
spacecraft bus, partially in that it employs a unique and novel INR system, and also partially 
because it has the GOCI on board, the world’s 1st geostationary imager for the ocean colour. 
By the joint effort of EADS Astrium and KARI, it was masterfully designed, developed, 
tested, and launched, and is now behaving beautifully in orbit, exhibiting quite impressive 
and fruitful performances along with the very useful and interesting image data and 
processed end products.  

It is especially interesting to note that with the co-existence of both MI and GOCI on board, 
the comparison and combination of data taken by these two sensors from the same 
geostationary location, could open some new windows for further interesting research and 
development. In the case of GOCI, the benefits of Geo observation compared to its LEO 
(Low Earth Orbit) counterparts has been notably demonstrated and largely appreciated by 
the end users so far, even with the relatively short accumulated time of normal service, and 
as the further activities on post processing and related studies will get refined and matured, 
it is expected that this trend will become even more prominent.  

With these observations, findings and expectations at hand, it could be cautiously said that 
COMS image data and the processed end products will bring some added dimension to the 
world remote sensing community and the related field of science and technology. For this 
end, it will be made sure that the application of MI and GOCI data during the mission life of 
COMS is to be fully exploited and maximized. It is hoped and believed that all the aspects of 
the COMS development and operation; from the design, implementation, test and 
validation, launch and IOT, to the data processing, end product generation, data utilization 
and end user services will continue to grow and be improved and expanded in its relevant 
realm into the next generation of geostationary remote sensing satellites. 
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1. Introduction 
Large field of view sensors as well as flight line tracks of hyperspectral reflectance 
signatures are useful for helping to help solve many land and water environmental 
management problems and issues. High spectral and spatial resolution sensing systems are 
useful for environmental monitoring and surveillance applications of land and water 
features, such as species discrimination, bottom top identification, and vegetative stress or 
vegetation dysfunction assessments1. In order to help provide information for 
environmental quality or environmental security issues, it is safe to say that there will never 
be one set of sensing systems to address all problems. Thus an optimal set of sensors and 
platforms need to be considered and then selected. The purpose of this paper is to describe a 
set of sensing systems that have been integrated and can be useful for land and water 
related assessments related to monitoring after an oil spill (specifically for weathered oil) 
and related recovery efforts. Recently collected selected imagery and data are presented 
from flights that utilize an aircraft with a suite of sensors and cameras. Platform integration, 
modifications and sensor mounting was achieved using designated engineering 
representatives (DER) analyses, and related FAA field approvals in order to satisfy safety 
needs and requirements. 

2. Techniques 
2.1 Imaging systems, sensor systems and calibration 

Sensors utilized have been: (1) a photogrammetric 9 inch mapping camera utilizing a 12 inch 
focal length cone, and using AGFA X400PE1 color negative film that has been optimized for 
high resolution scanning (2400 dpi) in order to reduce the effects of newton rings and an 
associated special glass plate from Scanatronics in the Netherlands; (2) forward and aft full 
high definition (HD) video cameras recording to solid state memory with GPS encoding; (3) 
a forward mounted Nikon SLR 12.3 megapixel digital camera with a vibration reduction 
zoom lens and GPS encoding; (4) a high hyperspectral imaging system with 1376 spatial 
pixels and 64 to 1040 spectral bands.  
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The HSI imaging system utilizes a pen tablet computer with custom software. The HSI 
pushbroom system is integrated into the computer with an external PCMCIA controller card 
for operating the temperature stabilized monochrome camera which is bore sighted with a 
transmission spectrograph and ~39 degree field of view lens. The HSI imaging system is 
gimbal mounted and co-located with one of the HD 30 HZ cameras. The HSI system runs 
between ~20 to 90 HZ and is also co-located with a ~100 HZ inertial measurement unit (IMU). 
The IMU is strap down mounted to the HSI along the axis of view of the hyperspectral imager.  

An additional 5HZ WAAS GPS output is recorded as another data stream into the custom 
software that allows on the fly changes to the integration time and spectral binning 
capability of the system. The HSI system is calibrated for radiance using calibration spheres 
and with spectral line sources for wavelength calibration. Flights are conducted with the 5 
cameras in a fashion to allow simultaneous and or continuous operation with additional use 
of camera intervalometers that trigger the Nikon and photogrammetric camera. Examples of 
imagery taken on March 21, 2011 are shown below as well as spectral signatures and in-situ 
field targets that are typically utilized for processing imagery for subsurface or submerged 
water feature detection and enhancements.  

Airborne imagery shown in this paper was collected at 1,225 m between 10 AM local time or 
4 PM local, with a 1/225 second shutter speed and aperture adjusted for optimal contrast 
and exposure. The large format (9 in2) negatives scanned at 2400 dpi using a scanner and a 
special glass plate obtained from Scanatron, Netherlands allows for minimization of 
“newton rings” in the resulting ~255 megapixel multispectral imagery shown below (left 
image). Experience has shown that this method works well with AGFA X400PE1 film. The 
aerial negative scanning process is calibrated using a scanned target with known sub-
millimeter scales 0.005 mm to 5 um resolution using a 2400 dpi scanner. The film scanning 
process results in three band multispectral images with spectral response curves published 
by the film manufacturer (Agfa or Kodak).  

In-situ targets as shown in Figure 1 are used for calibration of the imagery using a combination 
of white, black or gray scale targets as shown below in an airborne digital image (right). 
Airborne targets are used for calibrating traditional film and digital sensor data for spatial and 
spectral characteristics using in-situ floating targets in the water as shown below.  

Targets (figure 2) are placed along flight lines. These types of land and water targets are 
used for image enhancement techniques, for use as GPS georeferencing ground control 
points, and georeferencing accuracy assessments. They are necessary in order to assess 
shoreline erosion estimation resulting from oil spill impacts along littoral zones.  

Figure 2 below shows images of weather oil taken in the Jimmy Bay area in January, 2011, 
eight months after the major spill was contained in the deep waters of the northern Gulf of 
Mexico.  

2.2 Pushbroom imagery corrections for aerial platform motions 

Airborne pushbroom imagery collected aboard moving platforms (ground, air, sea, space) 
requires geometric corrections due to platform motions. These motions are due to changes 
in the linear direction of the platform (flight direction changes), as well as sensor and 
platform motion due to yaw, pitch and roll motions. Unlike frame cameras that acquire a 2 
dimensional image, pushbroom cameras acquire one scan line at a time. A sequence of  
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Fig. 1. Image (upper left) of a scanned AGFA color negative film (X400PE1) from an airborne 
flight March 21, 2011 over Barataria Bay, LA. The upper right image is a simultaneously 
collected hyperspectral RGB image (540, 532, 524 nm). Imagery indicates the ability to detect 
weathered oil in the area from oil spill remediation activities. The graph shows selected 
spectra in weathered oil impact areas. The lower right shows in-situ targets.  

 

  
Fig. 2. Digital images of the weathered oil observed in early 2011 from the ground in the 
Barataria Bay, LA. areas shown above. 
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scan lines acquired along the platform track allows the creation of a 2 dimensional image. 
The consequence of using this type of imaging system is that the scan lines collected 
produce spatial artifacts due to platform motion changes - resulting in scan line feature 
offsets. The following describes the roll induced problem to be corrected. Consider an 
airplane that is flying over a straight road indicated by the dark red, vertical line in the left 
image below. Now assume the airplane or mobile platform undergoes unwanted platform 
roll motion and thus the resulting straight feature in the acquired scene is curved, as 
suggested by the light, blue line in the left image. One knows that the road was straight so 
the image as shown in Figure 3 (right) indicates a lateral scan line adjustment is required in 
order to straighten the feature (the blue line). This is accomplished by “shifting” the scan 
lines opposite to the platform roll motion and results in an image where the feature in the 
image is corrected. Thus, one needs to calculate the offset that corresponds to the shift the 
pixels undergo. 

 

 

Fig. 3. The left figure shown in blue is a distorted road. The red line corresponds to the 
center of the scan line. The right image represents the corrected version of the left image. On 
this image the blue straight line is the road and the red curve is the actual position of the 
center pixels of the scan lines. In this example only the shift in the cross track direction is 
represented. 

The offset mentioned previously can be corrected if sensing geometry and the hyperspectral 
imaging (HSI) system orientations are known when the different scan lines were taken. To 
obtain the platform and sensor orientation changes and position a 60 Hz update rate inertial 
measurement unit (IMU) was utilized and mounted to the gimbal mounted camera. An IMU 
is a device that is comprised of triads of accelerometers and gyroscopes. The accelerometers 
measure specific forces along their axes which are accelerations due to gravity plus dynamic 
accelerations. The gyroscopes measure angular rates. The IMU (Motion Node, GLI 
Interactive LLC, Seattle, Washington) that is used also has 3 magnetometers and outputs the 
orientation immediately by using those 3 types of sensors. In addition, differential WAAS 5 
HZ GPS position, directional deviations, altitude with respect to a specified datum, and 
platform speed are collected during the flights.  

An adaptive Kalman filter is used to estimate the induced platform motions using the 
combined sensor data from the GPS and IMU. The filtering technique thus allows one to 
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obtain the relative position of each scan line and the corresponding spatial pixel shift that 
needs to be applied to correct the image. When a gimbal mounted HSI pushbroom camera is 
used, there are two main influences that cause the geometric distortions. These are the 
slowly varying directional changes of the platform and the roll induced motions. The first 
step in the algorithm is to use the GPS to calculate the position of the sensor (Ox,Oy,Oz) at 
every scan line. The second step accounts for the influence of the roll motion by using the 
IMU sensor data. The position of a pixel on the earth’s surface can be estimated using: 
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Where ( Sx, Sy, Sz ) are components of a unit central scan line ray vector, (x, y, z) the position 
in meters compared to the origin (the initial position of the center of the scan line) and hDEM 
is the surface elevation given in meters with respect to Mean Sea Level (MSL).  

 

 
 

Fig. 4. This figure shows the position of the sensor (Ox, Oy, Oz) and the unit scan line ray 
vector in the reference coordinate system as well as the body (sensor platform) coordinate 
system with the possible platform motions. The position (x, y, z) is the position of the 
surface in the reference coordinate system that is located at the center of a HSI pixel . 
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The reference coordinate system chosen in this paper is a local tangent plane with the x 
axis pointed in the initial along track direction, y axis is 90 degrees clockwise to the x axis 
and corresponds to the initial cross track direction. In the results that are presented in this 
paper, shifts have only be applied in the cross-track direction. The shifts in meters are 
scaled to shifts in pixels as a function of the altitude (given by the GPS in meters), the field 
of view of the sensor (dependent upon the lens used) and the number of pixels in one scan 
line. 

In the following section a description of the system is given, as well as the assumptions 
made. Then the application of the Kalman filter to acquire the position and velocity of the 
sensor is described with a detailed description of the vectors and matrices used. In the 2nd 
paragraph of this section, the influence of roll is taken into account. Then a paragraph that 
describes the image resampling phase applied to low flying airborne imagery in littoral 
areas. 

In general, the application of the Kalman filter is used to acquire the position and velocity of 
the sensor is described with a detailed description of the vectors and matrices used and 
influence of roll is taken into account as described below, followed by a nearest neighbor 
resampling of the HSI imagery for each band independently.  

Results that are presented in this paper, pixel shifts are only applied in the cross-track 
direction. Use of a gimbal sensor mount has allowed reduced HSI sensor motion corrections, 
however the need for improving image corrections in order to include pitch and yaw 
motions have been developed.  

 

 
Fig. 5. This figure shows the different altitudes and heights used. Where h is the altitude of 
the platform with respect to the WGS84, hDEM is the surface elevation, halt is the altitude of 
the platform with respect to MSL and hH is the true altitude with respect to the earth’s 
surface. In our applications we consider that the surface elevation is negligible as we take 
images of oil spills around MSL, so hH ≈ halt. 

2.3 Description of the platform dynamic system 

In order to model the movement of the platform, a discrete dynamic system described by 
the canonical state space equations are used: 

    1k k k k k kA Bx x u w  (2) 

  k k k kHz x v  (3) 
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where: 

xk = the state vector (6x1 matrix). xk = (Ox Oy Oz Vx Vy Vz)kT contains the position of the 
sensor (Ox,Oy,Oz) (in meters) and the velocity (Vx,Vy,Vz) (in meters per second) in the 
reference coordinate system. 
Ak = the (6x6) matrix that gives the relation between the previous state vector to the current 
state vector when no noise and no input vector are considered . This relation can also be 
given below by equation (4) for x, y and z. 

        x x xk 1 k kO  O  V  (4) 

where: 
∆tk = the time-interval (in seconds) between step k and k+1. 
Bk = the (6xm) matrix that relates the optional input vector u to the current state. (m = the 
number of elements in the control input vector if external forces are considered).  
uk = the control input vector (mx1 matrix), we assume that there are no external forces that 
act upon the system so uk =0 in our application. Actually, it is assumed that the drag is 
exactly compensated by the thrust and gravity by the lift. 
zk = the measurement vector (6x1 matrix). zk = = (Oxm Oym Ozm Vxm Vym Vzm)kT contains the 
position of the sensor (Oxm,Oym,Ozm) (in meters) and velocity (Vxm,Vym,Vzm) (in meters per 
second) in the reference coordinate system obtained by the GPS. 
Hk = the measurement sensitivity (6x6) matrix also known as the observation matrix that 
relates the state vector to the measurement vector (zk = Hkxk). 
wk = the process noise or also called dynamic disturbance noise (6x1 matrix) which is 
assumed white and Gaussian with covariance matrix Qk (6x6 matrix). 
vk = the measurement noise of the GPS (6x1 matrix) which is also assumed white and 
Gaussian (detailed calculations of the covariances see below) and its associated covariance 
matrix Rk (6x6 matrix). 

The subscript k refers to the time step at which the vector or matrix is considered and 
indicates the time dependence. 

xk contains the real position and velocity, whereas zk contains the measured position and 
velocity. zk is thus always prone to measurement noise. 

In the first step, GPS data is used to calculate the position of the sensor (Ox,Oy,Oz) the 
matrices are defined as follows in the reference coordinate frame: 

   
      
   

    
   
   
      
   

1 0 0 0 0 0.1 0 0 0 0 0
0 1 0 0 0 0 0.1 0 0 0 0
0 0 1 0 0 0 0 0.1 0 0 0

,
0 0 0 1 0 0 0 0 0 0.1 0 0
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0 0 0 0 0 1 0 0 0 0 0 0.1
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t
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t
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Detailed calculations of the covariance’s ߪ௩ଶ and ߪଶ are respectively the covariance in vertical 
and horizontal position (in m2) given by the GPS. 



 
Remote Sensing – Advanced Techniques and Platforms 276 

 













 
 
 
  
  
  
  
   
  
  
        
 
 
 

2

2

2

2

2

2

0 0 0 0 0
2

1 0 0 0 0 0
0 0 0 0 0

0 1 0 0 0 0 2
0 0 1 0 0 0 0 0 0 0 0

, ,
0 0 0 1 0 0

0 0 0 0 00 0 0 0 1 0 2
0 0 0 0 0 1

0 0 0 0 0
2

0 0 0 0 0

h

h

v
k k

Vh

Vhk

Vv k

H R  

The covariance’s of the vertical and horizontal velocities ߪ௩ଶ  and ߪଶ  (in m2 per seconds2) are 
however not given by the GPS but are calculated using using the following, where: 

A given quantity y is a function of x1, x2, … xN given by the formula y=f(x1,x2,...,xN). The 
uncertainties in xi are respectively e1, e2, …, eN. The absolute uncertainty ey is then given by  
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2 22 2

1 2
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f f f
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From the above, one has for the vertical, z direction ( ௭ܸ) = (ை)ೖశభି(ை)ೖ୲ౡ  and hence the 

covariance of the vertical velocity (ߪ௩ଶ ) equals (ఙೡమ)ೖశభା(ఙೡమ)ೖ୲ౡ  since the velocity at time k 
equals the difference between the position at time k+1 and k, divided by the time interval. It 
is assumed that there is no uncertainty on the time interval. This is valid because one 
assumes that xk and xk+1 are statistically independent. In an similar manner, one can 
calculate the covariance of the horizontal velocity, where one assumes  ߪை௫ଶ = ை௬ଶߪ = ఙమ	ଶ   from  ߪଶ = ை௫ଶߪ + ை௬ଶߪ .  

3. Kalman filter and smoothing approach 
3.1 Position and velocity estimations 

The Kalman filter consists of 2 steps. A temporal update step (also known as the “a priori” 
prediction step) and a measurement update step (also known as the “a posteriori” correction 
step). In the temporal step given by equations 4 and 5, the estimated state vector ˆ kx and the 
estimation covariance ܲି  at time step k are predicted based on the current knowledge at 
time step k-1. 

The state vector ˆ kx contains the estimated position of the sensor (Ox,Oy,Oz) (in meters) and 
the velocity (Vx,Vy,Vz) (in meters per second) in the reference coordinate system. 

The predictive procedure step is given by: 
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and the measurement update step (given by equation 6 below) corrects the predicted 
estimated ˆ kx and ܲି  using the additional GPS sensor measurements zk to obtain the 
corrected estimate of the state vector ˆ kx and ܲା or: 
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where, ˆ kx and ˆ kx  are respectively the predicted (-) and corrected (+) value of the estimated 
state vector (6x1 vector), ܲି  and ܲା (a 6 x 6 matrix) are respectively the predicted and 
corrected value of the estimation covariance of the state vector, or:  

        2 2 2 2 2 2, , , , ,k Ox Oy Oz Vx Vy Vz k
P diag  

Kk (equation 6) is the Kalman gain (6x6 matrix). 

The Kalman filter thus computes a weighted average of the predicted and the measured state 
vector by using the Kalman gain Kk. If one has an accurate GPS sensor, the uncertainty on the 
measurement will be small so there will be more weight given to the measurement and thus the 
corrected estimate will be close to the measurement. When one has a non-accurate sensor, the 
uncertainty on the measurement is large and more weight will be given to the predicted estimate.  

A Kalman smoother has been applied as well where the equations are shown in (7) below. A 
Kalman Smoother in addition to the past observations also incorporates future observations 
to estimate the state vector: 
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where:  

ˆ s
kx = the smoothed estimated state vector (6x1 matrix). ܲ௦ = the covariance (6x6) matrix of the smoothed estimated state vector.  

Ck = the (6x6) matrix that determines the weight of the correction between the smoothed 
and non-smoothed state. 

4. Roll correction 
The second step in the algorithm for motion correction accounts for the influence of the roll 
motion by using the IMU orientation output. This is not included in the first Kalman filter 
because the IMU data is given at a higher frequency than the GPS data. 
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The state equations and Kalman filter/smoothing equations are given by 2.5, 2.6 and 2.7 
with state vector 'ˆ kx containing the estimated position of the center pixel of the scanline on 
the surface (in meters) and the tangent of the roll angle (nondimensional) in the reference 
coordinate system. The measurement vector zk’ contains the position of the sensor (Ox,Oy) 
(in meters) specified by the output of the previous Kalman filter in the reference coordinate 
system and the tangent of the rollangle rm (nondimensional) given by the orientation output 
of the IMU. 

The matrices used are defined by: 
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where:  

r  = the roll angle (in radians). 
halt  = the altitude of the sensor (in meters) with respect to MSL. ߪை௫ଶ  and ߪை௬ଶ  = respectively the covariance of the position in x and y direction of the sensor 
given by the previous Kalman filter (in m2). ߪଶ  = the covariance of the roll angle given by the IMU (nondimensional). 

5. Image resampling 
In some cases, it is only desirable to cross-track shift corrections and not resample the image 
in order to keep the pure spectral signatures of measured pixels. Otherwise, 2D nearest 
neighbourhood resampling is used. 

The cross-track shift corrections (which are in the y direction) ss on the surface in meters 
need to be converted to pixelshifts sp. The number of pixels in one scanline nN, the altitude 
of the sensor above the surface in meters hH and half of the angular field of view α are used. 
This is accomplished by defining a conversion ratio cr, the shift in meters on the surface of 1 
pixel shift, or: 
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where: 

w = hH tan α. 

The pixelshift sp is then given by  s
p

r

s
s

c
 as depicted below: 
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Fig. 6. This image shows the conversion triangles used to calculate the shiftratio between the 
shift on the earth surface ss in meters and the pixelshift sp. hH is the altitude above the 
surface, α half of the angular field of view of the camera and nN the number of pixels in one 
line. 

6. Feature detection in hyperspectral images using optimal multiple 
wavelength contrast algorithms 
Hyperspectral signatures and imagery offer unique benefits in detection of land and water 
features due to the information contained in reflectance signatures that directly show 
relative absorption and backscattering features of targets. The reflectance spectra that will be 
used in this paper were collected in-situ on May 31st 2011 using a SE590 high spectral 
resolution solid state spectrograph and the HSI imaging system described above. Bi-
directional Reflectance Distribution Function (BRDF) signatures were collected of weathered 
oil, turbid water, grass and dead vegetation. The parameters describing the function in 
addition to the wavelength λ, (368-1115 nm) were the i (solar zenith angle) = 71.5°, 0  
(sensor zenith angle) = 55°, i (solar azimuth angle) = 105° and the 0 (sensor azimuth angle) 
= 270°. The reflectance BRDF signature is calculated from the downwelling radiance using a 
calibrated Lambertian diffuse reflectance panel and the upwelling radiance at the above 
specified viewing geometry for each target (oil, water, grass, dead vegetation) as described 
in the figure below. 

The figures below show the results of measurements from 400 to 900 nm for a 1 mm thick 
surface weathered oil film, diesel fuel, turbid water (showing the solar induced 
fluorescence line height feature, dead vegetation, and field grass with the red edge feature 
common to vegetation and associated leaf surfaces. These BRDF signatures are used 
below to select optimal spectral channels and regions using optimally selected contrast 
ratio algorithms in order to discriminate oil from other land & water features in 
hyperspectral imagery.  
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Fig. 7. Illumination and viewing geometry defined for calculation of the BRDF signatures 
collected using the 252 channel SE590 high spectral and radiometric sensitivity solid state 
spectrograph and the hyperspectral imaging system, where θi is the incident solar zenith 
angle of the sun, θ0 is the sensor zenith angle, Øi is the solar azimuth angle from the north 
and Ø0 is the sensor azimuth angle as indicated above. In general, a goniometer 
measurement system is used to measure the BRDF in the field or laboratory environment as 
the sensor zenith and azimuth angles are changed during a collection period with a given 
solar zenith conditions.  

The above BRDF signatures were used to select optimal spectral regions in order to apply 
the results to hyperspectral imagery collected from a weathered oil impacted shoreline in 
Barataria Bay, LA. The first method used was to perform feature detection using spectral 
contrast signature and HSI image contrast. The well know Weber’s contrast definition is first 
used to determine the maximum (optimal) value of the contrast between a target t and a 
background b as a function of wavelength, or:  
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The resulting contrast calculated across the spectrum for each channel are shown below 
using the 1 mm thick oil film as the target and the backgrounds of turbid water, dead 
vegetation (dead foliage), and field grass. 

The result of the optimization of the contrast obtained from equation 9 yields an optimal 
channel and/or spectral region as a function of wavelength where the contrast is maximized 
between a specified target and specified background or feature in a hyperspectral image 
collected from a fixed or moving platform. 
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Fig. 8. Averaged (n=360) BRDF reflectance spectrums collected using a SE590 solid state 
spectrograph May 31, 2010. From upper left to right: BRDF spectrum of weathered oil (1 mm 
thick film) on clear water, diesel film (1mm thick film) on clear water, turbid water, with 
high chlorophyll content as indicated by the solar induced fluorescence line height, dead 
vegetation (dead leaves) and field grass showing the red edge. Solar angles were 
determined from DGPS location, time of day, and sensor position angles and measured 
angle from magnetic north direction. 

 
Fig. 9. Resulting BRDF Weber contrast signatures between oil as the target and different 
backgrounds (left to right): turbid water, dead vegetation (dead foliage) and field grass. 

A limitation with this common definition of the contrast is that one band is used out of all 
the possible combinations available in a hyperspectral image for the feature detection or 
extraction algorithm. This limitation can be overcome, by defining an advantageous 
“multiple-wavelength (or channel) contrast” as: 
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The result of the optimization of this “multiple-wavelength contrast algorithm” is the optimal 
selection of a band ratio (located in a spectral region) minus one. Furthermore, a new 
definition of the inflection contrast spectrum (a numerical approximation of the second 
derivative) can be defined. The contrast inflection spectrum described in previous papers 
was given by: 
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where m and n are respectively defined as a dilating wavelet filter forward and backward 
operators described by Bostater, 2006. This inflection is used to estimate the second 
derivative of reflectance spectra. The underlying goal of computing an approximation of the 
second derivative is to utilize the nonlinear derivative based, dilating wavelet filter to 
enhance the variations in the reflectance spectra signals, as well as in the contrast spectrum 
signals. These variations directly represent the target and background absorption (hence: 
concave up) and backscattering (hence: concave down) features within a hyperspectral 
reflectance image or scene and form the scientific basis of the discrimination based 
noncontact optimal sensing algorithms. A practical limitation encountered using this 
definition above, is that a concave-down (or backscattering) feature value of the inflection as 
defined in 2.7 is greater than one and a concave up (or absorption) feature, in the inflection 
or derivative based wavelet filter defined in 1.7 will be between 0 and 1. There is thus a 
difference in scale between a concave-up and a concave-down behavior. Consider the 
following example: 

 
Fig. 10. Example concave-down (backscattering) feature (blue line) and a concave-up 
(absorption) feature (red line) of the same amplitude (Y axis) as a function of an spectral 
wavelength on the x axis. 

In the case of the concave-down, the result of the inflection is: 
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While in the case of the concave-up (same concavity), the result will be: 
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To order to give equal weight to absorption and backscatter features in the band selection 
process, a modified spectrum for I*(λ) is defined as: 
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Using this definition, both concavities will be on the same scale and a concave-down feature 
(hence: backscattering) will give a positive value (>1) while a concave-up feature (hence: 
absorption) will give a negative value (<-1) and be treated the same numerically. For 
example, in the above example, the result for the new definition of the inflection or 2nd 
derivative estimator would be 4 and -4. 

A second issue is to determine what values to assign to the upward and backward operators in 
the dilation filter. One could pick the optimal value for the inflection using all possible 
combinations of m and n. The problem with this method is that when m and n are large, the 
difference between the channels for which the inflection is calculated and the one to which it is 
compared can be influenced by the signal to noise ratio being at the low and high wavelengths 
in a typical camera/spectrograph system. Thus the resulting optimal regions selected can be 
scientifically or physically difficult to explain. Thus a limit is placed on the maximum value of 
the m, n operators from a practical point of view. The minimal value of m, n is 1. Thus, one can 
select the optimal range of the m and n wavelet filter operators (either a maximum 
(backscattering) or a minimum (absorption) for all combinations of m and n between 1 and the 
maximal value (in this paper this maximal value used was selected as 7). The resulting 
derivative estimator spectra (inflection spectra) using equation 12 was calculated and is shown 
below, using the previously shown BRDF spectra shown in Figure 8 above. 

 
Fig. 11. BRDF Inflection spectra using the reflectance spectrums above. From left to right: an 
oil film (1mm thick) on clear water, turbid water, dead vegetation (dead leaves) and grass. 

The inflection algorithm can also be applied to the contrast spectrums (to enhance variation 
in the contrast spectrum). The result of this calculation is given in the following figures. 
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Fig. 12. Inflection of the contrast spectra. The contrast target is weathered oil with different 
backgrounds. From left to right: turbid water, dead vegetation (dead leaves) and grass are 
the contrast backgrounds. 

Once the inflection spectra are calculated, it is also possible to apply Weber’s definition of 
the contrast to the inflection spectra instead of the BRDF. The resulting contrast spectrums 
are given in the following figure: 

 
Fig. 13. Weber contrast of the inflection spectra. The target is weathered oil with different 
backgrounds. From left to right: turbid water, dead vegetation (dead leaves) and grass. 
Optimal bands and spectral regions are indicated by the greatest positive or negative values 
across the spectrums. 

The result of the optimization procedures yields a band or band ratio for the different types 
of contrast (Weber’s contrast, contrast of the inflection or inflection of the contrast). The 
optimal bands using the different techniques that were obtained using weathered oil film as 
the target and water, dead vegetation or grass as backgrounds are shown in the Table 1, and 
are used in processing hyperspectral imagery collected using the methods in the results 
section of this paper (see Table 1). 

7. Collection of hyperspectral imagery from littoral zone 
In order to detect and discriminate the presence of weathered oil on a near shore habitat or the 
spatial extent of weathered oiled along a shoreline, a novel and new technique has been 
developed for collecting HSI imagery from a small vessel (anchored or underway), or the 
sensor mounted in the littoral zone. The resulting HSI imagery produces pixel sizes or ground 

400 500 600 700 800 900

Wavelength (nm)

-3

-2

-1

0

1

2

3

In
fle

ct
io

n 
of

 th
e 

co
nt

ra
st

 (O
il/

W
at

er
)

400 500 600 700 800 900

Wavelength (nm)

-1,000

-500

0

500

In
fle

ct
io

n 
of

 th
e 

co
nt

ra
st

 (O
il/

D
ea

d
Ve

ge
ta

tio
n)

400 500 600 700 800 900

Wavelength (nm)

-10,000

0

10,000

20,000

In
fle

ct
io

n 
of

 th
e 

co
nt

ra
st

 (O
il/

G
ra

ss
)

400 500 600 700 800 900

Wavelength (nm)

-3

-2

-1

0

1

C
on

tra
st

 o
f t

he
 in

fle
ct

io
n 

(O
il/

W
at

er
)

400 500 600 700 800 900

Wavelength (nm)

-3

-2

-1

0

1

C
on

tra
st

 o
f t

he
 in

fle
ct

io
n 

(O
il/

D
ea

d
Ve

ge
ta

tio
n)

400 500 600 700 800 900

Wavelength (nm)

-3

-2

-1

0

1

C
on

tra
st

 o
f t

he
 in

fle
ct

io
n 

(O
il/

G
ra

ss
)



Hyperspectral Remote Sensing –  
Using Low Flying Aircraft and Small Vessels in Coastal Littoral Areas 285 

sampling distances (GSD) on the order of several mm to cm scales, depending upon the 
distance between the sensor and the shoreline. The purpose of collecting this type of imagery 
is to (1) reduce atmospheric affects and (2) minimize the influence of the “mixed pixel” and 
“adjacency effects” in selecting spectral regions for detection of weathered oil and for testing 
algorithms. The results are also immediately and directly applicable to low altitude airborne 
imagery, especially if the same sensor is used aboard the airborne platform.  
 

 Water Mud and oil Sand Vegetation 
Weber’s 
contrast 

( 759nm)Band   ( 378nm)Band   ( 368nm)Band   ( 345nm)Band    

Inflection of 
the contrast 

( 382nm)Band   ( 360nm)Band   ( 382nm)Band   ( 710nm)Band    

Contrast of the 
inflection 

( 420nm)Band   ( 684nm)Band    ( 424nm)Band   ( 684nm)Band    

Multiple 
wavelength 
contrast 
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Band nm

Band nm
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1
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( 363 )

Band nm

Band nm







 

( 394 )
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Table 1. Resulting bands or band ratios for the optimization of: the contrast (Weber’s 
definition), the inflection of the contrast, the contrast of the inflection spectra, the multiple 
wavelength contrast (as defined above) and the multiple wavelength contrast of the 
inflection spectra. In each case, weathered oil is the target and the background is: water, 
mixture of oil and mud, sand or vegetation. 

The sensor used to view the shoreline can be directly mounted on the vessel or can be 
mounted above the water but near the shore using a tripod or in a vessel. In the case of a 
mounted sensor on a vessel, the vessel is anchored at two points, allowing movement in 
mainly one direction (for example the boat is anchored to mainly allow motion due to waves 
in the pitching direction. Fixed platform mounting does not require motion correction, 
however the data collected from the anchored vessel requires roll motion correction (in this 
case pitch correction). 

In order to perform this correction, an IMU (inertial measurement unit) is attached to the HSI 
sensor and collects the sensor motion information while the pushbroom sensor sweeps or is 
rotated (using a rotation stage) along the shoreline being investigated. This correction will be 
applied before any further processing of the contrast algorithms are applied to the imagery 
taken in the Northern Gulf of Mexico and shown below. An example of the measurement 
scheme that has been used to detect and discriminate weathered oil (as described above) is 
shown below. 

The image below (right) is the resulting hyperspectral image 3 band RGB display of a 
shoreline that has been impacted by a recent oil-spill in the Gulf of Mexico region, near Bay 
Jimmy, Louisiana. 
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Fig. 14. The HSI imaging system (left) is placed upon a small vessel or a fixed platform 
(tripod) in shallow water types within viewing distance of a shoreline. The sensor sweeps 
the shoreline and the pushbroom sensor produces a hyperspectral image of the shoreline as 
shown in the above HSI 3 band image (right). Note the ability to see gravity and capillary 
waves, small grasses on the shoreline as well as weathered oil at the land-water margin. 
Image collected February 28, 2011 in Barataria Bay, Louisiana 

In this case a vessel mounted sensor was used and the image was corrected for the platform 
motion (right). To illustrate the influence of the motion of a small vessel, and the necessary 
IMU corrections needed, a shoreline was imaged from a vessel (below left image) and from 
a fixed in-situ platform (right image) in April 2011 the platform motion (right).  

 

  
Fig. 15. A hyperspectral image (left) 3 band RGB display of a littoral zone using a 
pushbroom sensor mounted on a vessel anchored at two points. During the acquisition of 
the hyperspectral image the sensor records the pitching effect of the anchored vessel that 
needs to be corrected using an IMU sensor due to the water surface gravity waves. The 
influence of this motion can clearly be seen in the image if no correction is applied (left). The 
shoreline area (right) acquired when the pushboom sensor was mounted on fixed platform 
above the water. In this case no correction needs to be applied to the image. Note the clarity 
of the water surface capillary and small gravity waves. 
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8. Conclusion 
The purpose of this paper has been to describe different calibration approaches and 
techniques useful in the development and application of remote sensing imaging systems. 
Calibration includes the use of laboratory and field techniques including the scanning of 
photogrammetric negatives utilized in large format cameras, as well as in-situ targets and 
spectral wavelength and radiance calibration techniques. A newly integrated hyperspectral 
airborne pushbroom imaging system has been described in detail. Imagery from different 
integrated imaging systems were described for airborne remote sensing algorithm 
developments using high spatial resolution (on the order of a few mm2 to larger sub meter 
pixel sizes) imaging systems. The high spatial and spectral resolution imagery shown in this 
paper are examples of technology for characterization of the water surface as well as 
subsurface features (such as weathered oil) in aquatic systems.  

Other ongoing applications in the Marine & Environmental Optics Lab making use of data 
from the remote sensing systems described in this paper are (a) land surface vegetation 
studies needed for ongoing climate change studies currently being conducted in coastal 
Florida scrub vegetation studies and (b) layered radiative transfer modeling of surface and 
subsurface oil signatures for sensor comparisons and related algorithm development to 
detect surface and subsurface oil using spectral and spatial data fusion and sharpening 
techniques.  
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1. Introduction 
Remote sensing is a technique for measuring, observing, or monitoring a process or object 
without physically touching the object under observation. The remote sensing 
instrumentation is not in contact with the object being observed, remote sensing allows - to 
measure a process without causing disturbance - to probe large volumes economically and 
rapidly, such as providing global measurements of aerosols, air pollution, agriculture, 
environmental impacts, solar and terrestrial systems, ocean surface roughness and large-
scale geographic features. The modern atmosphere remote sensing technique offers to study 
in detail, the atmospheric physics/chemistry and meteorology. In general, observation, 
validation, and theoretical simulation are highly integrated components of atmospheric 
remote sensing. Active and passive remote-sensing techniques and theories/formulation 
methods for measuring atmospheric and environmental parameters have advanced rapidly 
in recent years. Active remote sensing instrumentation includes an energy source on which 
the measurement is based. In this case, the observer can control the energy source and the 
examples of this class are RADAR, LIDAR, SODAR, SONAR etc. Passive remote sensors do 
not include the energy source on which the measurement is based. They rely on an external 
light, which is beyond the control of the observer and examples of this class are optical and 
radio telescopes, radiometers, photometers, spectrometers etc. 

2. LIDAR as a remote sensing probe 
LIDAR (LIght Detection And Ranging) is also called as “Optical RADAR” or “Laser 
RADAR”. It is a powerful and versatile remote sensing technique for high resolution 
atmospheric studies. It complements the conventional RADAR for atmospheric studies by 
being able to probe the region not accessible to the RADAR and study micro-scales of the 
atmosphere. The LIDAR probing of the atmosphere started in early 1960s and pursued 
intensively over the past five decades. Fiocco and Smullins (1963) used Ruby Laser with a 
feeble energy of 0.5J, obtained Rayleigh scattering signals from the atmosphere upto 50 km 
altitude and also detected dust layers in the atmosphere. Ligda in 1963 made the LIDAR 
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measurements of cloud heights in the troposphere. Recent developments leading to the 
availability of more powerful, relatively rugged and highly efficient solid state lasers and 
improvements in detector technology as well as data acquisition techniques have resulted, 
LIDARs as a potential tool for atmospheric studies. Both continuous wave and pulsed laser 
systems have been extensively used and they are currently operational for the study of 
atmospheric structure and dynamics, trace constituents, aerosols, clouds as well as 
boundary layer and other meteorological phenomena. Currently laser systems are being 
used for probing the atmosphere begin from surface (near boundary layer) to lower 
thermosphere altitudes (upto ~100 km). 

2.1 LIDAR principle 

LIDAR is one of the most powerful remote sensing techniques to probe the earth’s middle 
atmosphere. The basic principle of probing the atmosphere by LIDAR is similar to that of 
the RADAR. In the simplest form, LIDAR employs a laser as a source of pulsed energy of 
useful magnitude and suitably short duration. Typically Q-switched ruby (wavelength=0.69 
m) or Neodymium (wavelength 1.06 m) laser systems are used to generate pulses having 
peak powers measured in tens of megawatts in the duration of 10-20 nsec. Pulses with such 
energy (i.e. of the order 1 joule) are directed in beams by suitable optical systems. The 
advantage of laser, as it has specific properties of virtually monochromatic and highly 
coherent and collimated. 

As the transmitted laser energy passes through the atmosphere, the gas molecules and 
particles or droplets cause scattering. A small fraction of this energy is backscattered in the 
direction of the LIDAR system and is available for detection. The scattering of energy in 
directions other than the direction of propagation, or absorption by the gases and particles, 
reduces the intensity of the beam, which is said to be attenuated. Such attenuation applies to 
both the paths (to and fro) of the distant backscattering region. 

The LIDAR backscattered energy is collected in a suitable receiver by means of reflective 
optics and transferred to a photo-detector (commonly referred to a photo-multiplier). This 
produces an electrical signal, the intensity of which at any instant is proportional to the 
received LIDAR signal power. Since the light travels at a known velocity, the range of the 
scattering region produces the signal received at any instant can be uniquely determined 
from the time interval of the sampled signal from the transmitted pulse. The magnitude of 
the received signal is determined by the backscattering properties of the atmosphere at 
successive ranges and by the two-way atmospheric attenuation. Atmospheric backscattering 
intern depends upon the wavelength of the laser energy used, and the number, size, shape 
and refractive properties of the particles (droplets and molecules) intercepting the incident 
energy. Backscattering from an assemblage of scatterers is a complicated phenomenon; in 
general, the backscattering increases with increasing scatterer concentrations. 

The electrical signal from the photo detector thus contains information on the presence, range 
and concentration of atmospheric scatterers. Various forms of presenting and analyzing such 
signals are available. In the simplest form they may be presented on an oscilloscope in a 
coordinate system showing received signal intensity as a function of range. Since such signals 
are transient, (1 km of range is represented by an interval of time of ~7 s), it is necessary to 
photograph several such oscilloscope displays to obtain adequate data for presentation. 
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Figure 1 shows the schematic diagram of LIDAR probing of the atmosphere in which P0 
represents the laser-transmitted pulse energy. Let us consider at an altitude z the scattering 
take place, hence a factor T attenuates the intensity of light pulse. The radiation scattered in 
backward is P0T, where  is the backscattering coefficient (sum of Rayleigh scattering by 
air molecules and Mie scattering by aerosol particles). Since the backscattered radiation 
travels the same distance r before being detected by the telescope, it further undergoes 
attenuation by the same factor T. Thus the intensity of the backscattered signal detected at 

the telescope becomes
2

0
2

P T A

r

 , where A is the area of the telescope receiving the 

backscattered radiation. 

 
Fig. 1. Schematic diagram showing the basic principle involved in LIDAR probing of the 
atmosphere. 

LIDARs may be configured into two ways; (a) Mono-static configuration in which both 
transmitter and receiver are collocated. (b) Bi-static configuration in which both transmitter 
and receiver are separated by some distance. 

2.2 LIDAR equation 

The transmitted laser beam gets scattered in all directions at all altitudes, the backscattered 
echoes are received by the telescope and their intensities are measured. The field of view of 
the telescope is kept larger than beam divergence, in order to accommodate the beam 
completely at all altitudes. The received signal intensity is described in terms of the LIDAR 
equation as given by (Fiocco, 1984); 

 0 2( ) ( ) exp 2 ( )
2

A c
P r P r r dr

r
                   (1) 
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Where P(r) is the instantaneous power received at time t from an altitude (range) r, P0 is the 
transmitted power,   is the system constant which depends on the transmitter and receiver 
efficiencies. A is the area of primary (collecting) mirror of the receiving telescope. The term 

2
A
r

 
 
 

 is the solid angle subtended by the primary mirror at the range r. This simple 

expression for solid angle is applicable for monostatic only because all the transmitted 

energy contributes to the backscattered signal from the range r. The term 
2
c 

 
 

 gives the 

length of the illuminated path, which contributes to the received power, where c is the 
velocity of light and   is the pulse duration of the laser beam.  

The 
2
c 

 
 

 term determines the minimum spatial resolution available in the direction of the 

beam propagation. In the transverse direction the spatial resolution depends on the laser 
beam width at particular altitude. In a typical LIDAR system the pulse duration of the laser 
beam is of the order of few nanoseconds and the beam divergence is less than a milli-radian, 
which corresponds to a scattering volume of a few cubic meters. This is the greatest 
advantage of the LIDAR technique which is not possible by any other atmospheric remote 
sensing technique. 

( )r is the volume backscattering coefficient of the atmosphere at range r. It gives the 
fractional amount of the incident energy scattered per steradian in the backward direction 
per unit atmospheric path length and has the dimension of m-1sr-1.   is the volume 
attenuation coefficient of the atmosphere and has the unit of m-1, defined as twice the 
integral between the transmitter and the scattering volume to obtain the net transmission. 

The term   and   include the contribution from air molecules, aerosols and the other 
atmospheric species. The problem related with the LIDAR equation is that it contains two 
unknowns,   and  , which make it difficult to obtain the general solution. Appropriate 
inversion methods (Fernald et al., 1984; Klett, 1981 & 1985) have been developed to solve the 
equation. The LIDAR equation however assumes only single scattering. Contribution arising 
from multiple scattering is important for high turbidity cases such as clouds and fogs. 

2.3 LIDAR scattering / absorption mechanisms 

As the radiant energy passes through the atmosphere it undergoes transformations like 
absorption and scattering. Absorption (or emission) of radiation takes place when the 
atoms or molecules undergo transition from a energy state to another. Scattering is the 
deflection of incoming solar radiation in all directions. Scattering of radiation depends to 
a large extent on particle size. There are several scattering / absorption mechanisms that 
occur when the laser energy interacts with the atmosphere. The predominant scattering is 
quasi-elastic scattering from aerosols (Mie scattering) or molecules (Rayleigh Scattering). 
The quasi-elastic nature arises from the motion of the molecules or aerosols along the 
direction of the laser beam. Aerosols, generally move with the air mass, give rise to 
smaller Doppler shifts, while the molecules, move at high speed, give rise to larger 
Doppler shifts. Another form of atmospheric elastic scattering is resonance fluorescence. 
In-elastic scattering includes Raman Scattering and Non-Resonance Fluorescence. These 
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scattering processes, sometimes in combination with molecular absorption, form the basis 
for various types of LIDAR remote sensing techniques. The most well known is DIAL 
(DIfferential Absorption LIDAR) or DASE (Differential Absorption Scattering Energy). 
Table 1 summarizes these mechanisms. 
 

Technique Atmospheric measurements 
Rayleigh Scattering Air Density and temperature (above 35 km) 
Mie Scattering Cloud, Smog, Dust, Aerosols (Below 35 km ) 
Raman Scattering N2, CO2, H2O and Lower Atmosphere temperature 

(less than 20 km ) 
Differential Absorption 
LIDAR (DIAL) 

Trace Species, like O3, NO2, CO2, CH4, CO, H2O  
(for upto 50 km) 

Table 1. Main scattering / absorption process of laser-atmosphere Interactions. 

2.3.1 LIDAR scattering / absorption mechanisms  

Rayleigh scattering 

In 1890’s Lord Rayleigh showed that the scattering of light by air molecules is responsible 
for the blue color of the sky. He showed that, when the size of the scatterer is small 
compared to the wavelength of the incident radiation. Rayleigh scattering mainly consists of 
scattering from the atmospheric gases. This type of scattering is varies nearly as the inverse 
of fourth power of interactive wavelength and directly proportional to sixth power of the 
radius of the scatter.  

Mie scattering 

When the sizes of the scattering particles are comparable to or larger than the LIDAR 
wavelength, the scattering is governed by Mie theory. Pollen, dust, smoke, water droplets, 
and other particles in the lower portion of the atmosphere cause Mie scattering. Mie 
scattering is responsible for the white appearance of the clouds. Note that for a given 
incident wavelength as the size of the scatterer is reduced, the scattering computed using 
Mie theory coincides with the results obtained using Rayleigh formula. Thus Rayleigh 
scattering is said to be a special case of Mie scattering. The Mie scattering is directly 
proportional to wavelength and proportional to the volume of the scatterers. 

Raman scattering 

Raman scattering is the process involving an exchange of a significant amount of energy 
between the scattered photon and the scattering species. Thus the Raman scattering 
component is shifted from the incident wave frequency by an amount corresponding to the 
internal energy of the species. The Raman scatter has both down-shifted (stokes) and up-
shifted (anti-stokes) lines in its spectrum. The cross section for Raman scattering is small and 
compared to Rayleigh scattering, it is smaller by about three orders of magnitude. However, 
by LIDAR technique, it offers a valuable means for identifying and monitoring atmospheric 
constituents and also for temperature measurements in the lower atmosphere. The 
technique makes use of stokes line since its intensity is much greater than that of anti-stokes 
line. 
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Differential absorption technique 

The most sensitive and effective absorption method for the measurement and monitoring of 
air pollutants is the “Differential Absorption LIDAR (DIAL)” technique. In this technique, 
the pulsed laser transmitter emits signals at two wavelengths, on and off corresponds to 
absorption line and other outside the absorption line. The received backscatter power on 
and off wavelength is given by 
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Where P is the received backscatter power at time t = 2r /c, r is range, E is the transmitted 
laser pulse energy,  is the atmospheric backscatter coefficient,   is the atmospheric 
extinction coefficient and C is system constant. The atmospheric absorption and extinction 
coefficient can be expressed interms of aerosol and molecular components.  

In this method, the ratio of the received backscattered power between on and off 
wavelength is directly proportional to the number concentrations of the molecule/gaseous 
pollutants. 

Table-2 provides the primary laser sources, which are used for atmospheric applications. In 
which solid-state lasers are popular. The first laser systems used with the flash lamp 
pumped is a Q-switched ruby laser. Now it has been implemented in Nd-YAG laser system 
also. 
 

Laser Wavelength Energy per pulse Efficiency 
(%) 

Ruby 0.694 m 2-3 J at 0.5 Hz 0.1 – 0.2 
Nd:YAG 1.06 m 1 J at 10 Hz, 10 ns pulse 1 - 2 * 

CO2 9-11 m multi-line 1-10 J at 1-50 Hz 10 – 30 
CO2 Tunable 0.1 J at 10 Hz 5 
CO 5 – 6.5 m Not very popular for pulsed 

operation 
10 

Dye lasers Flash 
lamp pumped 

0.35-1.0 m 0.1 – 20 J 1 

*Note: More recently using diode array pumping more than 20 % efficiencies have been achieved. 

Table 2. Primary laser sources used for atmospheric applications  

2.4 Applications of LIDAR 

LIDARs are used in variety of applications in the field of atmospheric science. Some of the 
main applications are outlined, below. 
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LIDAR for the aerosol studies 

The LIDAR provides measurements of the optical backscattering cross section of air as a 
function of range and wavelength. This information may be subsequently interpreted to 
obtain profiles of the aerosol concentration, size distribution, refractive index, scattering, 
absorption and extinction cross sections and shape. The scattering involves with aerosol is 
mainly due to Mie scattering. Details on Mie scattering are provided in the earlier section. 

LIDAR for the cloud studies 

LIDARs are well suited and widely used for determining the characteristics of clouds, 
especially high altitude clouds, because of their high range resolution and high sensitivity to 
hydrometeors. The sharp enhancement in the Mie backscattered LIDAR signal makes 
possible the detection and characterization of the clouds (Fernald, 1984). Although one 
channel LIDAR can define physical boundaries of clouds, polarization diversity gives 
fundamental principles to distinguish between water and ice phase of the clouds. The 
LIDAR measurements of scattering ratio and linear depolarization ratio (LDR) provide the 
cloud parameters and information on the thermodynamic phase of the cloud particles. 

LIDAR to determine middle atmospheric temperature 

In the height range, where the contribution from the Mie backscatter is negligible (   30 km), 
the recorded signal is due to the Rayleigh backscatter and its intensity, corrected for the 
range and atmosphere transmission, is proportional to the molecular number density. Using 
the number density taken from an appropriate model for a specified height, where the 
signal-to-noise ratio is fairly high, the constant of proportionality is evaluated and thereby 
the density profile is derived. Taking the pressure at the top of the height range (say 90 km) 
from the atmospheric model, the pressure profile is computed using the measured density 
profile, assuming the atmosphere to be in hydrostatic equilibrium. Adopting the perfect gas 
law, the temperature profile is computed using the derived density and pressure profiles. 
The analysis closely follows the method described by Hauchecorne and Chanin (1980). 

LIDAR to determine the wind speed 

Doppler LIDARs make use of the small change in the operating frequency of the LIDAR 
due to motion of the scatterers to measure their velocity. Using the technique called 
heterodyning, the returned backscattered signal is used with another laser beam so that 
they interfere, yielding a more easily measurable signal at radio wave frequency. The 
frequency of the radio wave will be equal to the difference between the frequencies of the 
transmitted and the received signals. The application of Doppler LIDAR in atmospheric 
remote sensing is to measure wind velocity, i.e., wind speed and direction in addition to 
other parameters. 

LIDAR for the measurements of vertical profile of ozone 

The DIAL technique has been used to provide vertical profiles of the ozone number density 
from ground to 40-50 km height level. The basic principle of the DIAL technique is 
described in earlier section (section 2.3.1). In this technique, the laser transmitter emits 
signals at two close wavelengths, on and off corresponding to a peak and trough, 
respectively in the absorption spectrum of the species of interest. The ratio of the two 
received signals due to backscattering corresponds to the absorption produced by the 
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species (O3) in the range cell defined by the laser pulse duration and receiver gate. The 
amount of absorption is directly related to the concentration of the constituent.  

LIDAR for lower atmospheric temperature and minor constituents 

Raman LIDAR is useful in obtaining molecular nitrogen concentration from low altitudes 
(below 30 km) where Rayleigh LIDAR technique is not applicable due to the presence of 
aerosols. In case of Raman scattered signal the radiation emerging only from the N2 
molecules are detected that is proportional to the number density of air molecules. 
Temperature could be derived from the number density as the case of Rayleigh LIDAR. 
Raman scattering is also used to detect different molecular species present in the 
atmosphere. 

LIDAR in space 

Ground-based LIDAR provides atmospheric data over a single viewing site, while LIDAR 
aboard an aircraft can gather data over an area confined to a region. Thus the ground-based 
and airborne LIDARs provide data over a limited area of a specified region of the earth. 
Space borne (satellite-based) LIDARs, on the other hand, have the potential for collecting 
data on a global scale, including remote areas like the open ocean, in a short period of time. 

3. Lidar activities in south africa 
Although ground-based LIDAR systems exist in many developed countries and largely 
concentrated in northern hemisphere mid- and high latitude, it is still a very novel technique 
for South Africa and African countries. A recent survey on the available LIDAR system 
around the world, noticed that there are currently two different LIDARs available in South 
Africa, located in Pretoria and Durban (see. Figure 2). Both LIDAR systems are similar in 
operation and different in specifications and the objectives of measurements. The Durban 
LIDAR is operated at University of KwaZulu-Natal as part of cooperation between the  

 
Fig. 2. Geo-graphical position of LIDAR sites in Pretoria and Durban. 
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Reunion University and the Service d'Aéronomie (CNRS, IPSL, Paris) for atmosphere 
research studies, especially to study the upper troposphere and lower stratosphere (UTLS) 
aerosol structure and middle atmosphere temperature structure and Dynamics. The Council 
for Scientific and Industrial Research (CSIR) National Laser Centre (NLC) in South Africa 
has recently designed and developed a mobile LIDAR system to contribute to lower 
atmospheric research in South Africa and African countries. The CSIR mobile LIDAR acts as 
an ideal tool to address atmospheric remote sensing measurements from ground to 40 km 
and to study the atmosphere aerosol/cloud studies over Southern Hemisphere regions and 
this will encourage collaboration with other partner’s in-terms of space-borne and ground 
based LIDAR measurements. 

4. CSIR - NLC mobile LIDAR system 
4.1 System description 

The CSIR NLC mobile LIDAR has been configured into mono-static that maximizes the 
overlap of the outgoing beam with the receiver field of view. The LIDAR system has been 
mounted in a mobile platform (van) with a special shock absorber frame. Figure 3 shows a 
3-D pictorial representation of the mobile LIDAR with 2-D scanner. In general, any LIDAR 
systems can be sub-divided into three main sections, a laser transmitter, an optical receiver 
and a data acquisition system.  

 
Fig. 3. A 3-D pictorial representation of the CSIR-NLC mobile LIDAR with 2-D scanner 



 
Remote Sensing – Advanced Techniques and Platforms 

 

298 

The important main specifications of the LIDAR system are listed in Table 3. 
 

Parameters                                    Specifications 
Transmitter 
Laser Source                                  Nd:YAG - Continuum®  
Operating Wavelength           532 nm and 355 nm 
Average pulse energy          120 mJ (at 532 nm) 80 mJ (at 355 nm) 
Beam Expander           5 x  
Pulse width           7 ns  
Pulse repetition rate          10 Hz 
Beam Divergence           0.12 mrad after Beam Expander 
Receiver      
Telescope type                      Newtonian 
Diameter           404 mm 
Field of View           0.5 mrad 
PMT                                                Hamamatsu® R7400-U20 
Optical fibre                                   Multimode, 600 µm core    
Filter FWHM            0.7 nm  
Signal and Data Processing  
Model                                             Licel®  TR15-40 
Memory Depth                             4096  
Maximum Range                          40.96 km 
Spatial Resolution                        10 m 
PC  
TR15-40 Interface                         Ethernet 
Processor                                       Intel® Core2Duo 2.6 GHz    
Operating system                        Windows® XP Pro 
Software Interface                        NI LabVIEW® 
Application  
Aerosol/Cloud study                  0.5 km to 40 km 
Water Vapour                               0.5 km to 12 km (to be done) 
Temperature                                 0.5 km to 20 km (to be done) 
Scanner resolution (minimum) 
X-axis (Horizontal)                       0.002 rad 
Y-axis (Vertical)                            0.001 rad 

Table 3. Major specifications of the CSIR-NLC mobile LIDAR system 
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4.1.1 Laser transmission 

The transmitter employs a Q-Switched, flash lamp pumped Nd:YAG (Neodymium (Nd) 
impurity ion concentration in the Yttrium Aluminum Garnet (YAG))  solid-state pulsed 
laser (Continuum®, PL8010). Nd:YAG lasers operate at a fundamental wavelength of 1064 
nm. Second and third harmonic conversions are sometimes required, depending on the 
application and are accomplished by means of suitable non-linear crystals such as 
Potassium (K) Di-hydrogen Phosphate (KDP). At present, the second (532 nm) and third 
(355 nm) harmonic is utilized and the corresponding laser beam diameter is approximately 8 
mm. The laser beam is passed through a beam expander (expansion of 5 times), before being 
sent into the atmosphere, thereby the beam divergence is reduced by the factor of 5 (i.e, 0.6 
mrad to 0.12 mrad). The resultant expanded beam has a diameter of 40 mm and is then 
reflected upward using a flat, 45 degree turning mirror. The entire transmission setup is 
mounted on an optical breadboard. The power supply unit controls and monitors the 
operation of the laser. It allows the user to setup the laser’s flash lamp voltage, Q-Switch 
delay and the laser repetition rate. It also monitors system diagnostics such as the flow and 
temperature interlocks. The power supply also incorporates a water to water heat exchanger 
which regulates the temperature and quality of water used to cool the flash lamps and laser 
rods. The inbuilt laser Control Unit (CU601) provides cooling group interlocks, which sense 
water temperature, water level and water flow. A cooling group interlock violation halts the 
laser operation and reports the interlock violation to the remote box. At present, the laser is 
being utilized at the pulse repetition rate of 10 Hz.  

 
Fig. 4. Block diagram of CSIR-NLC mobile LIDAR illustrating different components. 
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4.1.2 Receiver section 

The receiver system employs a Newtonian telescope configuration with a 404 mm primary 
mirror. The backscattered signal is first collected and focussed by the primary mirror of the 
telescope. The primary reflecting mirror has a 2.4 m radius of curvature and is coated with 
an enhanced aluminium substrate. The signal is then focused toward to a secondary 45 
degree plane mirror and coupled into an optical fibre. One end of the fibre is connected to 
an optical baffle which receives the return signal from the telescope. The other end is 
connected to an optical tube with collimation optics and the PMT. We have also employed a 
motorized 3-Dimensional translation stage in order to accurately align the fibre using PC 
control.  

4.1.3 Data acquisition 

PMT is used to convert the optical backscatter signal to an electronic signal. The PMT is 
installed in an optical tube and is preceded by a collimation lens and narrow band pass 
filter. The PMT used is a Hamamatsu R7400-U20. It is a subminiature PMT which operates 
in the UV to NIR wavelength range (300 nm – 900 nm) and has a fast rise time response of 
0.78 ns. It is specially selected for minimal noise with an anode dark current. 

Data acquisition is performed by a Licel transient recorder (TR). The system is favored by its 
dual capability of simultaneous acquiring analog and photon count signal, which makes it 
highly suited to LIDAR applications by providing a higher dynamic range. The TR15-40 is 
the model that was procured. It is capable of 15 MHz sampling and has a memory depth of 
4096 bins. The photon count channel uses a high pass filter to select the high frequency 
component (>10 MHz) of the amplified PMT signal. The filtered component is then passed 
through a fast discriminator (250 MHz) and counter enabling the detection of single 
photons. The Licel system together with a LabVIEW software interface allows the user to 
acquire signals without any immediate programming. As mentioned earlier, the Licel data 
acquisition system incorporates electronics which is capable of simultaneous acquisitions of 
Analog Data (AD) and Photon Count (PC) data with a range resolution of 10 m. The 
combination of PC and AD electronics greatly extends the dynamic range of the detection 
channel allowing the reduction or removal of neutral density filters, which in turn greatly 
improves the Signal-to-Noise Ratio (SNR). The measurements are usually done at night to 
minimize back-ground noise.  

4.2 Illustration 

In general, the laser beam is directed vertically upward into the sky as depicted in figure-3. 
The corresponding day presented a cloudy sky and there was a passage of high-altitude 
cirrus, which is normally found at upper altitudes from 6 km to 15 km. Since these clouds 
are generally optically transparent, depend upon the physical property, laser light is 
passed/prevented from passing through. The observations were carried out for 
approximately four and a half hours and the presence of clouds is clearly seen in the height-
time-backscattered signal returns for both the Analog Data (AD) and Photon Count (PC) 
data which is presented in Figs. 5 and 6 respectively. The figures were obtained after 
modifying the provided Licel–LABVIEW software, in-house, to display an automatically 
updated height-time-backscatter colour map in real time. The advantage of such a program  
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Fig. 5. Original analog signal measured on 01 December 2010 

 
Fig. 6. Same as fig. 5 but represents the original photon count signal 

is that it allows the user to infer the data simultaneously while the LIDAR system is in 
operational. The display can be easily visualized and the available settings enable either the 
AD or the PC data to be displayed, as required. 
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The simultaneous AD and PC acquisitions have been post processed to merge or ‘glue’ the 
datasets into a single return signal. The combined AD and PC signals allow us to use the 
analog data in the high signal to noise ratio (SNR) regions and the PC data in the low SNR 
regions. Since the output from the AD converter is voltage (V) and the output from the 
photon counter is counts or count rates (MHz) a conversion factor between those outputs 
needs to be determined in order to convert the analog data to “virtual” count rate units. First 
the PC data is corrected for pulse pileup using a non-paralyzable assumption (dead-time 
correction). The dead time corrected PC data is then determined based on the linear 
relationship with Analog Signal, i.e., PC = a * AD + b, over a range where the PC data 
responds linearly to the AD and where the AD is significantly above the inherent noise 
floor. The linear regression has been applied to determine the gain and offset coefficients 
(gluing coefficients), a and b. Thereafter, the coefficients are used to convert the entire AD 
profile to a "virtual/scaled" photon count rate. This is referred to as the scaled analog signal. 
i.e., the term, “a * AD” (see. Figure 7) and the term ‘b’ stands for the bin shift (offset). 
Commonly, the typical range is determined from the data above the threshold signal and 
where the PC data (see. Figure 8) is between 0.5 MHz and 10 MHz. The combined or glued 
signal then uses the dead-time corrected PC data for count rates below some threshold 
(typically 10 MHz) and the converted/scaled AD data above this point. Figure 9 displays 
the glued data for the above presented case (see Figure 7 and 8). Here, the gluing is 
performed after obtaining the dead time corrected photon count (dead time is 3.6 n sec) and 
also adjusting a minute bin shift between the AD and PC. The bin shift is basically a delay 
measured in bins (corresponding to 10 m per bin) which occurs due the detection 
electronics. Filters in the pre-amplifier electronics results in a delay of the AD signal with 
respect to the PC signal. The analog to digital conversion process also may also cause any 
further delay. 

 
Fig. 7. Same as fig. 5 but represents the scaled analog signal 



 
CSIR – NLC Mobile LIDAR for Atmospheric Remote Sensing 

 

303 

 
Fig. 8. Same as fig. 5 but represents the deadtime corrected photon count signal  

 
Fig. 9. Same as fig. 5 but represents the glued photon count signal 

To address the dynamic range of the instrument, the range corrected glued signal (i.e., 
signal multiplied by R2) is presented in figure 10. i.e., the figures represented here are the 
raw data multiplied by the square of the altitude, commonly referred as range corrected  



 
Remote Sensing – Advanced Techniques and Platforms 

 

304 

 
Fig. 10. Same as fig. 9 but represents the Range Corrected glued photon count signal 

signal. The range corrected signal provides an equilibrium condition to the LIDAR 
transmitted and received backscatter signal (see. Equation 1).  

The figures clearly distinguish the cloud observation from normal scattering from 
background particulate matter. Sharp enhancements are observed around 7.5 km and above 
(~12 km) indicating the presence of cloud. Such type of cloud otherwise termed as CIRRUS. 
The advantage of using LIDAR, is to observe the cloud thickness in addition to the cloud 
height. This is one of the important advantages of LIDAR measurements, in comparison 
with any other remote sensing measurement techniques. The advantage of having high 
resolution data (10 m) further address the accurate detection of cloud height and thickness, 
which is important for studying the cloud morphology. Apart from it, the above 
measurements illustrate the dynamic range of the LIDAR signal upto 35 km (though the 
figure is presented here upto 15 km). During the day-time measurements, to avoid the 
background light signal, neutral density (ND) filters are employed which protect further the 
PMT saturation and to investigate the maximum return signal strength.  

The parameter, SNR judge always any instrument capability. Here, we have determined for 
the mobile LIDAR based on transmitting and receiving signal with and without emitting the 
LASER beam. The results are obtained by operating the LIDAR on a clear sky with the laser 
is being ON (Signal) and OFF (Noise) for an about twelve minutes in each cases (see Figure 
11a). Figure 11(a) illustrates the temporal evolutions of LIDAR signal returns when the laser 
is ON and OFF. While the laser was on (first twelve minutes), a large photon count signal 
was obtained and when the laser was switched off (next twelve minutes), random noise 
photons are observed due to the background scattering from the atmosphere. 

The above individual observational data are then averaged temporally and presented as a 
height profile of photon count in Figure 11b. Figure represents both the signal (blue) and  
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Fig. 11a. Temporal evolution of the return signal while LASER is ON and OFF mode.  

0

5

10

15

20

25

30

35

40

1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

Photons per second

H
ei

gh
t [

km
]

 
Fig. 11b. Height profile of averaged photon count for the above presented temporal 
evolution in fig. 11a. 
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noise (red) profiles. It is clear from the figure that the signal strength for the height region 
up to 40 km and shows more than 2 orders apart from the noise level. From the above 
results, one can conclude that the LIDAR provides reasonable measurements for the height 
region up to 40 km and that the signal to noise ratio is highly apart by an order of two. 
Further, more integration of signal may also address improvements in the SNR and the 
dynamic range of the instruments. 

4.3 Scientific results 

4.3.1 LIDAR extinction co-efficient 

The altitude profiles of aerosol extinction () or backscatter coefficient () from a 
backscattered LIDAR signal require the solution from the LIDAR equation (see. Equation 1). 
As described in the LIDAR equation, the (z) = [a(z)  + m(z)], and (z) = [a(z)  + m(z)], 
where, a and a are the volume extinction and backscatter coefficients of the aerosols and 
m and m are the volume extinction and backscatter coefficients of the air molecules. The 
values of m and m are calculated from the meteorological data or from a standard 
atmosphere model. Determinations of a and a require an inversion of the LIDAR equation. 
The inversion is not a straightforward process since it involves two unknowns. In this 
regard, a definitive relationship between the above two unknowns should be assumed. The 
molecular contributions to backscattering and extinction have been estimated using a 
reference model atmosphere (MSISE-90). This is accomplished by the normalization of the 
photon count with molecular density at a specified height (vary from a day to day) taken 
from a model (MSISE-90) and then applying the extinction correction to the backscattering 
co-efficient profile using iterative analysis of the LIDAR inversion equation. The estimation 
of aerosol backscatter co-efficient applies the downward progression from the reference 
altitude of ~40 km where the aerosol concentration is said to be negligible. The 
backscattering co-efficient profiles as computed above are also employed for the purpose of 
studying the cloud characteristics. For studying the aerosol concentrations, however, 
extinction profiles are computed by following the LIDAR inversion method as described by 
Klett, (1985). 

The LIDAR inversion technique was applied to the backscattered LIDAR signal for a two 
continuous day measurements 30th and 31st August 2010, to determine the aerosol 
backscatter and extinction coefficient. Figure 12 shows the 10 minutes averaged height 
profile of the aerosol extinction coefficient retrieved from LIDAR signal returned on the 30th 
and 31st August 2010. Different height profiles for measurements on the same day are 
observed. It shows that the aerosols loading were not found to be stable over the 
measurement site. This is due to the change in the aerosol loading resulting from the change 
in humidity, temperature, etc. Furthermore, the differences between measurements on 
different day are observed. This might be due to the variations in day’s background 
conditions, temperature, humidity, wind, cloud, solar radiation, etc. 

4.3.2 Detection of cloud 

Figure 13 shows an example of detection of cloud by LIDAR for the night of 23 February 
2008. The laser was directed vertically upward into the sky and the corresponding night was 
a cloudy sky and there was a passage of cumulous clouds which is normally found at lower  
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Fig. 12. Height profile of aerosol extinction coefficient retrieved from LIDAR returned signal 
for the 30th and 31st August 2010.  

 
Fig. 13. Height-time-colour map of LIDAR signal returns for 23 February 2008.  
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height region from 3 km to 5 km. Since, these clouds are generally optically dense which 
prevents light to pass through. The present observations were carried out for more than two 
hours and the presence of clouds is clearly seen in the height-time-backscattered signal 
returns. Figure clearly distinguishes the cloud observation from normal scattering from 
background particulate matter. It shows the sharp enhancement in backscatter signal during 
the presence of cloud around 3.8 km and slowly has moved down to 3.5 km. The figure also 
demonstrates the capability of LIDAR to observe the cloud thickness (less than around 300 
m) which is a unique feature of LIDAR in comparison to the satellite detection. The 
measured high resolution data is also important when studying cloud 
physics/characteristics. Otherwise, the lower height regions indicate high intensity signal 
returns which is due to the presence fog or aerosols.  

4.3.3 Boundary layer detection 

The atmospheric Boundary Layer (BL) is a part of the lower troposphere where most living 
beings and natural/human activities occur. It varies with space and time, and changes with 
height mostly during the day due to variations in solar-radiation (by several kilometers) and 
is quite stable over night. It is well known that the aerosol content or particulate matter in 
the lower atmosphere fluctuates under different background conditions (e.g., temperature, 
humidity and solar radiation). Such fluctuations in aerosol content, particularly the height of 
boundary layer, can easily be determined by means of a LIDAR (Light Detection and 
Ranging) backscatter signal. Based on the LIDAR backscattered signal (or/and range 
corrected) and by applying different criteria, one would be able to identify the boundary 
layer height (BLH) and thus the temporal evolution. Here, we show a typical example of 
deduction of BLH based on two different methods, (a) statistical and (b) slope, i.e., 

a. The statistical method applies range (z) corrected (squared) LIDAR backscattered signal 
(Pr), i.e., Pr * z2. The BLH is identified by the height where the maximum standard 
deviation in the range corrected signal. Here, the mean value is obtained by the 
integration of consecutive 5 profiles (corresponds to 50 sec) (Chiang and Nee, 2006).  

b. The slope method is based on the LIDAR backscattered signal (Pr) and their gradient 
(dPr/dz). The identified minimum value in the slope (between Pr and dPr/dz) defines 
the BLH (Egert, 2008).  

Figure 14 shows the temporal (~2 hrs) evolution of LIDAR backscattered signal for the day of 
27 May 2011. The figure is superimposed by the deducted BLH based on the two methods, 
statistical (Black circle) and slope (pink star). It is clear from the figure that the BLH varies 
significantly over time. In general, maximum BLH is found during the noon, as expected 
during the day that the earth‘s surface heats up due to solar radiation and this results in 
various thermodynamic chemical reactions causing turbulence in the PBL. The boundary layer 
height is therefore expected to vary more during the day and to stabilize after sun-set. The 
slope method provided a higher value in comparison with the statistical method (based on 
standard deviation) and the difference is found to be ~1 km. To conclude, deduction of BLH 
by the statistical method provides better results compared to the slope method.  

4.3.4 Comparison with satellite measurements 

The extinction profile derived from the LIDAR and compared /validated using ground 
based and satellite borne instruments. Figure 15 presents the height profile of the extinction  
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Fig. 14. Height-Time-Color map of LIDAR signal returns (arb.unit) for 27 May 2011. The 
figure is overlapped by the determined boundary layer height (Black: statistical method 
based on range corrected signal, Pink: slope method)  

coefficient derived from the LIDAR data taken during the nights of 25 February 2008. The 
profiles are overlapped by the Stratosphere Aerosol Gas Experiment (SAGE-II) extinction 
data at 525 nm collected over southern Africa regions (Latitude, 15°S to 40°S and 10°E to 
40°E and Longitude). The extracted mean aerosol extinction coefficients are from version 
6.20 series of ~21 years (1984-2005). Here, we have used the corresponding monthly-mean 
extinction profiles (February). We have considered the SAGE-II profile as far as possible 
above 3-4 km, keeping in mind that the lower height region measurements are inaccurate 
due to a low signal to noise ratio (SNR) (Formenti et al., 2002). The extinction profiles derived 
from LIDAR and SAGE-II are in close agreement with respect to trend and magnitude. The 
LIDAR profile has been terminated above 10 km due to thick cloud passage. One is able to 
observe the boundary layer peak at ~2.5 km which is described earlier, as an important 
parameter for atmosphere mixing (including pollutants). The presence of a cloud results in a 
sharp enhancement in the extinction and backscatter co-efficient to a high value making the 
detection quite unambiguous. A small difference in the observed magnitude might due to 
employed different techniques between LIDAR and satellite, time of observation, mean 
satellite profile versus a single day LIDAR measurement. The above mentioned height 
profile of aerosol extinction coefficients obtained using the LIDAR and SAGE-II satellite 
data are integrated appropriately to obtain the aerosol optical depth (AOD). Generally, we 
considered the LIDAR profile for the lower height region with respect to the SNR and at 
higher altitudes from the SAGE-II data. We found the value for February months is around 
~0.264 which is in good agreement with AOD measured by the photometer over 
Johannesburg (0.2966±0.06668).  
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Fig. 15. Height profile of aerosol extinction coefficient derived from LIDAR for the night of 
25 February 2008, superimposed by February monthly mean profile of SAGE-II. 

4.4 Future perspectives 

Based on our knowledge, there are no multi-channel LIDAR systems employed for 
atmosphere research in South Africa and African countries. Our goal is to achieve a multi 
channel LIDAR system to address aerosol/cloud, water vapour, lower atmosphere 
temperature and ozone measurements. LIDAR studies on particulate matter (0.5 and 0.3 
microns) elucidate their distribution and concentration in the atmosphere. Particulate matter 
plays a key role in atmospheric physical and chemical processes from local to global scale. 
The complexity of these processes have been largely reviewed in literature and LIDAR 
measurements have mostly contributed to better understanding the role of atmosphere 
dynamics and particle microphysics. By making observations on a pre-determined spatial 
scale (from sites to regions) may plausible to calculate atmospheric mass transport and 
through trajectory analysis to back-track the location of plume sources, e.g. biomass 
burning. The atmospheric backscatter measurements of aerosols can be used to identify the 
stratification of pollutants and will enable the classification of the source regions, such as 
industrial, biological and anthropogenic sources. Later, the plan is to upgrade the system to 
measure water vapour concentrations in the atmosphere and its localized variations in the 
lower troposphere. Water-vapour effects global climate change and global warming both 
directly (water is a primary green-house gas) and through its impact on ecosystems where 
vegetation sensitivity plays an important feedback role. 
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Further the ongoing plan is to employ a 2-D scanner into the present LIDAR system (see. 
Figure 2) will be implemented in near future using a cable/pulley system and an electric 
winch to lift and lower the scanner. The integration of the scanner assists us in terms of  

- X-Y dimensional mapping of the atmosphere (horizontal or vertical cross-section) 
- Focusing the target (industrial smoke or cloud of pollutants) 
- To study the plume (say smoke, biomass burning and etc), Haze and Aerosol/pollutant 

dispersion. 

Successful implementation of scanner will contribute to LIDAR technology worldwide as, 
with few exceptions, X-Y dimensional mapping of the atmosphere has not been fully 
explored. The plan is to include online control of the scanner incorporation of the position of 
the axes into the present data-acquisition system. The attempt will be done to modify the 
present data-acquisition software to capture the X-Y cross-sectional display during real time 
measurements.  
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1. Introduction 

RAdio Detection And Ranging (RADAR), SOund NAvigation and Ranging (SONAR), and 
LIght Detection And Ranging (LIDAR) are active remote sensing systems used for earth 
observations (Planes and ships’ locations and velocity information, air traffic control, 
oceanographic and land info, ), bathymetric mapping (e.g., hypsometry, Ocean depth (echo-
sounding), SHOALS, and seafloor), and topographic mapping. Integrating laser with RADAR 
techniques – laser RADAR or LIDAR - after World War II introduces scientists to a new era of 
Remote Sensing technologies. LIDAR is one of the most widely used active remote sensing 
systems to attain elevation information which an essential component to obtain geographical 
data. While RADAR is transmitting a long-wavelength signal (i.e., radio or microwave: cm 
scale) to the atmosphere and then collecting the backscattering energy signal, LIDAR 
transmission is a short-wavelength laser beam(s) (i.e., nm scale) to the atmosphere and then 
detecting the backscattering light signal(s). More lidar principles and comparison between 
active remote sensing techniques are introduced in section 1.1 of this chapter. 

2. Lidar background 

2.1 Lidar historical background 

After World War II the first LIght Detection And Ranging (lidar) system was invented 
(Jones 1949). The light source was a flash light between aluminum electrodes with high 
voltage amplitude transmitter, and the receiver optics were two mirrors. Afterward a 
photoelectrical cell was used as a detector. During daylight, this system had been used to 
measure the height of cloud ceiling up to 5.5 km. At that time the acronym lidar didn’t exit 
(Middleton 1953). The real revolution of lidar began with the invention of the laser (light 
amplification by stimulated emission of radiation) in 1960. Using laser as a source of light in 
a lidar system is referred to as “Laser Radar, or Ladar, or Lidar”. Lidar operates in wide band 
region of the electromagnetic spectrum; ultraviolet (225 nm- 400 nm), visible (400 nm-700 
nm), and infrared radiation (700 nm- 1200 nm). Lidar systems are used as ground based 
stations (stationary or mobile), or can be carried on platforms such as airplanes or balloons 
(in-situ operations), or on satellites. National Oceanic and Atmospheric Agency (NOAA) 
and National Aeronautics and Space Administration (NASA) aircraft and satellites are the 
most famous lidar platforms in the United States of America. Some other platforms are 
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employed around the world by groups such as the European Space Agency (ESA), the 
Japanese National Institute for Environmental Studies (NIES), and the National Space 
Development Agency of Japan (NASDA). 

What is a lidar 

LIght Detection And Ranging (lidar) is an optical remote sensing system for probing the 
earth’s atmosphere through Laser transmitter using elastic and/or inelastic scattering 
techniques. Most of the remote sensing lidar systems consist of three functional subsystems, 
as shown in Figure 1, which vary in the details based on the particular applications. These 
subsystems are: (1) Transmission subsystem, (2) Receiver subsystem, (3) Electronics 
subsystem. 

Cloud

 

Laser

Receiver
Telescope

Detector

computer

Radar

 
Fig.  1. Essential elements of a lidar system 

In the transmission subsystem, a laser (pulsed or continuous wave (CW)) is used as a light 
source. More than one laser can be used according to lidar type and objective of the 
measurements. Laser pulses, in the ideal case, are very short pulses with narrow bandwidth, 
high repetition rate, very high peak power, and are propagated with a small degree of 
divergence. The laser pulse is transmitted through transmission optics to the atmospheric 
object of interest. The essential function of the output optics is to improve the output laser 
beam properties and/or control the outgoing beam polarization. Elements such as lenses 
and mirrors are used to improve the beam collimation. Beam expansion is used to reduce 
the beam divergence and the area density of the laser pulse. Fiber optic cable, filters, and 
cover shields or housings serve the dual purpose of preventing the receiver detectors from 
saturation due to any unwanted transmitted radiations and of protecting the user’s eyes 
against any injury. Wave length selective devices are also used, such as harmonic generator, 
to create the second, the third and the fourth harmonic. Polarizer can be used to control the 
transmitted beam polarization. Polarization measurement equipments are used as well. The 
experimental results, in this chapter, had been produced using two types of pulsed laser, Q-
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Switched (an optical on-off switch) Nd: YAG (Continuum Infinity 40-100) and Q-Switched 
Nd: YAG (Surelite) at CCNY.  

A Receiver subsystem consists of an optical telescope to gather and focus the backscattering 
radiations, and receiver optics to provide the detector (PhotoMultiplier Tube (PMT) or 
Avalanche Photo Diode (APD)) with desirable collimated or/and focused strong polarized 
signal. Components such as mirrors, collimated lenses, aperture (field stop), ND (Neutral 
Density) filters, and Interference Filters (IF) are to provide special filtering against sky 
background radiations, analyzers (polarization selection components) are needed to select 
the necessary polarizations based on the applications and/or to discriminate against the 
unwanted background noise (as shown in chapter 7), and electro-optical elements that 
convert light energy to electrical energy (detectors). There are two basic types of detectors 
for lidar systems; the photomultiplier tube (PMT), and the avalanche photo diode (APD). In 
addition to the optics mounts and the manually operation aids, automated alignment 
capabilities for lidar long-term unattended operations are needed.  

Electronic subsystem consists of data acquisition (mostly, multiple channels), displaying 
unites, Analog to Digital (A/D) signals conversions, radar and radar circuit, control system 
especially for our polarization discrimination technique which I presented in this 
dissertation (Chapter 7) to track the azimuth angles to improve the SNR. In addition, 
software (Labview and Matlab) is needed for signal processing purposes, as well some 
hardware such as platforms (van for a ground based mobile lidar, airplane or balloon for in-
situ airborne lidar and satellite for higher altitude space-based scanning lidar), a 
temperature control unit, orientation stability elements, storage units and some additional 
equipment depending on lidar’s type and measurement objective. 

2.2 How does lidar work? 

Using the well known fact that the laser energy of optical frequencies is highly 
monochromatic and coherent, and the revolution of developing the Q-Switching by 
McClung and Hellwarth on 1962, (McClung 1962), laser has the capability of producing 
pulses with very short duration, narrow bandwidth, very high peak energy, propagating 
into the atmosphere with small divergence degree. This prompted the development of 
backscattering techniques for environment and/or atmosphere compositions and structure, 
(aerosol, ozone, cloud plumes, smoke plumes, dust, water vapor and greenhouse gases (e.g. 
carbon dioxide), temperature profile, wind speed, gravity waves, etc.), distributions, 
concentrations and measurements. These measurement techniques are to some extent 
analogous to radar, except using light waves as an alternative to radio waves. Consequently, 
scientists denote lidar as laser radar. The essential idea of lidar operations and 
measurements is based on the shape of the detected backscattering lidar signals with 
wavelength of (λ) if the transmitted laser beam of wavelength (λL) is scattering back from 
distance R. This backscattering shape depends on the properties of the lidar characteristics 
and the atmosphere specifications. The transmitted lidar signal can be absorbed, scattered, 
and shifted, or its polarization can be changed by the atmosphere compositions and 
scattered in all the directions with some signals scattered back to the lidar receiver. Two 
parameters, in the lidar return equation, relate the lidar detected signal power and the 
atmospheric specifications. These parameters are the extinction and scattering coefficients, α 
(λ, R), β (λ, R) respectively. By solving the lidar equation for those coefficients one can 
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determine various atmospheric properties. An example of these determination processes, 
which based on the lidar type and the physical process used in the measurements, have 
been introduced in this chapter.  

3. Lidar classifications 

Ways to classify lidar systems are: (1) the kind of physical processes (Rayleigh, Mie, elastic and 
inelastic backscattering, absorption, florescence , etc.), (2) the types of the laser employed (Die, 
and ND:YAG), (3) the objective of the lidar measurements (aerosols and cloud properties, 
temperature, ozone, humidity and water vapor, wind and turbulence, etc.), (4) the atmospheric 
parameters that can lidar measure (atmospheric density, gaseous pollutants, atmospheric 
temperature profiles), (5) the wavelength that been used in the measurements (ultraviolet 
(UV), infrared (IR), and visible), (6) the lidar configurations (monostatic, biaxial, coaxial, 
vertically pointed and scanning lidars and bi-static), (7) the measurement mode (analogue, 
digital), (8) the platform type (stationary in laboratories, mobiles in vehicles, in situ (balloon 
and aircraft), and satellite), and (9) number of wavelength (single, and multiple wavelengths). 
In the following section anticipate brief descriptions of various types of lidar, focusing mainly 
on those types of our research interest.  

4. Types of lidar returns 

If light is directed towards other directions because of interaction with matter without loss 
of energy (but losing intensity) the fundamental physical process is called scattering of light. 
The light scattering occurs at all wavelengths in the electromagnetic spectrum and in all 
directions. If lidars sense only the scattering radiations in the backward direction (scattering 
angle s = 180˚ for monostatic vertically pointed lidar), we call them lidar backscattering 
radiations or signals. In terms of lidar return signals, lidar has been classified into the 
following types: Rayleigh, Mie, Raman, DIAL, Doppler, and florescence lidars.  

4.1 Rayleigh scattering lidar 

In 1871, Lord Rayleigh discovered a significant physical law of light scattering with a variety 
of applications. The most famous applications of this discovery are the blue sky and the sky 
light partial polarization explanations. Rayleigh scattering is elastic (no wavelength shift) 
scattering from atmospheric molecules (particle radius is much smaller compared with the 
incident radiation wavelength i.e. pr ): sum of Cabannes (sum of coherent, isotopic, 
polarized scattering, which approximately 96% of the scattering) and rotational- Raman S and 
S’ branch scattering which only 4% of the scattering proceedings. Based on the Rayleigh-Jeans 
law, [the Planck radiance is linearly proportional to the temperature, 2 2( ) (2 / )( )B T v c TB , 
where B(T) is the Planck function, B  is the Boltzmann constant 16 1103806 10 .deg    ergB , 
v is the oscillator frequency, c the speed of light, and T the absolute temperature] (Liou 2002), 
Rayleigh lidar technique can be used to derive the atmospheric temperature profile above the 
aerosol free region (R >30 km). Since molecular scattering (Rayleigh scattering or aerosol-free 
scattering) is proportional to the atmospheric density, the atmospheric temperature profile can 
be simply derived from the atmospheric density in the range above the aerosol layers (above 
30 km to below 80 km). Unfortunately, above 80 km temperature measurements require a 
powerful transmitter laser (up to 20 W) and receiver telescope (up to 4 m aperture) which are 
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difficult for mobile or airborne platforms (Fhjii and Fukuchi 2005). Finally, assuming the 
atmosphere consists of molecules only and outside the gaseous absorption bands of the 
atmosphere, the atmosphere optical thickness can be approximated by 

4 2 40.008569 (1 0.0113 0.00013 )       m  , where λ is measured in micrometers. 

Rayleigh scattering strongly depends on the wavelength of the transmitted light (λ-4) which 
explains the blue color of the sky, where the scattering efficiency is proportional to λ-4, i.e. 
rapid increase in the scattering efficiency with decreasing λ. This behavior leads to more 
scatter in blue than red light of the air molecules.  

4.2 Mie backscatter lidars 

For particle radius ( pr ) larger than / 2  , (i.e., /2 pr , where λ is wavelength of 
radiation ), Rayleigh scattering is not applicable but Mie scattering applies (Mie 1908; 
Measures 1984; Liou 2002). Mie scattering is elastic scattering which is suitable for detection 
of large spherical and non-spherical aerosol and cloud particles mainly in the troposphere 
(Barber 1975), (Wiscombe 1980). The backscattering signals from aerosol or molecules and 
the absorption from molecules are very strong in the lower part of the atmosphere (below 30 
km), which is enough to determine various properties about the atmosphere. Micrometer-
sized aerosol and clouds are great indicators of atmosphere boundary phenomena where 
they show strong backscattering interaction. By Mie scattering theory, the optical properties 
of water droplets can be evaluated for any wavelength in the electromagnetic spectrum 
(from solar to microwave) (Deirmendjian 1969). Clouds covered about 50% of the earth 
(Liou 2002). Clouds also have an important impact on the global warming disaster when 
clouds trap the outgoing terrestrial radiation and produce a greenhouse gaseous effect. Mie 
backscattering lidar measures backscattered radiation from aerosol and cloud particles and 
their polarization as well (Mie 1908; Liou 2002). Its performance is similar to radar manner. 
A laser pulse of energy is transmitted, interacted with different objects and then 
backscattered (scattering angle =180°) to the receiver detector. The detected backscattering 
signals are interrelated with some properties of that object (even with low concentrations or 
small change in concentrations of dust or aerosol objects). Mie scattering follows (λ-0 to λ-2), 
i.e., it is not significantly dependent on the wavelength. 

4.3 Raman (inelastic backscattering) lidars 

Raman scattering is inelastic scattering with cross section up to three times smaller than the 
Rayleigh cross section in magnitude. A Raman scattered signal is shifted in frequency from the 
incident light (Raman-shifted frequency). The Raman scattering coefficient is proportional to 
the atmospheric density when the air molecule (nitrogen or oxygen) is used as Raman 
materials (Fhjii and Fukuchi 2005). Generally speaking, Raman lidar measure intensity at 
shifted wavelength (Stephens 1994) and it detects selected species by monitoring the 
wavelength-shifted molecular return produced by vibration Raman scattering from the chosen 
molecules. Raman lidar, originally, was developed for NASA Tropical Ozone Transport 
Experiment/ Vortex Ozone Transport Experiment (TOTE/VOTE) for methane (CH4) and 
Ozone measurements (Heaps 1996). Also it has been used to correct the microwave 
temperature profile in the stratosphere (Heaps 1997).Typically; inelastic scattering (such as 
Raman) is very weak; therefore the daytime measurement is difficult due to the strong 
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background solar radiation. This restricts Raman lidar measurements to nighttime use where 
background solar radiation is absent. On the other hand, Raman lidar is a powerful remote 
sensing tool used to measure and trace constituents where elastic lidar can not identify the gas 
species (Fhjii and Fukuchi 2005). Raman-Mie Lidar technique is also used to determine the 
extinction and the backscattering coefficients assuming the knowledge of air pressure 
(Ansmann 1992). In this chapter I introduced, a polarization technique to improve lidar Signal-
to-Noise Ratio (SNR) by reducing the background noise during the daytime measurements. 
This will help for successful diurnal operation of Raman lidar. 

4.4 DIfferential absorption lidar (DIAL) 

Differential Absorption and Scattering (DAS) is a good combination for detecting a good 
resolution of water vapor in the atmosphere using the H2O absorption line at 690 nm 
(Schotland 1966; Measures 1984). DAS technique is one of the best methods for detecting 
constituents for long-range monitoring based on a comparison between the atmospheric 
backscattering signals from two adjacent wavelengths that are absorbed differently by the 
gas of interest (Measures. R. M. 1972). The closest wavelength, of the two adjacent 
wavelengths, to the absorption line of the molecule of interest (i.e., strongly absorbing 
spectral location due to the presence of an absorbing gas) is usually called on-line and 
denoted as (λON) and the other laser wavelength is called off-line and denoted as (λOFF). 
DIfferential Absorption Lidar (DIAL) technique is a unique method to measure and trace 
gaseous concentrations in the Planetry Boundary Layer (Welton, Campble et al.) (Welton, 
Campble et al.) in three dimensional mode (3D) using of the DAS principal. The gas number 
density ( )xN R can be derived from the differential absorption cross section of the molecular 
species of interest ( ( ) ( )      ON OFF ) in the DIAL equation (Fhjii and Fukuchi 2005) 

 
( , )1

( ) ln
2 ( , )


 




OFF
x

ON

P Rd
N R

dR P R
 (1) 

Where ( , )ONP R  and ( , )OFFP R  the power backscattered signal received from distance R 
for both wavelengths. Special careful must be taken into account when selecting the adjacent 
wavelengths, where the different between the two wavelengths is preferred to be < 1 cm-1, 
otherwise another two terms must be considered in the DIAL equation. DIAL, as a range 
resolved remote sensing technique, can detect lots of pollutants and greenhouse gases (H2O, 
SO2, O3, CO, CO2, NO, NO2, CH4, etc.) which play a big role in climate change and the 
earth’s radiative budget. DIAL is possible in the UV (200 to 450 nm), the visible, and the 
near IR (1 to 5 micrometer), and in the mid-IR (5 to 11 micrometer). For example to measure 
Ozone as a green house gas with fatal direct effect on human health particularly in the 
troposphere, DIAL can be used in two appropriate bands; UV band (at 256 nm) and the mid-
IR band (960 to 1070 cm -1). DIAL operations advantages are successful both day and night, 
detecting gases and aerosol profiles simultaneously. It can be operated in ground, airborne, 
and space based platforms.  

4.5 Doppler lidars 

Atmospheric laser Doppler velocimetry including measurements of tornados, storms, wind, 
turbulence, global wind cycles, and the atmosphere temperature are some of the most 
important remote sensing techniques (Measures 1984). Doppler broadening is due to the 
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Doppler shift associated with the thermal motion of radiating (absorbing) species in the 
mesopause region such as Na, K, Li, Ca, and Fe (Measures 1984). Furthermore, the 
atmospheric temperature can be detected by measuring the Doppler broadening and the 
measured global wind pattern can be determined by measuring the Doppler shift of laser-
induced florescence from atmospheric metals atoms such as Na in the middle and upper 
atmosphere (Bills 1991; She and Yu 1994). The use of Doppler broadening of the structure of 
Na D2 line (by narrowband lidar) technique to determine the range resolved high resolution 
temperature profile of the mesopause region (75-115 km, is also called MLT for Mesosphere 
and Lower Thermosphere) and was proposed by Gibson et al. in 1979. The principle idea is 
that the absorption line will be broadened because of the Doppler effect for a single Na 

atom. Doppler broadened line is given by 2
0




 B
D

T
M

, where M is the mass of a single Na 

atom, B  is the Boltzmann constant, 0  is the mean Na D2 transition wavelength, and T is 

the temperature. As shown the Doppler broadened D  is a function of temperature. 

Therefore if we measure D  line-width, we can derive the temperature of the Na atoms in 
the mesopause which equal to the surrounding atmosphere temperature where Na atom is 
in equilibrium condition in the mesopause region (Fhjii and Fukuchi 2005).  

4.6 Resonance fluorescence lidars 

A Rayleigh lidar signal is useless above ~ 85 km, because of the low atmospheric density 
above that altitude. The backscattering cross section of Resonance fluorescence lidars is 
about 1014 times higher than Rayleigh backscattering cross-section for the same transmitter 
and receiver specifications, thus Resonance fluorescence lidars can be used in the upper 
atmosphere measurements. Resonance fluorescence lidars are measuring intensity at shifted 
wavelength using of Doppler technique (Bills 1991; She and Yu 1994) or Boltzmann 
technique (Gelbwachs 1994). Fluorescence lidar is used to measure metallic species in the 
upper layer of the atmosphere (~90km) such as, Na, K, Li (Jegou, M.Chanin et al. 1980), Ca 
and Fe (Granier, J. P. Jegou et al. 1989; Gardner, C. S. et al. 1993) and/or volcanic 
stratospheric aerosol, polar stratospheric clouds (PSCs), gravity waves, and stratospheric 
ozone layer. This lidar has high sensitivity and accuracy. It is also, used to determination of 
wind, temperature, and study of thermal structure and complex atmospheric dynamics.  

5. Lidar wavelengths 

Based on the wavelength that been used in lidar measurements, one can classify lidar into: 
Elastic, inelastic, multi wavelength, and femto-second white light lidars. Brief descriptions 
are introduced in the following sub-sections.  

5.1 Elastic lidar 

An elastic scattering is defined as light scattering with no apparent wavelength shift or 
change with the incident wavelength. Elastic backscatter lidar operation, as one of the most 
popular lidar systems, is based on the elastic scattering physical process. It is detecting the 
total atmospheric backscatter of molecular and particle together without separation. Hence, 
elastic backscattering lidar is the sum of Rayleigh and Mie scatterings. The main 
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disadvantage of elastic lidar is the difficulty of separating Mie form Rayleigh signals. More 
details explain how to overcome this disadvantage are given as follow.  

1. It is difficult to determine accurately the volume extinction coefficient of the particles or 
aerosol, where we can not separate Mie form Rayleigh signals. In this case, we have to 

assume the a value for particle lidar ratio, ( )aS R , where 
α (R)aS (R)a β (R)a

 , to solve the 

lidar equation for the aerosol extinction coefficient ( ( )a R ). This assumption is 

impossible to estimate reliably; since the aerosol lidar ratio ( )aS R  varies strongly with 

the altitude ( ( )aS R  varies between 20 and 100) due to the relative humidity increment 

with the altitude (S ratio depends on chemical, physical and morphological properties 
of the particles which are relative humidity dependent). As shown in Table 1 (Kovalev 
and Eichinger 2004), big variations of aerosol typical lidar ratio for different aerosol 
types have been determine at 532 nm wavelength using Raman lidar. Figure 2 shows a 
lidar return signal on June 30, 2004 at the CCNY site. The figure also shows an example 
of the aerosol lidar ratio ( )aS R  retrieval between 20 and 100.  

 

Aerosol (particle) types Aerosol lidar ratio ( )aS R  (sr) 

Marine Particle 
Saharan dust 

Less absorbing urban particles 
Absorbing particles from biomass burning 

20-35 
50-80 
35-70 

70-100 

Table  1. Different aerosol types and the corresponding aerosol lidar ratio ( )aS R  

 
Fig.  2. CCNY lidar retrieval for ( )aS R  ration, June 30, 2004 

To determine the aerosol lidar ratio ( )aS R , we can use (a) Raman lidar and High Spectra 
Resolution Lidar (HSRL) to get the extinction profile for particle then ( )aS R , Alternatively 
(b) sun-photometer observatory can be used to obtain the optical depth then seeking a 
solution by back integration. More details are given below. 

a. Using Raman lidar and High Spectra Resolution Lidar (HSRL) to determine the 
extinction profile for particle and the particle backscatter coefficient can be obtained 
directly as well. These two lidars detect a separate backscatter signals from particle and 
molecular.  

b. Using Sun-photometer observatory to obtain the optical depth (integration over the 
extinction coefficient profile) for both aerosol and molecule. Initially, in this method, we 
consider the reference boundary condition at the top of the lidar range is constant 
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( maxR , where the particle backscatter coefficient maxaβ (R ) is negligible compared to the 
known molecular backscatter value). Second, we seek a solution by back integration 
(Klett 1981) that is more stable than the corresponding forward solution. Therefore, 
given the following data set max, ( )a aS R , the lidar signal can be inverted to obtain 
both    , a aR R . Consequently, an estimation of the data set  max, ( )a aS R  is 
required and the approach that used to analyze the lidar signals and estimate the 
optical coefficient error is outlined in (Hassebo et al, 2005). Finally, elastic scattering is 
unable to identify the gas species but can detect and measure particles and clouds (Fhjii 
and Fukuchi 2005).  

5.2 Inelastic backscattering lidar 

The transmitted wavelength is different than the detected wavelength on inelastic lidars. An 
example of inelastic lidar is Raman Lidar. A Raman signal is very weak; therefore Raman lidar 
operations are restricted to the nighttime due to the strong background solar radiations during 
the daytime. Three ways to overcome this difficulty, they are: (1) running Raman lidar within 
the solar-blind region (230-300 nm), (2) second is applying narrow-bandpass filter or Fabry-
Perot interferometer, and (3) the third method is operating Raman lidar in the visible band of 
the spectra, during the daytime, and deduct the background solar radiation noise.  

1. The first method is running Raman lidar within the solar-blind region (230-300 nm), 
where the ozone layer in the stratosphere (20-30 km) absorbs the lethal solar radiation 
in this spectral interval. Consequently, lidar can be operated diurnally in the solar-blind 
region without getting affected by the solar background noise. However, the main 
drawback of running lidar in this region is the attenuation of the transmitted and the 
returned signals by the stratospheric ozone. Another drawback is the eye hazard issue. 
Using this technique, in 1980th, there were some attempts to measure water vapor and 
temperature using multiwavelength in the solar-blind region (Renaut 1980; Petri 1982).  

2. The second method is applying a narrow-bandpass filter or Fabry-Perot interferometer 
(Kovalev 2004). But the flitter will attenuate the signal strength as well. This is 
considered the main disadvantage of this method. 

3. The third method has been proposed by Hassebo et al. in 2005 and 2006. The principal 
idea is to operate Raman lidar in the visible band (607 nm for N2, 407 nm for water vapor, 
and 403 nm for liquid water vapor) of the spectra and then deduct the background solar 
radiation noise, simultaneously during the daytime optimally. This objective can be 
accomplished by using a polarization discrimination technique to discriminate between 
the sky background radiation noise and the backscattering signal. This can be approached 
using two polarizers at the transmitter and the receiver optics (Hassebo, B. Gross et al. 
2005; Hassebo, Barry M. Gross et al. 2005; Hassebo, B. Gross et al. 2006). This technique 
improved the lidar Signal-to-Noise Ration (SNR) up to 300 %, and the attainable lidar 
range up to 34%. A discussion of this technique is introduced in section 2 of this chapter. 

5.3 Multiple wavelength lidar  

If the lidar transmitter is a single wavelength laser, the lidar is called single wavelength lidar. 
However, the lidar is referred to as a multiple wavelength lidar if it is transmitting more than 
one wavelength. All transmitted light into the atmosphere with wavelength shorter than 300 
nm is absorbed by ozone and oxygen (solar-blind region). Wavelengths shorter than 300 nm 
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are fatal wavelengths. Consequently the minimum wavelength for elastic lidar is 
approximately 300 nm. The commonly used wavelengths in lidar operations are near infrared 
(1064 nm), visible (532 nm), and ultraviolet (335 nm) for backscatter lidars, (607 nm) for N2, 
(407 nm) for water vapor, and (403 nm) for liquid water vapor. The multiple wavelength 
backscatter lidar can be used to distinguish between fine particles (emitted from fog, 
combustion, plume and burning smoke) and big particles such as water vapor or clouds. This 
differentiation can be achieved using angstrom coefficient (Hassebo, Y. Zhao et al. 2005). 

Another example for multiple wavelength backscatter lidar is the DIfferential Absorption 
Lidar (DIAL). DIAL is used to measure concentrations of chemical species such as ozone, 
water vapor, and pollutants in the atmosphere. A DIAL lidar uses two distinct laser 
wavelengths which are selected so that one of the wavelengths is absorbed strongly by the 
molecule of interest while the other wavelength is not. The difference in intensity of the two 
return signals can be used to deduce the concentration of the molecule being investigated. 

5.4 Femto-second white light lidar 

Extremely high optical power (tera-watt) can be created from femto-second (1 fsec =10-15 
sec) laser pulse with 1mj energy. That is Femto-second white light lidar (fsec-lidar). In the 
era of global warming and climate change, fsec-lidar is used to detect and analyze aerosol 
size and aerosol phase (measuring the depolarization), water vapor, and for better 
understanding of forecasting, snow and rain. The inaccessibility to 3-D analysis is a 
disadvantage of Differential Optical Absorption Spectrometer (DOAS) and Fourier 
Transform Infrared spectroscopy (FTIR). This disadvantage has been conquered by Fsec-
lidar white light lidar. At the same time it has the multi-component analysis capability of 
DOAS and FTIR by using a wide band light spectrum (from UV to IR); e.g. visible (Wöste, 
Wedekind et al. 1997; Rodriguez, R. Sauerbrey et al. 2002). An example of fsec-lidar, based 
on the well-known chirp pulse amplification (CPA) technique, is the 350 mJ pulse with 70 
fsec duration and peak power of 5 TW at wavelength of 800 nm (Fhjii and Fukuchi 2005). 

6. Purposes of lidar measurements 

The purpose of Lidar Measurements is an additional way to classify lidars. Aerosol, clouds, 
and Velocity and Wind Lidars are introduced briefly in the following sub-sections.  

6.1 Aerosol lidar 

The atmosphere contains not only molecules but also particulates and aerosols including 
clouds, fog, haze, plumes, ice crystals, and dust. The aerosol is varied in radius; from a few 
nanometers to several micrometers. The bigger the aerosol size the more complex the 
calculations of their scattering properties. Aerosol concentration varies considerably with time, 
type, height, and location (Stephens 1994). Aerosols absorb and scatter solar radiation (all 
aerosols show such degree of absorption of the ultraviolet and visible bands) and provide 
cloud condensation sites (Charleon 1995). Aerosol absorption degree indicates the aerosol 
type. Atmospheric aerosol altitude, size, distribution and transportation are major global 
uncertainties due to their effects on controlling the earth’s planet climate stability and global 
warming issues. In addition of the impact of aerosol in the atmospheric global climate change 
(Charlson, J. Langner et al. 1991; Charlson, S. E. Schwartz et al. 1992), it also affects human 
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health with diseases such as lung cancer, bronchitis, and asthma. These have been essential 
motivations to study aerosol properties and transportation. Lidars have been successfully 
applied to study stratospheric aerosols mainly sulfuric-acid/water droplet (Zuev V., V. 
Burlakov et al. 1998), tropospheric mixture aerosols of natural (interplanetary dust particle and 
marine) and of anthropogenic (sulfate and soot particles) (Barnaba F and Gobbi 2001) and 
climate gases such as stratospheric ozone (Douglass L. R., M.R. Schoeberl et al. 2000) as well as 
for analyzing the clouds properties (Stein, Wedekind et al. 1999). Aerosol sources can origin 
from nitrate particles, sea-salt particles, and volcanic ashes and rubble. Aerosol particle sizes 
were categorized as aitken, large, and giant particles (Junge 1955), where: (a) Dry radii < 0.1 
µm, Aitken particles, (b) Dry radii 0.1 µm< r < 1 µm, large particles, and (c) Dry radii r > 1 µm, 
giant particles. Aerosol concentration decreases with increasing altitude. 80% of the aerosols 
condense in the lowest two kilometers of the troposphere (i.e., within the Planetary Boundary 
Layer (PBL)) as shown in Fig 3, for New York City on August 11, 2005.  

  
Source: CCNY lidar system  

Fig.  3. New York City aerosol PBL, Aug 11, 2005 

The extinction profile is considered a high-quality indicator (in the cloud free case) of 
aerosol concentration. A principle of measuring aerosol is using the wavelength between 
300-1100 nm to determine the particle extinction and backscattering profiles. A good 
example for lidar, that has been used to monitor aerosol without attendance, is Micro-Pulse 
Lidar (MPL) (Spinhirne 1991; Spinhirne 1993; Welton, Campble et al. 2001). CUNY MPL at 
LaGuardia Community College will play a significant role in studying the impact of the 
anthropogenic aerosol on human health, life, air quality, climate change, and earth’s 
radiation budget once it is deployed. High Spectral Resolution Lidar (HSRL) can be used, as 
well, to measure aerosol scattering cross section, optical depth, and backscatter phase 
function in the atmosphere. This can be achieved by separating the Doppler-broadened 
molecular backscatter return from the un-broadened aerosol return. The molecular signal is 
then used as a calibration target which is available at each point in the lidar profile. 

6.2 Cloud lidar 

Cloud particle radius is larger than 1 µm (between about 2 µm to around 30 µm), which is 
bigger than the lidar wavelength (300- 1100 nm). Therefore lidars cannot measure the cloud 
size distribution (Fhjii and Fukuchi 2005). However, lidars can detect the cloud ceiling, 
thickness, and its vertical profile where the lidar return signal from the cloud is very strong 
(because cloud behaves as obstruction in the laser propagation path).  

As shown in Fig 4, using three wavelengths of 355, 532, and 1064 nm, the CCNY stationary 
lidar detected clouds vertical structure between 3.5 to 4.5 km height, and the planetary 
boundary layer (Welton, Campble et al.) on January 25, 2006. 
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Source: CCNY lidar 

Fig.  4. CCNY lidar data shows cloud ceiling, thickness, and structure, Jan 25, 2006 

Clouds cover approximately 50% of the earth (Liou 2002). Based on the altitude (i.e., 
temperature) clouds are formed in liquid or solid (crystal) phases. Clouds and their 
interaction with aerosol and their impact on local and global climate change encouraged 
NASA to create various projects to monitor and study clouds distribution, thickness, 
transportation, and observe transitional form of clouds or combination of several forms 
and varieties. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 
(CALIPSO), Micro-Pulse Lidar (MPL), and Polarization Diversity Lidar (PDL is a lidar 
with two channels to detect two polarizations (Fhjii, 2005; Sassen, 1994)) are well-known 
lidars to measure and detect clouds. Measuring cloud phase is based on Mie scattering 
theory, the backscattering from non-spherical (e.g., crystal phase) particles changes the 
polarization strongly, but the spherical (water droplets) particles do not (Sassen, K. et al. 
1992; Sassen 1994). Both spherical and non-spherical cloud particles have a degree of 
depolarization ( /  I I ) due to the multiple scattering effects, where ,I I  are 
respectively the perpendicular and the parallel intensity components for the incident 
light. But non-spherical cloud particles degree of depolarization is greater than spherical 
particles depolarization (  NS S ). Polarization lidars are used to differentiate between 
cloud liquid and sold phases.  

Fig 5, shows thin cloud signals that were provided by Hassebo et al. on January 10, 2006 
using elastic Mie scattering stationary lidar at the City College of NY site (longitude 73.94 
W, latitude 40.83 N), at 355, 532, and 1064 nm wavelengths. Comparing the thin cloud 
signal (Fig 5) with Fig 4 (thick cloud signal) we noted that, as a result of laser rapid 
attenuation while it is penetrating the cloud, in the thin cloud case the visible beam had a 
sufficient intensity to open a channel with high optical transparency to a higher altitude. 
In contrast, in Fig 4 the cloud was thick enough to prevent the laser beams from 
increasing their depth of penetration into the layer beyond the cloud. That explains the 
useless noisy (UV and IR) signals after the cloud ceiling (R= 4.5 km, and R= 11.5 km) in 
both cases, and for visible signal in the heavy cloud case even when the altitude is low 
(4.5 km). We noted also the PBL was shown clearly in both cases where the aerosol 
loading in New York City is always high.  

  

Fig.  5. CCNY Lidar backscattering signals show thin cloud at 11km, Jan 10, 2006. 
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6.3 Velocity and wind lidar 

Doppler lidar can be used to provide the velocity of a target. When the light transmitted 
from the lidar hits a target moving towards or away from the lidar, the wavelength of the 
light reflected/scattered off the target will be changed slightly. This is known as a Doppler 
shift, hence Doppler lidar. If the target is moving away from the lidar, the returned beam 
will have a longer wavelength (sometimes referred to as a red shift). In other hand, if the 
target is moving towards the lidar the return light will be at a shorter wavelength (blue 
shifted). The target can be either a hard target or an atmospheric target. Thus the same idea 
is used to measure the wind velocity where, the atmosphere contains many microscopic 
dust and aerosol particles (atmospheric target) which are carried by the wind. 

7. Lidar types based on platform 

7.1 Ground-based lidar 

The PBL is the most important layer to study in the earth’s atmosphere. Ground-based lidar 
(stationary in laboratories and mobiles in vehicles stations) is providing us with continuous, 
stable, and high resolution measurements of almost most of the lower atmosphere 
parameters. Ground-based lidar has made an important contribution in correcting the 
satellite data and complete the missing parts from the satellite images. A good example in 
chapter 7 of this thesis shows how the ground-based lidar signature is supporting the 
satellite operations to discriminate between cloud (big particle) and smoke plume (fine 
particle) and to determine the plumes height and thickness which the satellite cannot 
provide. The main drawback of ground-based lidar is the limitation of running during the 
bad weather (rain or snow) and the air control regulations issues.  

7.2 Air-borne lidar 

Due to the uncertainty in validation of some remote sensing methodologies, particularly to 
detect cloud and measure its properties, from ground-based lidar stations, the in situ probes 
are useful techniques. Also the inaccessibility of the object of interest from the ground-based 
or space-based systems is the other reason to use air-borne lidars. The air-borne lidar 
platforms are air-craft, balloon, and helicopter. Applications of using air-borne lidars are to 
measure aerosol, clouds, temperature profile, metals in the mesopause, ozone in the 
stratosphere, wind, PSCs, H2O, and on land, water depth, submarine track, oil slicks, etc 
(Fhjii and Fukuchi 2005). One of the disadvantages of these platforms is the vibration 
problem.  

7.3 Space-based lidar 

The ground–based lidar provides a one spot at a unique moment measurement on the earth 
surface. The air-borne lidars are limited in one country or specific region as well as restricted 
by the weather or some times politic circumstances. The merit of the space-based lidar is to 
give global and/or continental images of the earth’s atmosphere properties, structure, and 
activities. Certainly, space-based lidar needs very sophisticated, extremely expensive 
equipment, especially for remotely control the unattended operations and adaptive optics 
issue. In additional to the extremely important understanding of global scale phenomena 
(H2O and carbon cycles, climate change, global warming, etc.) we have gained, we can reach 
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an inaccessible areas by air-borne and/or ground-based stations such as oceans, north and 
south poles.  

8. Lidar configurations 

Essentially, there are two basic configurations for lidar systems; monostatic and bistatic 
configurations. 

8.1 Monostatic lidar 

Monostatic configuration is the typical configuration for modern systems. It is employed 
with pulsed laser source providing very good vertical resolution and beam collimation 
compared with the bistatic configuration. In monostatic configurations, the transmitter and 
receiver are at the same location, (see Fig. 6). Monostatic systems can be classified into two 
categories, coaxial systems and biaxial systems. Monostatic system was first used in 1938. 

8.1.1 Monostatic coaxial lidar 

In the Monostatic coaxial configuration the axis of transmitter laser beam is coincident with 
the receiver’s telescope Field Of View (FOV) as shown in Figure 6 (a). The main 
disadvantages in the Configuration are the detector saturation problem that occurs once the 
lidar laser beam is shot, the unwanted signal that is detected from reflection of the 
transmitted light at the transmitter optics in the top of the receiver telescope, and the portion 
of the images - for short range - that are blocked by the secondary mirror.  

    
          (a) Monostatic coaxial        (b) Monostatic biaxial        (c) Bi-static 

Fig.  6. Field of view arrangements for lidar laser beam and detector optics 

8.1.2 Monostatic biaxial lidar 

In the Monostatic biaxial arrangement the transmitter and receiver are located adjacent to 
each other. Under this circumstance the laser beam will intersect with the receiver telescope 
VOF beyond specific range R. This range can be predetermined based on the distance 
between the laser FOV and telescope FOV axes. In fact, this configuration is quite useful in 
preventing the receiver photomultiplier (PMT) detectors saturation from the near-filed laser 
radiations (coaxial lidar disadvantage). However, in a biaxial lidar system, the detected 
signals are negatively affected by the geometrical form factor (GF) at shorter range. This 
effect makes near field measurements impossible (Measures 1984). Hassebo et al. proposed 
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two techniques to overcome the problems of geometrical form factor (Hassebo, R. Agishev 
et al. 2004). 

8.2 Bistatic configuration 

Bistatic lidar configuration is involving a considerable separation between the laser 
transmitter and the receiver subsystems. However, the usefulness of this configuration was 
originally used in supporting lidar with continuous wave (cw) laser source to overcome the 
prevention of measuring of the height variation of the density caused by cw laser (Fhjii and 
Fukuchi 2005). Currently, this arrangement is rarely used (Measures 1984). 

As a summary of some lidar physical processes, their corresponding applications and 
objective of measurements are given in Table 2. 

 

Lidar Type Based On 

Process Wavelength Objective Platform Configurations Other 

Rayleigh  
Doppler  

Elastic  
 

Wind  Ground-
based  

Monostatic  Stratosphere 
Mesopause 

Backscatter inelastic Cloud Air-borne  Monostatic Troposphere 

Mie 
Backscatter 
Raman 

single WL 
Multiple WL 

Aerosol 
H2O 

Ground-
based 
Space-based  

Monostatic 
(Biaxial and 
Coaxial) 

Troposphere 
Stratosphere 
 

 
Raman 

DIAL 
Raman DIAL 

Ozone 
Humidity 
gaseous 

Ground-
based 

Monostatic Troposphere 

Fluorescence   Wind /Heat 
flux 

Air-borne  Monostatic mesosphere 

Table  2. Lidar classification and related research 

9. Improve lidar signal-to-noise ratio during daytime operations 

In this section, the impact and potential of a polarization selection technique to reduce sky 
background signal for linearly polarized monostatic elastic backscatter lidar 
measurements are examined. Taking advantage of naturally occurring polarization 
properties in scattered sky light, a polarization discrimination technique was devised. In 
this technique, both lidar transmitter and receiver track and minimize detected sky 
background noise while maintaining maximum lidar signal throughput. Experimental 
Lidar elastic backscatter measurements, carried out continuously during daylight hours at 
532 nm, show as much as a factor of 10  improvement in signal-to-noise ratio (SNR) and 
the attainable lidar range up to 34% over conventional un-polarized schemes. Results 
show, for vertically pointing lidars, the largest improvements are limited to the early 
morning and late afternoon hours. The resulting diurnal variations in SNR improvement 
sometimes show asymmetry with solar angle, which analysis indicates can be attributed 
to changes in observed relative humidity that modifies the underlying aerosol 
microphysics and observed optical depth. 
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9.1 Introduction 

This work describes a technique which is designed to improve the operation of conventional 
elastic backscatter lidars in which the transmitted signal is generally linearly polarized. The 
technique requires the use of a polarization sensitive receiver. Polarization selective lidar 
systems have, in the past, been used primarily for separating and analyzing polarization of 
lidar returns, for a variety of purposes, including examination of multiple scattering effects 
and for differentiating between different atmospheric scatterers and aerosols (Schotland, K. 
Sassen et al. 1971; Hansen and Travis 1974; Sassen 1974; Platt 1977; Sassen 1979; Platt 1981; 
Kokkinos and Ahmed 1989; G.P.Gobbi 1998; Roy, G. Roy et al. 2004). In the approach 
described here, the polarized nature of the sky background light is used to devise a 
polarization selective scheme to reduce the sky background power detected in a lidar. This 
leads to improved signal-to-noise ratios (SNR) and attainable lidar ranges, which are 
important considerations in daylight lidar operation (Hassebo, B. Gross et al. 2005; Hassebo, 
Barry M. Gross et al. 2005; Ahmed, Y. Hassebo et al. 2006; Ahmed, Yasser Y. Hassebo et al. 
2006; Hassebo, B. Gross et al. 2006). The approach, discussed here, is based on the fact that 
most of the energy in linearly polarized elastically backscattered lidar signals retains the 
transmitted polarization (Schotland, K. Sassen et al. 1971; Hansen and Travis 1974; Kokkinos 
and Ahmed 1989), while the received sky background power (Welton, Campble et al.) 
observed by the lidar receiver shows polarization characteristics that depend on both the 
scattering angle, sc , between the direction of the lidar and the direct sunlight and the 
orientation of the detector polarization relative to the scattering plane. In particular, the sky 
background signal is minimized in the plane perpendicular to the scattering plane, while the 
difference between the in-plane component and the perpendicular components (i.e degree of 
polarization) depends solely on the scattering angle. For a vertically pointing lidar, the 
scattering angle sc  is the same as solar zenith angle s  Fig. 7. The degree of polarization of 
sky background signal observed by the lidar is largest for solar zenith angles near 

90  o
S and smallest at solar noon. The essence of the proposed approach is therefore, at 

any time, to first determine the parallel component of the received sky background (Pb) 
with a polarizing analyzer on the receiver, thus minimizing the detected Pb, and then 
orienting the polarization of the outgoing lidar signal so that the polarization of the received 
lidar backscatter signal is aligned with the receiver polarizing analyzer. This ensures 
unhindered passage of the primary lidar backscatter returns, while at the same time 
minimizing the received sky background Pb, and thus maximizing both SNR and attainable 
lidar ranges.  

The experimental approach and system geometry to implement the polarization 
discrimination scheme are described in the next Section. Section 1.8.3 presents results of 
elastic lidar backscatter measurements for a vertically pointing lidar at 532 nm taken on a 
clear day in the New York City urban atmosphere, that examine the range of application of 
the technique. In particular, the diurnal variations in Pb as functions of different solar angles 
are given and the SNR improvement is shown to be consistent with the results predicted 
from the measured degree of linear polarization, with maximum improvement restricted to 
the early morning and late afternoon. Section 1.8.4 examines the situations in which 
asymmetric diurnal variations in sky Pb are observed, and demonstrates the possibility that 
an increase in relative humidity (Halldorsson and Langerhoic), consistent with measured 
increases in measured Precipitable water vapor (PWV) and aerosol optical depth (AOD), 
may account for the asymmetry. Analysis of the overall results is presented in Section 1.8.5,  
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Fig.  7. Sky background suppression geometry for a vertical pointing lidar:  
s  is the solar zenith angle (equal to the scattering angle for this geometry)  
s  is the solar azimuth angle; and OAB is the solar scattering plane 

where the SNR improvement factor is compared with a single scattering radiative transfer 
theory. Possible modifications due to multiple scattering are also explored.  

In Section 1.8.6, the diurnal variation of the polarization rotation angle is compared to the 
theoretical result and an approach for automation of the technique based on theory is 
discussed. Conclusions and summary are presented in Section 1.8.7.  

9.2 Experimental approach and system geometry 

The City University of New York (CUNY) has developed two ground-based lidar systems, one 
mobile and one stationary, that operate at multiple wavelengths for monostatic elastic 
backscatter retrievals of aerosol and cloud characteristics and profiles. Lidar measurements are 
performed at the Remote Sensing Laboratory of the City College of New York, (CCNY). The 
lidar systems are designed to monitor enhanced aerosol events as they traverse the eastern 
coast of the United States, and form part of NOAA’s Cooperative Remote Sensing Center 
(NOAA-CREST) Regional East Atmospheric Lidar Mesonet (REALM) lidar network. The lidar 
measurements, reported here, were carried out with the mobile elastic monostatic biaxial 
backscatter lidar system at the CCNY site (longitude 73.94 W, latitude 40.83 N), at 532 nm 
wavelength. The lidar transmitter and the receiver subsystems are detailed in Table 3. 

The lidar return from the receiver telescope is detected by a photo-multiplier (PMT R11527P) 
with a 1 nm bandwidth optical filter (532F02-25 Andover), centered at the 532 nm  

North 
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S

Lidar  
Transceiver 

Background Noise 

Lidar transceiver polarization 
chose to match min Pb  
i.e., parallel to scattering plane  

Sun 

Vertical Polarized Noise 
- - - - Max  
_____ Min  

1. 

 

1.1 
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(Scattering angle) 
 (S ) 

Solar azimuth  
angle (S ) 

Max Pb is ┴ to the 
scattering plane 

1.1 

Scattering plane  



 
Remote Sensing – Advanced Techniques and Platforms 

 

330 

Transmitter  Receiver 
Laser Q-Switched Nd: YAG  

Continuum Surelite ll-10 
 Telescope 

Aperture 
CM_1400 Schmidt 
Cassegrian telescope 
35.56 mm 

Wavelength  1064, 532, 355 nm Focal length 
 

3910 mm 

Energy/pulse 650 mj at 1064 nm 
300 mj at 532 nm 
100 mj at 355 nm 

Detectors 
532 nm 
355 nm 
1064 nm 

Hamamatsu 
PMT: R11527 P 
PMT: R758-10 
APD  

Pulse Duration  7 ns at 1064 nm Data Acquisition  LICEL TR 40-160 
Repetition Rate  10 Hz Photon Counting  LICEL TR 40-160 
Harmonic 
Generation  

Surelite Double (SLD) 
Surelite Third Harmonic 
(SLF) 

  

Table  3. Lidar system specifications 

wavelength. For extended ranges, data is acquired in the photon counting (PC) mode, 
typically averaging 600 pulses over a one minute interval and using a Licel 40-160 transient 
recorder with 40 MHz sampling rate for A/D conversion and a 250 MHz photon counting 
sampling interval. Fig. 8 shows the arrangement used to implement the polarization- 

 
Fig. 8. Schematic diagram of polarization experiment set up for elastic biaxial monostatic 
lidar (mobile lidar system) 
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tracking scheme. To select the polarization of light entering the detector, a polarizing beam 
splitter is located in front of the collimating lens that is used in conjunction with a narrow 
band filter (alternatively, dichroic material polarizers were also used).  

This polarizing beam splitter (analyzer) is then rotated to minimize the detected sky 
background Pb. Cross polarized extinction ratios on the receiver analyzer were 
approximately 10-4 . On the transmission side, a half wave plate at the output of the 
polarized laser output is then used to rotate the polarization of the outgoing lidar beam so 
as to align the polarization of the backscattered lidar signal with the receiver polarizing 
analyzer and hence maximize its throughput (i.e., at the minimum Pb setting). This 
procedure was repeated for all measurements, with appropriate adjustments being made in 
receiver polarization analyzer alignment and a corresponding tracking alignment in the 
transmitted beam polarizations to adjust for different solar angles at different times of the 
day, and hence minimize the detected Pb and maximize lidar SNR.  

9.3 Results 

Figures 9- to- 11 show experimental results with the receiver analyzer oriented to minimize 
Pb and a corresponding tracking lidar polarization orientation to maximize the detected 
backscattered lidar signal and its SNR at different times on Oct 07, 2004 (6:29 PM, 3 PM, and 
noon). All times given are in (EST) Eastern Standard Time.  
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  Max 6:29 PM Std = 0.16441

 
Fig. 9. Comparison of max Pb verses min Pb lidar signals at 6:29 PM on 07 October 2004. 

The detected lidar signal is the sum of atmospheric backscatter of the laser pulse and the 
detected background light. The upper trace corresponds to the receiver polarization 
analyzer oriented to minimize Pb and the lidar transmitter polarization oriented to 
maximize the detected backscattered lidar signal while the lower trace is the result when 
orthogonal orientations of both receiver analyzer and lidar polarization are used, 
minimizing the sky background component in the return signal. Similar measurements were 
made at 3:00 PM and noon on the same day as shown in Figures 4 and 5 respectively.  

Fig. 12 shows the resulting return signals in the far zone where the sky background signal is 
the dominant component (20-30 km range) for these times and for both orthogonal 
polarizations.  
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Fig. 10. Comparison of max max Pb (NMax) verses min Pb (NMin) lidar signals at 3 PM 
(EST) on 07 Oct 2004: Range 35 km, Lidar signal in linear scale  
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Fig. 11. Comparison of max Pb (NMax) verses min Pb (NMin) lidar signals at noon (EST) on 
07 Oct 2004: Range 35 km, Lidar signal in linear scale, two signals are overlapped 
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Fig. 12. Comparison of experimental return signals at 6:29 PM, 3 PM and noon on 07 Oct 
2004, range of 20- 30 km, both orthogonal cases are shown. 
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The relative impact on the sky background signal, Pb, of the polarization discrimination 
scheme is seen to be largest at 6:29 PM, when the lidar solar angle is large (89°), while at 
noon it is minimal. The detected signal for maximum Pb is much noisier than the detected 
signal with minimum Pb, except in the noon measurement. This is consistent with the shot 
noise limit applicable to PMT’s where the detected noise amplitude P  (standard 
deviation) is proportional to the square root of the mean detected background signal P  ( 
i.e.,  P P ) where P is the detector output, whose mean value is proportional to Pb. 
This relation is most conveniently expressed in terms of the ratios of the detected signals at 
the orthogonal polarization states max min b bR P P , in which the shot noise condition is 
now:  R R . This relation has been verified in our experiments and the results 
summarized in Table 4. 
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R  

Noon 6.7 0.46 6.83 0.46 1.2 1.019 1.09 

3:00 PM 1.41 0.22 5.27 0.22 3.72 1.82 1.9 

6:29 PM 0.159 0.074 0.795 0.074 5.2 2.2 2.2 

Table  4. Comparison of experimental results to verify shot noise operation (  R R ) 

In assessing the extent to which the polarization discrimination detection scheme can 
improve the SNR and the operating range, I compare the detected SNR with a polarizer, to 
that which would be obtained if no polarization filtering was used. When shot noise from 
background light is large compared to that from the lidar signal backscatter, the SNR 
improvement can be expressed in terms of an SNR improvement factor ( impG ) expressed in 
terms of maximum and minimum Pb measurements max min( , )b bP P  as:  

 
min max max

min min1
   

         
   

Max b b b
imp

Unpol b b

SNR P P P
G

SNR P P
 (2) 

To examine how the decreased Pb translates into a SNR improvement, Fig. 13 shows the 
range dependent SNR obtained for both maximum and minimum noise polarization 
orientations for a representative lidar measurement. The results show that for SNR=10, the 
range improvement resulting from polarization discrimination resulted in an increase in 
lidar operating range from 9.38 km to 12.5km (a 34% improvement). Alternatively, for a 
given lidar range, say 9 km, the SNR improvement was 250%.  

Another useful way of looking at the effect of SNR improvement is to note that the SNR 
improves as the square root of the detector’s averaging time. Thus a 250% improvement in 
SNR is equivalent to reducing the required averaging time by a factor of 2(1 / 2.5) . 

9.4 SNR Improvement with respect to solar zenith angle 

The SNR improvement factor ( impG ) is plotted as a function of the local time, Fig. 14, and 
the solar zenith angle, Fig.15. Since the solar zenith angle retraces itself as the sun passes  
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Fig.  13. Experimental range dependent SNR for maximum and minimum polarization 
orientations 

through solar noon, it would be expected that the improvement factor ( impG ) would be 
symmetric before and after the solar noon and depend solely on the solar zenith angle. This 
symmetry is observed in Figs.14 and 15 for measurements made on 19 February 2005 and is 
supported by the relatively small changes in optical depth (AOD) values obtained from a 
collocated shadow band radiometer, (morning 0.08  , afternoon 0.11  ) 
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Fig. 14. Gimp in detection wavelength of 532 nm verses local time on 19 February 2005 

1

1.5

2

2.5

3

3.5

50 55 60 65 70 75 80 85 90 95

Solar Zenith Angle (Degree)

G
im

p

Before Solar Noon

After Solar Noon Feb 19, 05
Symmetry

 
Fig. 15. Gimp in detection wavelength of 532 nm verses solar zenith angle on 19 February 
2005 
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9.5 Effect of variable precipitable water vapor on SNR  

Symmetry was, however, not always observed in our experimental results. Fig. 16 shows 
Gimp plotted as a function of the solar zenith angle for 23 February 2005. Small asymmetries 
were observed. These appear to be related to changes in humidity, which can modify the 
scattering properties and lead to enhanced multiple scattering effects. The results are 
supported by the variation in Precipitable water vapor (PWV) shown in Fig. 17, obtained 
from the CCNY Global Positioning System GPS measurements which were processed by the 
NOAA Forecast Systems Laboratory (FSL) (NOAA Web) for both days. 
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Fig.  16. Gimp in detection wavelength of 532 nm verses solar zenith angle on 23 February 2005 
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Fig. 17. PWV (cm) loading verses local time on 19 February 2005 and 23 February 2005 

The 23 February the aerosol optical depth measurements from the shadow band radiometer 
show larger proportional changes (morning 0.16   afternoon 0.09  ) than those of 19 
February, which are consistent with the asymmetry in the PWV, with higher optical depths 
corresponding to high PWV (and RH%) conditions.  

9.6 SNR improvement azimuthally dependence 

Within the single scattering theory, the polarization orientation at which the minimum Pb 
occurs should equal the azimuth angle of the sun (see Fig. 7). To validate this result, the 
polarizer rotation angle was tracked (by rotating the detector analyzer) over several seasons 
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since February 2004 and compared with the azimuth angle calculated using the U.S. Naval 
Observatory standard solar position calculator (Applications) (14 April 2005). As expected, 
the polarizer rotation angle needed to achieve a minimum Pb closely tracks the azimuth 
angle, Fig. 18.  
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Fig.  18. Comparison between solar azimuth angle and angle of polarization rotation needed 
to achieve minimum Pb: 14 April 2005 

This relationship is important since it allows us to conceive of an automated approach that 
makes use of a pre-calculated solar azimuth angle as a function of time and date to 
automatically rotate and set both the transmitted lidar polarization and the detector 
polarizer at the orientations needed to minimize Pb. With an appropriate control system, it 
would then be possible to track the minimum Pb by rotating the detector analyzer and the 
transmission polarizer simultaneously to maximize the SNR, achieving the same results as 
would be done manually as described above.  

9.7 Conclusions and summary 

SNR improvements can be obtained for lidar backscatter measurements, using a 
polarization selection/tracking scheme to reduce the sky background component. This 
approach can significantly increase the far range SNR as compared to un-polarized 
detection. This is equivalent to improvements in effective lidar range of over 30% for a SNR 
threshold of 10. The improvement is largest for large scattering angles, which for vertical 
pointing lidars occur near sunrise/sunset. Asymmetric skylight reduction sometimes 
observed in experimental results is explained by the measured increase in PWV and 
subsequent modification of aerosol optical depth by dehydration from morning to 
afternoon. It was also demonstrated that the orientation of the scattering plane defining the 
minimum noise state does not change in multiple scattering but follows the solar azimuth 
angle even for high aerosol loading. Therefore, it is quite conceivable to automate this 
procedure simply by using solar position calculators to orient the polarization axes.  
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1. Introduction 
The technology of remote sensing (ERS) provides huge information resources and has the 
potential to influence the socio-economic development of both security and defence. 
However, the mass use of remote sensing technologies demands the creation of a network 
with the technical means of reception and online access to remote sensing data for 
consumers. The primary source of data for remote sensing is an aerial station (AS), with the 
reception of information coming from a spacecraft (SC). Typically, these stations are special 
objects (mainly military), intended to receive, process and disseminate remote sensing data. 

For the effective use of ERS data, it is necessary to bring it closer to the end user. This 
requires universal compact antenna stations of a consumer class, including mobile ones. 

This chapter reviews the principles, structures, models and analysis of various technical 
solutions and the key features, basic functions and control algorithms that are used to create 
universal automatic ASs (terminals with remote control) and software to control such ASs so 
as to get remote sensing information from the spacecraft. 

The idea of  intelligent “personal” aerial station for information receiving is offered 
proceeding from its function. Such station can be used by small groups or individual 
researchers directly engaged in contextual information processing i.e. university 
laboratories, scientific centers, and other organizations interested in such information. 

The results of the author’s practical experience in creation of remote sensing AS with 
different types of rotary support devices and with various diameters (from 3 to 12 m) of 
parabolic reflectors are given. Experimental results of operation of control systems of  
remote sensing stations using algorithms of artificial neural networks are presented. 

2. The structure and principle of the functioning of terrestrial antenna 
stations for remote sensing data reception 
The following conditions are necessary for an ERS system to function: 

1. Low-orbital satellites with filming and recording equipment onboard; 
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2. Onboard data transmitters via a radio channel; 
3. Terrestrial antenna stations for data reception, its processing and distribution to users. 

The general scheme of a satellite monitoring system is shown in Fig. 1. 

  
       a) Structure of ERS system          b) Receiving ERS antenna 

Fig. 1. General scheme of a satellite monitoring system (a). Receiving antenna where the 
reflector has a diameter of 12 m (b). 

According to NASA reports at present 6130 artificial satellites are launched into space. 957 
among them are operating on different Earth orbits. Nearly 7 % i.e. more than fifty of them are 
intended for remote sensing.  Nearly 40 countries are directly involved in programmes 
involving satellite observations and their number is constantly growing. The trend is that the 
number of spacecraft is growing and the resolution of recharging equipment is increasing 
(several tens of cm). New technologies of satellite monitoring have appeared (e.g., the 
miniaturisation of equipment, the usage of micro- and nano-satellites, satellite clusters and the 
integration of different projects). University (students) satellites and those of other branch 
research organizations are being launched. New technologies of making survey of necessary 
territories ordered by customer are applied (Hnatyshyn & Shparyk, 2000). 

Ground infrastructure remote sensing systems consist of centres receiving and processing 
data from spacecraft, with web portals to access the catalogues, archives and operational 
information from space. The necessary components are: the marketing of software products 
for thematic data processing systems and the training of qualified personnel. 

High-sensitive antenna systems and equipment for reception, demodulation, the decoding 
of the electromagnetic microwaves from spacecraft and the allocation of the data streams 
that are encrypted in order to receive data from satellites are all also necessary. 

The technology of ERS data reception is more difficult than data reception from 
geostationary satellites due to the need for tracking remote sensing spacecraft. 

Antenna systems with hardware and software controls should automatically direct the focal 
axis of the reflector of the antenna system into a predictable location point for the spacecraft 
so as to ensure its tracking. The signals from the satellites are received by the antenna 
during the spacecraft's tracking. 
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The structure of the remote sensing antenna complex includes the following main blocks: 

- A supporting-rotating device with a pointing mechanism; 
- A reflector system mounted on a rotating part of the mechanism; 
- A control system for pointing and tracking; 
- A system for the receiving, decoding and visualisation of information; 
- A system of registration, processing, archiving and the transmission of data. 

Satellite trajectories - which are calculated for the next session - are loaded into the PC 
control unit in a table view before the session with the spacecraft. The control data includes 
codes for the antenna’s angular position and velocity codes for the change. They are 
transferred to the high-level equipment of the antenna control system from the PC via a 
communication interface. The PC monitors the antenna position by broadcasting the angular 
coordinates received from the respective antenna sensors. Moreover, it is necessary to 
monitor the status of limit switches, the track time, speed and other parameters. The control 
system needs to be synchronised with a GPS time system in order to ensure the 
management of the antenna system in real-time. 

Information is transmitted via the communication network to the computer after the 
session’s end. The computer has to perform zero-level processing (unpacking the flow and 
binding the onboard time to terrestrial time) and referencing to geographical coordinates. 

2.1 The concept of smart “personal” earth stations for remote sensing 

As was noted in the studies of the India Space Department, more often than not remote 
sensing technology has not yet been effectively used, despite the whole complex of remote 
sensing satellites available for the country. 

The main causes of this are the isolation of consumers from the remote sensing data 
processing centre, the lack of remote sensing receiving stations and the difficulties involved 
in gaining access to RS data. Moreover, the important factors are: an insufficient amount of 
software products and qualified staff in the field of contextual RS data processing, though 
partially this is a consequence of the reasons already addressed. 

Currently, a mainly centralised access method for remote sensing information is used. This 
approach involves the receiving, processing and dissemination of data only through big 
centres for space information receiving, often involving military organisations. Such data 
centres can be compared with the big computer centres from the 1970s that acted as service 
providers for complex calculations on request. These were non-dynamic structures and 
ineffective for a wide range of customers. As such, the genuine active development and 
implementation of informational technologies into daily life began with the popularisation 
of personal computers, when a wide range of interested consumers became involved in 
working with information. 

However, other technologies related to the distributed method of reception and processing 
of information are emerging. This information is received locally by organizations interested 
in such information by means of their own aerial terminals. In such cases the information 
reaches the user more quickly and more users can work on data processing and analysis 
concerning their subject-matter. To use this technology, it is necessary to provide users with 
inexpensive and easy-to-use ‘personal’ RS data receiving stations. Such stations can 
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significantly change their activities in relation to a number of areas connected to the use of 
space informational technologies, as with the appearance of the PC. 

Personal RS data receiving station is relatively cheap, automated, simple in use (including 
mobile version) host antenna station designed for use by groups directly engaged in 
concerned with their subject-matter data processing and decision making (or guidelines in 
decision-making for management departments). These may be universities, research 
laboratories, institutes or departments in control organisations. The key characteristic 
features of such stations should be: 

 Compactness and simplicity of operation and maintenance; 
 Integration with processing technologies and the storage and thematic analysis of data; 
 The use of standard PC configurations; 
 Affordable price. 

Personal stations allow for the reduction of the access time to remote sensing data and the 
cheapening and loosening of access for a wide range of users. This solves one of the main 
requirements of remote sensing data – the efficiency of the acquisition of actual space 
information about the earth’s surface and its objects. 

Connecting a wider range of consumers - including the involvement of university science 
departments and the practical training of staff in the area of thematic data processing - 
allows for the more effective usage of the satellite in monitoring data for the stable growth 
and security of countries (according to the GEOSS and GMES programmes, etc.). 

The availability of such systems will make remote sensing data an effective information tool 
for accessing situations and decision-making. 

Important features of a personal remote sensing data receiving antenna station should 
include: 

1. The prediction and calculation of the trajectory of spacecraft which are selected by their 
orbital data from the spacecraft catalogues and the coordinates of the station; 

2. Software calibration and the accompaniment of the selected spacecraft on its trajectory 
with the minimal acceptable error; 

3. The tracking of the signal maximum from the spacecraft during its accompaniment and 
correction of the calculated accompaniment trajectory if necessary; 

4. The reception and demodulation of radio-signal selection of the information flow; 
5. Real-time data processing; 
6. Data visualisation, archiving and storage; 
7. Self-checking and the self-diagnosis of the units and the station as a whole; 
8. Adaptiveness to the effects of various factors, both external and internal; 
9. Connectivity with other stations and external terminals for synchronisation and 

coordination. 

Such functionality would allow the staff to focus on online access and contextual 
information processing instead of focusing on hardware. 

Further, technical problems we had to solve while creating the series of antenna stations for 
satellite tracking and receiving of remote sensing data as well as broadcasting command 
information to satellite are described. 
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2.2 Features and problems that must be addressed during the station’s creation 

Since the position of the spacecraft for low-orbit remote sensing changes all the time, both 
hardware and software tools for the controlling and tracking of a satellite in its orbit play an 
important role in the structure of terrestrial receivers. The required accuracy and acceptable 
errors in coordinate tracking depends on the chart direction of the aerial and the diameter of 
its mirror. 

Problems involved in AS creation for tracking the remote sensing satellite are caused by the 
following factors: the low-orbital trajectory of the remote sensing satellite requires the use of 
a high-dynamic supporting-rotating device for the antenna with the relevant control 
systems. Increase of image dimensional resolution from the satellite requires the acceleration 
of the information flow transmission rate which in its turn leads to the enlargement of  the 
reflecting surface diameter of  antenna reflector (diameters varying from 3m up to 12m) and 
its weight as well (Garbuk & Gershenson, 1997). 

The speed of information flow is defined as: 

 2
L V

C I N K
r


    , (1) 

where: 

L – the width of the Earth’s view; 
V – the velocity of the sub-satellite point; 
I – the number of bites per pixel of the image; 
N – the amount of information channels; 
K – the coefficient of the coding noise immunity type; 
r – the resolution of the Earth's surface survey capability: 

 r H
D


  , (2) 

where: 

 – the wavelength; 
H – the height of the spacecraft; 
D – the diameter of the lens. 

The larger the diameter of the reflector, the narrower antenna direction chart becomes, 
which leads to the need to increase dynamic pointing accuracy. For instance, for the AS 
TNA-57 used for receiving data from the remote sensing Ukrainian satellite ‘Sich-2’ in the 
Centre for Space Information Monitoring and Navigation Field Control (CSIM and NFC), 
the diameter of the antenna reflector is 12 m, its weight is 5,500 kg, while the total weight of 
the AS is close to 70,000 kg (Fig.1,b). The width chart of the antenna orientation on the level 
of the 3 dB level is equal to 14 arcmin. Thus, it is necessary to provide speeds of up to 10 
degrees / sec with a dynamic tracking error of not more than 1.5 arcmin. 

The provision of a large dynamic range of motion for large antennas (a reflector with a 
diameter of 3m to 12m) and the need to ensure a small dynamic error for spacecraft 
guidance and tracking are contradicting requirements. Thus, this leads to a more 
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complicated structure and management system for the AS, which increases the cost of the 
station. 

In addition, for classical azimuth-elevation supporting-rotating devices (Fig.1b) there are 
"dead" zones for spacecraft tracking, for those trajectories that are close to the zenith relative 
to the location of the terrestrial stations (Belyanstyi & Sergeev, 1980). 

3. Structure and algorithms for new constructions of ERS stations 
This section discusses some variants of the construction and algorithms of station control 
systems – as designed by ourselves - which solve the above mentioned problems in order to 
create effective stations for receiving information from remote sensing spacecraft. The 
experimental results of their work are given. 

3.1 Principles for the functioning of an AS with 3 axes pointing without 'dead zones' 
accompanying the spacecraft through the zenith 

To reduce the high speeds of ASs and to avoid signal loss in the "dead zones" we developed 
an AS with a 3-axes Support-Rotating Device (SRD) with an implemented additional 
azimuth axis of E1 with a slope γ  15 ° relative to the direct azimuth axis E3 and a rotation 
range in the horizontal plane the same as the basic azimuth axis ± 170 ° (Fig.2a). 

    
       a) antenna “EgyptSat-1”              b) simulation model “EgyptSat-1” 

Fig. 2. An AS with a 3-axial SRD (а) and a simulation model of spacecraft accompaniment 
through the zenith (b). 

The aerial control system should perform an orientation of the chart direction of the reflector 
towards the spacecraft in real-time according to the rule about the spacecraft’s motion towards 
the AS’s coordinates. As the basis for the calculation of the orbital motion of the spacecraft, a 
Keplerian model of the point motion around the static attracting object is accepted. The 
satellite trajectory is described through Keplerian orbit elements (Fig.3), where: 

i – the inclination of the orbiting satellite; 
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 – the longitude of the ascending node from Greenwich during the moment of the epochal 
time moment Т; 
 – the angular distance of the perigee from the ascending node; 
p – the orbit parameter dependent on the large semiaxis а: p=a*(1-e2)); 
e – orbit eccentricity; 
T – epochal time (or time moment). The satellite passes through the point of the ascending 
node (the intersection of the equator when moving from south to north). 

 
Fig. 3. Parameters of Satellite orbits 

However, in reality the movement of the spacecraft is affected by a series of disturbing 
factors, the most significant of them being: a perturbation of the gravitational anomalies of 
the Earth, the effect of friction in the upper atmosphere, the influence of the gravity of the 
Sun and the Moon and the pressure of sunlight. The equation of the spacecraft’s motion is 
described by the system through six differential equations of the first-order with 
consideration of varying factors. The task of forecasting the spacecraft’s movement at every 
moment of time is reduced to the numerical integration of differential equations of the sixth-
order with initial conditions at a given time t0 (Reshetnev at al., 1988). 

Continuously updated data on the spacecraft’s orbital parameters is presented in a two-line 
format (*. TLE) since the calculation of the trajectory can be obtained from the informational 
satellite catalogues, for instance, on-site http://celestrak.com/NORAD. 

The control system calculates the trajectory according to the orbital parameters data in a 
topocentriс coordinate system in an aimer table view R[tj,j,j], where j, j – the azimuth 
angle and the angle of the beam pointing direction of the aerial on the spacecraft at a time tj. 

The control system needs to perform the transformation of input coordinates j, j in order 
to accompany the spacecraft with this antenna, from a topocentric azimuth-elevation 
coordinate system into the local coordinate system of each axis of the AS (array 
R[tj,1j,2j,3j]), where 1j, 2 j, 3j - the rotation angles of each axis E1, E2, E3 from ERD at 
time tj. 
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To target the spacecraft, the control system controller performs a coordinate conversion 
according to the algorithm: 

 
2
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where: 

 1
cos sin( 3)

cos cos cos( 3) sin sin
arctg

  
     

     
     

 (5) 

cos cos 3 cos cos sin sin cos sin 3 cos sinAX                    , 

sin cos 3 cos cos cos sin sin sin 3 cos sinAY                     , 

sin 3 cos cos cos 3 cos sinAZ             , 

1 – the rotation angle of the main azimuth at axis Е1, 
2 – the rotation angle of the elevation axis Е2, and 
3 – the rotation angle of the azimuth at vertical axis Е3. 
  15 - the angle of the axis E1 relative to the axis of E3. 

The range of angle changes: 

 -           (0360), 
 -            (090), 
1, 3 -   (0170), 
2 -         (0120). 

During the execution of the accompaniment of a spacecraft with a given aimer table (array 
R[tj,j,j]), the controller control system has to convert them into a format of local 
coordinates (array R[tj,1j,2j,3j]). 

To determine the real data about the AS’s position and to compare with a given aimer table 
and issue them in the control and information processing centre, it is necessary that the 
inverse transformation of the "local" coordinate axes in the system topocentric coordinates 
pointing to the spacecraft accord with the correspondences below: 

 
B B

B B

B

,  if  X 0,  Z 0;

360 ,  if  X 0 and Z 0;

180 ,  if  X 0;



 



  


   
   





 (6) 



 
Smart Station for Data Reception of the Earth Remote Sensing 349 

Where: 

cos sin 3 cos( 2 ) cos 1 sin sin 3 sin( 2 ) cos 3 cos( 2 ) sin 1
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cos sin 3 cos( 2 ) cos 1BZ           sin sin 3 sin( 2 ) cos 3 cos( 2 ) sin 1              . 
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The control system of such an AS needs to calculate and execute the required angle 3 
vertical azimuth axis E3 after every calculation or after receiving - via the communication 
channel - the trajectory of spacecraft, taking into account the mechanical limits of the 
rotation range of this axis, as follows: 

3 M  , if 0 M     ; 

3    , if 180M     ; 

3    , if 180 190M    ; 

3 360M    , if 360 360M      ; 

where: 

  ,    - the angles of triggering the limit switches the constraint turn of the antenna on 
the angle 3 (around an axis Е3) into "plus" and "minus" respectively ( 170    ; 

170     ); 

M  - a value of azimuth counting with a maximum angle of the elevation of the spacecraft (
( )M t   at max( )t  ), determined from the pointing-table that is calculated for the 

selected spacecraft. 

The calculation of the angles α1(t) і α2(t) is performed by the use of angles α(t), β(t) and α3.. 
Such an AS design and algorithm are implemented in the terrestrial bilateral An AS to 
manage and control the spacecraft telemetry RS «EgyptSat-1" is installed and operated in 
Egypt (Fig. 2a). 

Fig.4a shows the diagram of “Terra” spacecraft’s tracking trajectory through zenith (the 
maximum lifting angle = 90) in the system of azimuth-elevation coordinates R [t, α, β] of 
topocentric coordinate system. The crimson diagram represents targeted angles on azimuth 
and the yellow one - on angular altitude. Fig.4b represents diagrams of tracking after  
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   a) R[t,,]             b) R[t,1,2], 3=const     c) Trajectory into Map 

Fig. 4. Graphs of the trajectory of spacecraft tracking via the zenith: (a)- for a 2-axis AS in 
topocentric coordinates R[t,,]; b- for a local axis E1, E2, R[t,1,2,3]. The axis Е3 is fixed 
at 107º during the session. 

trajectory conversion from topocentric coordinate system into coordinate system of antenna 
axes R [t, α1, α2, α3]. The bottom straight azimuth axis E3 before the beginning of session 
for the given trajectory is to rotate the antenna system on azimuth towards the direction of 
the maximum elevation of the spacecraft for chosen trajectory constituting in this case the 
angle 106° 30 min. 

As can be seen from the graphs, at a spacecraft’s zenith point a velocity of an azimuth axis 
for a classic 2-axial AS tends towards infinity (Fig.4a). After the conversion to a 3-axis 
coordinate system (Fig.4b), the maximal accompaniment speed of the inclined azimuth axis 
is not more than 2.5 degree / sec. This enables the reduction of dynamic errors during the 
tracking of the spacecraft. 

With the exception of the software method for tracking on a pre-calculated trajectory of the 
spacecraft, the AS control system implements the tracking of the spacecraft by an auto-
tracking method of a signal finder with the goal of supporting a maximum value of the 
signal. It is also possible to use a compound method of software tracking with automatic 
correction of tracking table according to the signal and additional manual control. 

Total-difference (monoimpulse) type of aerial-feeder device (Fig.5) is used in the designed 
aerial system for the execusion of satellite automatic tracking according to direction finder 
signal. Besides the main total informational signal the difference signals on each coordinate 
forming aerial direction finder characteristic are received on its output. The differencing 
signal provides information about the value and the sign of an error deviation of the AS 
from the signal maximum. 

Fig.6 shows a graph of the error of the antenna beam’s angular deviation from the desired 
trajectory in angular minutes (over the time t = 220 s) which is not exceeding - as seen from 
the graphs - 4 angular minutes. 

In general, the total combined error of the tracking is a function of time and depends upon 
the parameters of the control system and the characteristics of the controlling and 
disturbance signals that affect the system during the process of tracking the spacecraft. As 
such, the maximum efficiency of remote sensing information reception is achieved with the 
minimum total tracking error. 

Subsection 4 is devoted to a search for the structures and algorithms for efficient system 
operation employing the use of artificial neural networks. 
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Fig. 5. Block-scheme of an antenna-feeder device of a total-difference (mono-impulse) type. 

 
Fig. 6. Graph of the error of the antenna beam’s angular deviation from the desired 
trajectory in angular minutes (over the time t=220 s). 

Due to the enhancement of AS design and control algorithms, the speed of moving object 
tracking in the culminating moment of the spacecraft is significantly reduced, which reduces 
the requirements for the electromechanical components of the AS and allows the reduction 
of the dynamic errors involved in tracking. Structural and algorithmic solutions are 
implemented and tested in AU "Egyptsat-1". 

3.2 Antenna System with a rotary device based on the six-axis Stewart platform 
(Hexapod scheme) 

The disadvantages of all types of classic two-axial and modified three-axial SRD 
constructions of ASs involve their complexity and the high requirements for the accuracy of 
rotating mechanisms with a large diameter. This makes antenna systems too ponderous, 
their support-rotating devices too complex for manufacturing and assembling, and their cost 
too expensive. 

Recently, for tracking along complicated trajectories mechanisms of manipulators with 
parallel kinematic units especially based on six-axis Steward platform (Fig.7) are widely 
used in robotics, machine-tool constructions, benches and other equipment (Stewart, 1965; 

Switchboard

Support-
rotating
device
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Fichter, 1986). Such mechanical systems consist of platforms connected by a system of 
variable (controlled) length sections, and they have a certain advantages over rotary 
mechanisms. For example, a combination of hardness and compactness, reliability, ease of 
design, manufacturability and studies (Nair & Maddocks, 1994; Kolovsky at al., 2000; 
Afonin at al., 2001). The Stewart platform is the subject of many scientific studies. There are 
examples of their use in some of the application problems provided by the data from the 
booklets of companies and technical exhibits, but the use of parallel kinematic mechanisms 
based on the Stewart platform in the mechanisms of the SRD of ASs for tracking various 
spacecraft trajectories - including low-orbital remote sensing satellites - has not yet been 
investigated. 

Below we consider the construction and imitation of a model of the AS support-rotating 
device based on the six-degree Stewart platform (Hexapod scheme) as an alternative to 
traditional support-rotating devices. We investigated the possibilities and features of such 
an AS in performing the tracking of low-orbital satellites. 

3.2.1 Specifics of the schema and construction of an AS with a support-rotating 
device Hexapod 

A support-rotating device based on a linear drive (Fig.7) consists of two platforms, one of 
them is the basis of SRD and the other is the basis for binding the reflector of the satellite 
and six actuators, each attached to the upper and lower platform via a cardan joint. 

 
Fig. 7. Six-axis Stewart platform. 

In our laboratory, we developed a research model for the construction of an AS with a 
support-rotating device based on the Stewart platform (Hexapod) and a control system for it 
(Fig.8). 

The carcass of this support-rotating mechanism has six points of freedom which allows it 
rotate the reflector in the air with high accuracy. 

A support-rotating device of this construction has benefits comparative with classic rotary 
mechanisms: 

 Simplicity of mechanical construction, toughness,  easy access to mechanical units of 
aerial, absence of cable twisting; 

 No “dead” zones during satellite tracking; 
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Fig. 8. Antenna System with a support-rotating device based on the Stewart platform 
(Hexapod). 

 No restrictions on rotation on the azimuth axis; 
 The low speed of driving actuators for any tracking trajectories of a satellite; 
 High accuracy in aiming; 
 The ability to work in difficult conditions; 
 Relatively low cost. 

The main disadvantages of this type of support-rotating device include some limitations at 
low tilt angles of the reflector and the complexity of the simultaneous motion control of six 
actuators. Unlike classical AS support-rotating devices, the control of the support-rotating 
device based on a linear drive demands the precise coordination of the parallel movement of 
all six actuators simultaneously. The closing of every actuator must always lie in 
corresponding areas, otherwise the construction may be destroyed or the actuators may fail. 

3.2.2 Algorithm to control AS based on linear circulating platform 

In common case to point the aerial beam on the given azimuth and location angle it is 
necessary to set the lengthening of each actuator on certain value. In order to find the 
motion laws of actuators let us solve the inverse problem. 

Let us define a plane of the support-rotating device in a Cartesian coordinates system with 
x, y, z, axes to which the reflector of the antenna is mounted. Since the physical size of the 
upper platform and the mount points of the actuators on it are known, it is possible to find 
the coordinates of the hinges. Similarly, let us set the base of the support-rotating device (the 
lower platform) basis and determine the coordinates of the lower hinges. 
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At the maximal lengthening of the actuators, the planes will be maximally remote from each 
other. At the minimum lengthening the distance between them, it will be at the minimum 
(Fig. 9). In extreme positions, the planes can be located only when parallel to each other. 

  
      a           b 

Fig. 9. Location of the platform plane at the different lengthening of actuators. 

It is clear that the upper platform has to be in the middle position in order to achieve the 
maximal possible turn of the antenna reflector. As such, the equal motion of the actuator is 
kept both upwards and downwards. 

Let us perform a turn of upper plane with the hinges mounted accordingly into it, making 
use of affine isometric transformations of the coordinates. 

Three parameters are needed to perform the arbitrary rotation in space: 

- A fixed point of transformation; 
- A vector that is the centre of the rotation; 
- A rotation angle value φ. 

Let us choose a point in the centre of the upper platform as a fixed point that passes into 
itself (as a result of rotation) (Fig.9b). Consider a vector (i.e., the centre of rotation) set by 
two points p1 and p2: 

 v = p2 – p1 (9) 

The direction is determined by the order of using these points. Only the direction of this 
vector is important. Its position in space does not affect the rotation result. 

Let us perform a rotation axis vector normalisation to simplify the operation’s execution: 
replace it with the vector of unit length. The second vector has the same direction in space as 
the first one: 
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The rotation is partly simplified if the fixed point (together with the rotation object) is in the 
zero point of the coordinates. Thus, the first operation of transformation is Т(-р0), and the 
last is Т(р0). Where Т(-р0) and Т(р0) are the appropriate matrices of transformation (Shikin 
& Boreskov, 1995): 
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Thus, the matrix of a complex transformation will have such a form: 

Rotation around an arbitrary axis reduces in relation to the consequent rotation around the 
particular coordinate axes. The main problem is to find the rotation angles for every axis. 

Let us execute the first two rotation operations to combine the rotation axis v with the 
coordinate axis Z. Next, rotate the object around the axis Z to a necessary angle and execute 
the previous two turns in reverse order. 

Accordingly, the matrix of the complex transformation has the form: 

 M = Rx(–θx)Ry(–θy)Rz(θz)Ry(θy)Rx(θx) (13) 

The determination of the matrices Ry(θy) and Rx(θx form the most difficult part of the 
calculations. 

We will consider the components of vector v. As v is the vector of unit length, then: 

 2 2 2 1x y za a a    (14) 

Let us draw a segment from the beginning of the coordinates to the point (ax, ay, az). This 
segment will have a unit length and the same direction as the vector v. Drop the 
perpendiculars from a point (ax, ay, az) to every coordinate axis as it is represented by Fig. 10. 
Three direction angles - φx, φy, φz - are the angles between the vector v and the coordinate axes. 
The correlation between direction cosines and the components of vector v are: 

cos φx = ax 

 cos φy = ay (15) 

cos φz = az 

Only two direction angles are independent, because: 

 Cos2φx+Cos2φy+Cos2φz = 1 (16) 
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Fig. 10. Direction angles of elevation. 

Knowing the values of the direction cosines, it is possible to calculate the value of the Θx 
and Θy angles. As we see in Fig.11, the rotation of point (ax, ay, az) will lead to the segment 
rotation where it will be located on the plane y=0. The length of the segment projection 
(before the turn) on the plane x=0 is equal to d. 

 
Fig. 11. Rotation angle placement according to the X axis. 

Since the rotation matrix contains sines and cosines instead of angles, there is no need to 
find the Θx value itself, so the rotation matrix Rx(θx) will be: 
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And the inversed rotation matrix Rx(–θx) will be: 
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The elements of the Ry(θy) matrix are calculated in a similar way (Fig.12). 

 
 

Fig. 12. Rotation angle placement according to the Y axis. 

The corresponding rotation matrices are: 

 

cos 0 sin 0
0 1 0 0

( )
sin 0 cos 0
0 0 0 1

y yR

 

 

 
 
  
 
 
 

0 0
0 1 0 0

0 0
0 0 0 1

x

x

d

d





 
 
 
 
 
 

 (19) 

 

cos 0 sin 0
0 1 0 0

( )
sin 0 cos 0

0 0 0 1

y yR

 

 

 
 
  
 
 
 

0 0
0 1 0 0

0 0
0 0 0 1

x

x

d

d





 
 
 
 
 
 

 (20) 

Thus the rotation axis (vector  v) coincided with the axis Z. Then let us perform the rotation 
on needed angle elevation (angle of the aerial reflector beam pointing): 
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After that we carry out the reverse transformations: Ry(–θx), Rx(–θy), T(–p0) and obtain the 
top plane rotated on the given pointing angle corresponding with the aerial beam elevation 
angle. As a result of the multiplication of all the discovered transformation matrices, we will 
get the complex matrix М: 

 M = T(–p0)Rx(–θx)Ry(–θy)Rz(θz)Ry(θy)Rx(θx)T(p0) (22) 

The multiplication of an arbitrary point in a three-dimensional space on a specified complex 
matrix will cause it to turn around to some fixed point in the same space. 

After the rotation of the upper platform, we receive new coordinates of the upper ends of 
actuator hinges used to mount to the platform. Having the coordinates of the upper and 
lower hinges in space, we calculate the distance between them using a correlation (23) (the 
actuator lengthening that it was necessary to find): 

 2 2 2
2 1 2 1 2 1( ) ( ) ( )S x x y y z z       (23) 

On the basis of the resulting algorithm, the simulation work program is developed. This 
program provides the calculations and represents the position of the actuators and the rates 
of their movement depending on the azimuth and elevation angle with the reflection of 
three-dimensional model of the supporting-turning device and antenna (Fig.13). In this 
model, it is possible to set the different geometrical parameters of the support-rotating 
device’s construction (Fig.14). Different dimensions of the construction for determination of 
various optimum correlation between minimum values of the inclination angles, speeds and 
accuracy of work and control actuator motion while constructing the control system can be 
set in the model. 

The control of a supporting-rotating device of a Hexapod-type requires precise (coordinated 
in time) cooperation between the position sensors and the delivery system of the control 
signal for all six drives. It is needed in order to preserve the system’s integrity and to avoid  

 
Fig. 13. A three-dimensional model of the support-rotating device. 
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Fig. 14. Modelling of the constructional parameters of the support-rotating device. 

physical damage. The six actuators form a single system. The control system must provide 
the simultaneous coordinated parallel control of 6 drives. The developed control system 
implements the algorithms of parallel work on the basis of a FPGA programmable logical 
integrated circuit. The block diagram with the cooperation chart of the control system’s 
basic nodes is represented in fig.15. 

 
Fig. 15. Interaction scheme between the main units of the AS control system with a 
Hexapod. 

The computer for the control system generates the array of the points for each actuator which 
create the trajectory. Every point is transacted to an FPGA that has six logical channels 
generated for it. Every channel is responsible for the work of a corresponding actuator, and 
consists of a PID regulator, a PWM inspector, a processing module for actuator sensor signals 
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and a calculation module for the actuator’s current position. In order to call the resources of 
every channel, a module is created. It provides an interface to access the periphery and 
provides its own address space for every channel and ensures the integrity of the data passed. 
Additionally, an interrupt controller is created so as to increase the reaction of all the system. 
This controller signals to the control processor regarding emergency events. 

All of the channels of the control block work synchronously. This provides for simultaneous 
data reading from the sensors with processing and control actions for all of the actuators. It 
provides work for all 6 actuators as a single system for tracking the pointing trajectory of the 
spacecraft. 

The graphs of the aimer table transformations from the topocentric  system are shown in 
Fig.16. A trajectory is set by the arrays of the azimuth and elevation coordinates (R[tj,j,j]). 
These arrays are transformed into the local movement coordinates for each actuator (array 
R[tj,1j,2j,3j,4j,5j,6j]). 

 

Fig. 16. Graphs of the aimer table transformation in the topocentric coordinate system 
(R[tj,j,j]) and in the local coordinate system R[tj,1j,2j,3j,4j,5j,6j]. 

The control program on the control system computer provides the visualisation of a 
movement diagram for each actuator and their speed; it also provides the calculation of 
trajectory tracking errors (fig.17). 

So, the supporting-rotating device of an aerial system constructed on the basis of a Stewart 
platform (parallel kinematics structure Hexapod) considerably simplifies the mechanical 
construction of the AS, but increases the requirements for the schema and algorithms of the 
control system. 

4. The use of neural network technology in the control systems of ERS aerial 
stations 
The calculations of an AS’s dynamic parameters for the construction of apparatus-
programming devices for aerial guidance control according to the classical method - 
especially for six-wheeled or six-drive traversing mechanisms Hexapod - are connected with  
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Fig. 17. Graph of the tracking of axis 1 of the actuator. 

technical difficulties relating to the determination of the series of the AS’s real parameters. 
These include, modulus inertia moments, changes of resistance friction depending on the 
inclination angle and the ratio of the aerial modulus position for various axes, the rigidity 
changes of mechanical transmissions, clearances, the instability of electric drive 
characteristics, the stochastic influence of wind loadings, the possible instability of time-
sampling and program data processing during coordinates transformation, etc. Such 
mechanical systems essentially have a non-linear character. The methodological 
maintenance for the control of multidimensional interconnected dynamic units of such 
mechanical systems has not been solved sufficiently. 

4.1 The AS model and its separate elements in the control system 

One of the most effective and important methods for the control of dynamic objects with 
indistinctly determined parameters is the use of an algorithm of a proportional-integral-
differential (PID) controller with the adaptive adjustment of PID-coefficients: 

 1 ( )( ) ( ) ( )
T

p D
I T t

d t
u t K t t dt T

T dt
 



 
   

  
 , (24) 

This expression is converted into digital form, convenient for program-realisation on the 
microcontroller: 

 ( ) ( 1) ( ( ) ( 1)) ( )P Iu t u t K e t e t K e t       ( ( ) 2 ( 1) ( 2))DK e t e t e t     (25) 

where u(t) – the regulator output signal; 

(t) – the deflection of angular position from the needed target; 
Kp – the amplification factor in the return circuit; 
TI, TD – the time differentiation and integration constants; 

( ) ( ) ( ),e t r t y t   - the regulation error; 
r(t), y(t) – the target and the value of output signal for the object quidance; 
KP, KI; KD – PID coefficients requiring optimal adjustment. 
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The discrete transfer function of such a controller is determined by the expression: 
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T0 - is the quantisation time, able to adjust adaptively depending on the divergence angle 
while approaching a given coordinate. 

However, in dynamic processes with variable parameters and interferences, it is rather 
difficult to ensure optimal coefficient adjustments. Very often, parameters for adaptive 
control should be chosen by a method of trial and error. There are a wide range of methods 
and algorithms for PID-controller self-adjustment, mostly resulting in the complication of 
algebraic calculations and requiring the introduction of many new system parameters 
(Kuncevych, 1982). 

One of the alternatives to the classical models and methods is the creation of a control model 
based on the use artificial neural networks (ANNs). ANNs are a group of algorithms 
described and modelled according to principles analogous to the work of human brain 
neurons. A neuron network is able to compare its output signal with a given training signal 
and carry out self-adjustment according to certain criteria by means of the automatic 
selection of various internal weighting factors aimed at minimising the difference between 
the actual output signal and the training signal. 

The functional characteristics of neuron networks show that this technology can provide 
control results much better than those obtained by means of classical controls and software 
(Miroshnik at al., 2000; Callan, 2001). The great value of ANN use lies in its universal 
solution for various types of control objects distinguished by the different parameters set, 
i.e., the different electro-mechanical modulus of ASs and the various types of mounting-
traversing device structures and loadings (Golovko, 2001; Zaichenko, 2004). ANNs are not 
programmed but taught, which is why their solution quality depends mainly upon the data 
quality and the quantity of data needed for teaching. 

4.2 Neural network use for the optimisation of control parameters 

The idea the use of ANNs in aerial movement control systems is that the main control 
parameters (PID-coefficients, etc.) are ANN outputs adjusted while working through a 
series of test orbits of AS movements, i.e., ANN teaching (Omata  at al.,  2000). The scheme 
of ANN use in an AS’s axes control circuit is shown in Fig.18. 

 
Fig. 18. A scheme for neuron control with self-adjustment. 
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Fig.19 reflects the structural scheme of a 3-contour AS control system for each of 3 axes of 
the aerial station “EgyptSat-1” using a neuro-controller for optimal coefficient adjustment in 
an external control contour. 

 
Fig. 19. Structural-algorithmic scheme of an AS control contour with a neuro-controller. 

The internal contour is directly closed in the frequency regulator which controls the voltage 
and the current of the electric drive for local rotation control. The second is the contour of 
the AS’s axes rotation speed control. The external control contour is closed on the angular 
position of the AS axes. 

A model of an AS control system and the submodels of its separate units (aerial, controller, 
frequency regulator, motor, Fig.20) are constructed due to the program complex 
MatLab/Simulink. 

 
Fig. 20. General AS model with a control system. 
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The unit for the adjustment and optimisation of the PID-controller’s parameters Optimum_1 
is introduced into a submodel of the controller Speed controller (Fig.21). 

 
Fig. 21. Model of a guidance controller. 

Error limits on AS movement deviations from the test sinusoidal guidance table provided 
within the limits of 0.2 degrees are set in the optimisation unit Block Parameter (Fig.22).  

 
Fig. 22. The process of PID-control coefficients optimisation. 
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From the previous results in initial sections of GT, we can observe that considerable 
deviations occur as a result of the dynamic resistance moments during the AS’s acceleration. 
To perform an optimal coefficient adjustment, the error limits are extended on the initial 
orbit section up to 1.0 degree (Fig.22), otherwise the ANN cannot adjust. 

As the result of modelling, the deviation error diagram from the GT can be obtained 
(Fig.23). 

 
Fig. 23. The modelling of deviation errors for AS tracking along the sinusoidal GT. 

 
Fig. 24. Adjustments of the rate regulation of the impulse functions on 2 axes (1, 2 = 8). 
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The results of control PID-coefficient adjustment were tested on the 3-axes AS “EgyptSat-1” 
with the perfecting of various test orbits, and especially generated impulse functions (Fig.24, 
Fig.26), sinusoidal functions (Fig.25), special “high-speed” tables of target designations 
(Fig.27) and real satellite orbits. 

 

Fig. 25. Adjustments of the rate regulation on sinusoidal functions (2 = 60). 

 

Fig. 26. Diagram of the impulse AS orbit perfection along the  axis. 
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Fig. 27. Test orbit with a maximum tracking speed of 5 degree/sec. 

4.3 Neural network use in the contour of aerial axes control 

Another structure of neural AS control  like dynamic object is offered. In this structure 
neural network and common PID-controller are used at the same time (Fig.28). 

 
Fig. 28. Parallel scheme of a neuro-controller. 

A typical two-layer perceptron with 10 neurons in an intermediate layer was chosen for the 
contour of the AS’s axes control. Synthesis was carried out with the NNTOOL utility and 
MATLAB MEDIUM. A functional model of the system with a PID and neuro-controller was 
created with the Simulink program (Fig.29). The neuro-controller emulates the operation of 
the PID-controller. Neuron network teaching was executed via the method of reverse error 
extension. For this purpose, a set of teaching pairs - ”input vector”/“right output” - were 
generated. In such a case, the input vector enters the network entrance and the state of all 
the intermediate neurons is calculated in series, while the output vector is compared with 
the right one and formed at the exit. Deviation provides errors which extend in the reverse 
direction along the network connection; afterwards, weighting factors are corrected to 
rectify it. After repeating this procedure a thousand times, we managed to teach the neuron 
network. 
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Fig. 29. Functional comparison model of systems with a PDF and a neuro-controller. 

Fig.30 depicts the results following the neuron network’s operation. Evidently, a simple 
multilayer perceptron (red colour graphics) had worse results in comparison with the PIF-
control. The application of a recurrent perceptron distinguishing from the previous one by 
presence of delay lines on entries has better results (Fig.31). However, insufficient 
teaching stability marks its disadvantage. Imitative modelling shows that during the 
optimal selection of neuron network topology and the teaching of algorithms, it is 
possible to use it for the effective control of complex dynamic objects, such as large-sized 
aerial complexes. 

 

Fig. 30. Comparison of the PIF-controller’s operation with a multilayer perceptron. 

By introducing the neuron network into the control scheme, it can be used for the more 
effective operative adjustment of control parameters by means of its teaching of various test 
orbits. The strategy of neuron control with self-adjustment can be used for different types of 
AS drives with various dynamic characteristics. 
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Fig. 31. Comparison of the PDF-controller’s operation with a recurrent perceptron. 

5. Conclusion 
The investigation and search for optimal structures for mounting-traversing devices and 
control systems for the construction of aerial stations for remote sensing data reception have 
been carried out in this work. The models and results of the operation of two types of 
mounting-traversing AS devices have numerous advantages when compared with classical 
models and can be used for the creation of personal aerial stations for remote sensing data 
reception, as shown. The application of neuron networks in the control systems of ASs for 
remote sensing data reception can provide for the more accurate operation of control 
systems for satellite guidance and their tracking along the orbit in spite of the faults relating 
to constructional and dynamic AS parameters. The use of a neuron network in a control 
circuit also provides considerable advantages over traditional control systems due to the fact 
that for their realisation there is no need for accurate mathematical models of control objects. 
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1. Introduction 
Terahertz (THz) radiation, sandwiched between traditional microwave and visible light, is 
the electromagnetic spectrum with the frequency defined from 0.1 to 10 THz 
(1THz=1012Hz). Until recently, due to the difficulty of generating and detecting techniques 
in this region, THz frequency band remains unexplored compared to other range and 
tremendous effort has been made in order to fill in “THz gap” . (Zhang & Xu, 2009)  

Recent advances provide new opportunities and widespread potential applications of THz 
in information and communication technology (ICT), material identification, imaging, non-
destructive examination, global environmental monitoring as well as many other fields. The 
rapid development can be attributed to the nature of terahertz radiation, which offers the 
advantages of both microwave and light wave. The characteristics of THz atmospheric 
propagation now rank among the most critical issues in the principal application of space 
communication and atmospheric remote sensing. (Tonouchi, 2007) 

Terahertz communication will benefit from the high-bit-rate wireless technology which 
takes advantage of higher frequency and broader information bandwidth allowed in this 
range than microwave. It is possible for such a system to achieve data rate in tens of gigabits 
per second. (Lee, 2009) However, as shown in Figure 1, the atmospheric opacity severely 
limits the communication applications at this range (Siegel, 2002) and it is the commercial 
viability rather than technological issues that will undoubtedly determine whether THz 
communication will be carried out into practical application.  

The overview of the THz remote sensing from the National Institute of Information and 
Communications Technology (NICT) in Japan is given in Figure 2. (Yasuko, 2008) Many 
biological and chemical compounds exhibit distinct spectroscopic response in THz range, 
which presents tremendous potential in the environmental monitoring of atmospheric 
chemical compositions (water, oxygen, ozone, chlorine and nitrogen compounds, etc.) and 
the identification of climate evolution in the troposphere and lower stratosphere. (Tonouchi, 
2007) The knowledge about atmospheric attenuation will illustrate the optimum frequency 
bands for sensing systems while the material database will discriminated atmospheric 
components.  

Based on these considerations, there are three fundamental problems as follow: 
(Foltynowicz et al., 2005) (1)To confirm the atmospheric transparency in the THz range and  
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a) 0-500 GHz, (b) 600-2000GHz 

Fig. 1. Atmospheric transmission in the terahertz region at various locations and altitudes 

 
Fig. 2. Overview of NICT THz remote sensing 

find out the air transmission windows for communicating and sensing system. (2)To collect 
the spectroscopic fingerprinting of atmospheric molecules for Terahertz atmospheric 
monitoring. (3)To improve the signal to noise ratio and restore the original signal from the 
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observed signal by the process of deconvolution. (Ryu and Kong, 2010) It is essential to 
understand the actual effects on the amplitude and phase of THz radiation propagating 
through the atmosphere, which depends on the frequency of incident wave, gas 
components, and ambient temperature or barometric pressure in different atmospheric 
conditions.  

This chapter aims to provide the theoretic instructions for the applications above and 
illuminate characteristics of THz atmospheric propagation. The fundamental theory has 
been systematically introduced, with the physical process of Lamber-beer law, Mie 
scattering theory and so on. The atmospheric absorption, scattering, emission, refraction and 
turbulence are taken into account and a special focus is put on the detailed derivation and 
physical significance of radiative transfer equation. Additionally, several THz atmospheric 
propagation model, including Moliere, SARTre and AMATERASU, are introduced and 
compared with each other. The conclusions are drawn by giving the future evolutions and 
suggestions of further study in this region.  

2. Fundamental theories of terahertz atmospheric propagation 
The framework of fundamental physical concepts and theories in the process of THz 
atmospheric propagation is shown in Figure 3. The three fundamental physical concepts 
(atmospheric extinction, atmospheric emission and background radiation) on the left can be 
uniformly expressed in the radiative transfer equation, which is the foundation of THz 
atmospheric propagation mode and describes the processes of energy transfer along a given 
optical path. Other elements (atmospheric refraction and turbulence) results in a correction 
and optimization of the integration path-length and radiative transfer algorithm in practical 
solution procedure.  

 
Fig. 3. The fundamental physical concepts and theories 

2.1 Fundamental physical processes 

2.1.1 Atmospheric extinction 

In the process of the interaction between electromagnetic wave and medium, THz radiation 
is attenuated by absorption as well as scattering out of their straight path. The atmospheric 
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extinction is illustrated by Lamber-beer law and mainly causing the energy attenuation of 
incident wave. The differential and integral forms of the mathematical expression is 

 ( ) ( ) ( )vdI v z I v dz        
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Ir0(v) denotes the incident radiance entering the optical path (r0,r1) at the frequency v and 
Ir1(v) is the outgoing radiance. The opacity or optical thickness is defined as 
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Extinction coefficient αv(z) can be expressed mathematically as the summation of the 
absorption and scattering coefficient, αa  andαs, separately  

 e a s     (4) 

The atmospheric absorption, particularly from water vapor, involves the linear absorption 
and continuum absorption, while the atmospheric scattering mainly depends on aerosols. 

2.1.1.1 The absorption of water vapor 

The linear and continuum absorption constitutes the THz atmospheric absorption, which is 
dominated by water vapor. The former is comprised most of the absorption lines in the air, 
which is due to the molecular rotational transitions. The absorption lines of water vapor are 
characterized by spectroscopic parameters, including the center frequency, oscillator 
intensity, and pressure broadening coefficient. (Yasuko and Takamasa, 2008) Most of these 
optical properties have been conveniently catalogued into databases, such as JPL (Jet 
Propulsion Laboratory) and HITRAN (Rothman et al., 2009) to stimulate the line by line 
absorption. 

The atmospheric absorption spectrum doesn’t correspond to the accumulation of water 
vapor absorption lines. The continuum absorption is what remains after subtraction of linear 
contributions from the total absorption that can be measured directly. (Rosenkranz, 1998) It 
may be observed in wide electromagnetic spectrum (from microwave to infrared) and 
cannot be described by water vapor absorption lines. Its generating mechanism is not 
sufficiently understood while several theories have been proposed, including anomalous 
far-wing absorption, (Ma and Tipping, 1992) absorption by dimmers and larger clusters of 
water vapor, and absorption by collisions between atmospheric molecules. (Ma and Tipping, 
1992) A semi-empirical CKD model is applicable in a wide frequency range and has been 
proven successful in some aspects. (Clough et al., 1989) For the simulation at frequencies 
below 400GHz, Liebe model could be used for dry air and water vapor continua. (Liebe, 
1989) Figure 4 illustrates the discrepancy between radio-wave and infrared wave 
propagation models. The radio-wave model is calculated with JPL line catalog and  
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Fig. 4. The linear and continuum absorption of THz wave from NICT 

Liebe model for continuum absorption while the infrared model is on the basis of HITRAN 
line catalog and CKD continuum model. (Yasuko and Takamasa, 2008) 

2.1.1.2 The scattering of aerosol 

In parallel, scattering effect also results in the energy attenuation along the optical path. It 
comprises the molecular Rayleigh scattering and the Mie scattering by aerosols and water 
vapor coagulum. As the wavelength of THz radiation lies in the order of aerosols, only Mie 
scattering should be taken into consideration. Aerosol particles mainly refer to the solid and 
liquid particles suspending in the atmosphere, for example, dusts, salts, ice particles and 
water droplets, and the Mie scattering effect mainly depends on their size-distribution, 
complex refractive index and the wavelength of incident radiation. 

It is difficult to simulate the scattering by aerosols due to their large scale change in time and 
space domain. The scale distribution is an important concept to describe aerosols, and the 
spectrum pattern commonly includes: 

2.1.1.2.1 Revision spectrum 

 ( ) exp( )dN r
ar b

dr
    (5) 

Where N is granule number in the unit volume, r is the radius of particle, a, b, α, γ is the 
constant which depends the origin of aerosol, including Mainland (Haze L), Sea (Haze M) 
and High Stereotype (Haze H). 

2.1.1.2.2 Junge spectrum 

 
log

vdN
cr

d r
  (6) 

In the expression above, v is the spectrum parameter, usually taking 2~4. The parameter c 
relates to the total density of aerosols. 
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2.1.1.3 Terahertz spectroscopic measurement technology 

The THz spectroscopic parameters above will directly influence the accuracy of atmospheric 
propagation model and should be precisely measured in laboratory experiments. Currently, 
Terahertz Time-domain Spectroscopy (THz-TDS) technology and Fourier-transform 
Infrared Spectroscopy (FT-IR) have attracted a great deal of attention. A typical THz-TDS 
arrangement includes a femtosecond (fs) laser, a THz emitter source, a THz detector, 
focusing and collimating parts, a motorized delay line, a lock-in amplifier, and a data 
acquisition system.  

As shown in Figure 5, the femtosecond laser is split into THz generation and detection arms. 
Coming from the same source, the pump and probe pulses have a defined temporal 
relationship. The THz radiation is excited by focusing the pulse onto a photoconductive 
antenna and the emitted THz pulses are collimated and focused onto the sample by a pair of 
parabolic mirrors; samples can be scanned across the focus to build up a two-dimensional 
image, with spectral information recorded at each pixel. (Baxter, 2011) The reflected or 
transmitted THz pulse is then collected and focused with another pair of parabolic mirrors 
onto a detector, which is a second photoconductive antenna or a sampling electro-optical 
crystal. The probe beam is measured with a quarter wave-plate, a Wollaston polarization 
(WP) splitting prism, and two balanced photodiodes. Lock-in techniques can be used to 
measure the photodiode signal with the modulated bias field of the photoconductive emitter 
as a reference. Furthermore, by measuring the signal as a function of the time delay between 
the arrival of THz and probe pulses, the THz time-domain electric field can be 
reconstructed. A computer controls the delay lines and records data from the lock-in 
amplifier, and the Fourier transform expresses the frequency spectrum of THz radiation. 
(Davies el al., 2008) 

 
Fig. 5. Schematic experimental setups for THz-TDS system 

Fourier transform infrared (FTIR) spectroscopy is a technique to obtain an infrared spectrum 
of absorption, emission, photoconductivity or Raman scattering of the samples. It consists of 
an incoherent high-pressure mercury arc lamp, a far-IR beam splitter (free-standing wire 
grid or Mylar), focusing and collimating optical parts for far infrared, a thermal detector, a 
motorized delay line, and a data acquisition system, just as Figure 6 plots. The source is 
generated by a broadband light source containing the full spectrum of wavelengths. The  
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Fig. 6. Schematic experimental setups for far-IR Fourier transform spectroscopy 

light shines into a Michelson interferometer, that allows some wavelengths to pass through 
but blocks others due to wave interference. Computer processing is required to turn the 
original data into the desired result. 

Compared to other spectroscopic techniques, THz-TDS presents a series of advantages. THz 
pulse has ps pulse duration, resulting in the intrinsic high temporal resolution and is very 
suitable for the dynamic spectroscopic measurement. THz-TDS provides coherent 
spectroscopic detection and a direct record of the THz time-domain pulse. It enables the 
determination of the complex permittivity of a sample, consisting of the amplitude and phase, 
without the requirement of Kramers-Kronig relationship. (Zhang & Xu, 2009) Additionally, 
time-gating technology in sampling THz pulses has been employed, which dramatically 
suppresses the background noise. It is especially useful to measure spectroscopy with high 
background radiation which is comparable or even stronger than the signal. In terms of signal-
to-noise ratio, THz-TDS is advantageous at low frequencies less than 3 THz, while Fourier 
transform spectroscopy works better at frequencies above 5 THz. (Han et al., 2001) 

2.1.2 Atmospheric emission 

THz radiation propagating in the atmosphere also experiences the process of enhancement. 
THz emission is defined as source term J, comprising the thermal emission JB and the 
scattering source term JS. Compared with the attenuation by scattering out of the line-of-
sight, scattering into the path is considered as a source of radiation as well, including the 
source sole scattering on direct radiation condition JSS and the multiple scattering source JMS. 
(Mendrok, 2006) The expression of source terms is 

 B S B SS MSJ J J J J J      (7) 

The thermal emission term is defined as  

 0(1 ) ( )BJ B T   (8) 
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B(T) denotes the Planck emission term which is given by Planck’s function describing the 
radiation of a black-body at temperature T: 
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where h is Planck’s constant, c the speed of light, and kB denotes Boltzmann’s constant. w0 is 
the scattering albedo of the “mixed” atmospheric medium along the line-of-sight, which is 
calculated from molecular and particle optical properties:  
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where αs  andαa  are scattering and absorption coefficients with superscripts ‘mol’ and 
‘par’ denoting properties of molecular and particulate matter, respectively. 

The scattering source term into the optical path is described as: 
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It comprises radiation incident from all directions Ω' scattered into the direction of interest 
Ω. While the scattering coefficient αs accounts for the scattered fraction of radiation, the 
phase function P(Ω,Ω') can be interpreted as the probability of incident radiation being 
scattered from directionΩ' into directionΩ with the normalizing condition: 
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I(Ω') describes the incident radiation field in terms of incident direction for the calculation 
of the scattering source term. 

2.1.3 Background radiation 

Remote observations of the atmosphere can be performed at different geometries, as Figure 
7 shows. The case that the line-of-sight goes through a long tangential atmospheric path 
above the ground is commonly referred to as limb-sounding geometry. If the line-of-sight 
crosses the surface, it is called nadir-sounding geometry. The up-looking case can be 
obtained by inverting the sense of the nadir observation. The background radiation of THz 
wave in the atmosphere mainly results from many kinds of electromagnetic radiation in the 
interstellar space or from the planet surface. For limb-sounding and up-looking, it is the 
cosmologic radiation at 3K, and for nadir-sounding (or down-looking), it is the earth surface 
emission.  

2.2 Radiative transfer equation 

Radiative transfer is the physical phenomenon of energy transferring in the form of 
electromagnetic radiation. The propagation of radiation through a medium is affected by the  
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Fig. 7. Geometry inlcuding limb-sounding and nadir-sounding 

three concepts (attenuation, enhancement, and background radiation) occurring along the 
line-of-sight and the equation of radiative transfer describes these interactions 
mathematically. It is the foundation of THz atmospheric propagation model, and the 
derivation is as follow: (Thomas & Stamnes, 2002) 

 
Fig. 8. The input and output optical intensity 

The fundamental quantity which describes a field of radiation is the spectral intensity. Let’s 
think of a very small area element in the radiation field, as the Figure 8 above, the radiant 
energy of incident light in the surfaceⅠof an infinitesimal volume is:  

 indE I d d d dt     (13) 

where Iv is radiant intensity, dw solid angle, dv frequency interval, dσ basal area, and dt 
denotes the time of radiation (polarization will be ignored for the moment). And the 
emergent radiant energy from surfaceⅡis: 

 ( )outdE I dI d d d dt       (14) 
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According to the Lamber-beer law, with the absorption coefficient αv, the radiant energy 
absorbed by the medium is:  

 indE dE dr I d d d dtdr            (15) 

With the emission coefficient jv, the radiant energy of medium emission is: 

 edE j d d d dtdr     (16) 

In accordance with energy conservation law, we get: 

 out in
edE dE dE dE    (17) 

Substituting equation (8)~(11) into equation (12): 

 ( )vdI d d d dt j d d d dtdr I d d d dtdr               (18) 

A particularly useful simplification of the radiative transfer equation occurs under the 
conditions of local thermodynamic equilibrium (LTE). In this situation, the atmosphere 
consists of massive particles which are in equilibrium with each other, and therefore have a 
definable temperature. For the atmosphere in LTE, the emission coefficient and absorption 
coefficient are functions of temperature and density only, and the source function is defined 
as Sv≡jv/αv. It equals the Planck function according to Kirchhoff’s law: 

 / ( )v v vS j B T   (19) 

Given the definition of opacity or optical thickness: dτv=αvdr, we get the differential form 
of radiative transfer equation from equation (18): 
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To solve this single-order partial differential equation along integral path (r0,r1), with the 
integral variable r, we get the integral form of radiative transfer equation:  
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Under the assumption of LTE, the equation can be written as: 
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The physical significance of radiative equation lies in the processes of absorption and 
emission of atmosphere at the position r along a given optical path (r0,r1), with the first term 
on the right side describing the background radiation attenuated by atmosphere while the 
second one standing for atmospheric emission and absorption. Iv(r1) is the outgoing radiance 
arriving the sensor at the frequency v and Iv(r0) corresponds to the background radiance 
entering the optical path. 
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As the radiative transfer equation results from energy conservation law, it is applicable to 
the whole electromagnetic spectrum, from radio wave to visible light. In the course of this 
work, radiation has only been discussed in terms of scalar intensity. Considering the 
polarization, the radiation is described by four components (I, Q, U, V) of the Stokes vector 
and a complete description of interaction between the medium and the radiation will be 
expressed. However, scalar radiative transfer is usually a good approximation for most 
situations in radiative transfer modeling. 

2.3 Elements to promote the algorithm 

2.3.1 Atmospheric turbulence 

Turbulence is a flow regime characterized chaotically and stochastically, the problems of 
which are thus treated statistically rather than deterministically. The turbulent atmospheric 
optical property is changing with the temporal and spatial variation, resulting in the 
fluctuation of atmospheric refractive index. The essence of turbulence effect is the influence 
of medium disturbance on the transmission of incident THz radiation, including the beam 
drift, jitter, flickering, distortion, and degeneracy of the spatial coherence. 

The turbulent consequence mainly depends on the relationship of turbulent scale l and the 
characteristic dimension of the incident radiation dB. 

On condition that l>>dB, THz beam deflects during the process of the propagation in 
turbulence and mainly cause beam drifting on the receiver. When turbulent scale l is equal 
to the characteristic dimension dB, the light beam will also experience stochastic deflection, 
resulting in the image spot jitter. If l<<dB, the influence of scattering and diffraction leads to 
the intensity flickering of THz beam. (Yao & Yu 2006) 

Additionally, in terms of incident radiation, fully coherent light beams are sensitive to the 
properties of the medium through which they are propagating and the turbulence-induced 
spatial broadening is the major limiting factor in most applications. Partially coherent beams 
are less affected by atmospheric turbulence than fully ones. (Shirai 2003) 

2.3.2 Atmospheric refraction 

The atmospheric refraction results from the uneven distribution of air in horizontal and 
vertical directions. When passing through the atmosphere, the line of sight is refracted and 
bended towards the surface of the planets. Taking refraction into account will correct and 
promote the radiative transfer path with some elementary geometrical relationships, as 
plotted in Figure 9. 

In conclusion of Section 2, the general idea to solve these problems above is to study the 
various effects independently and superpose them. Currently, most researches are mainly 
focused on the atmospheric extinction and the establishment of radiative transfer model. 

3. THz atmospheric propagation model 
3.1 Moliere 

Microwave Observation Line Estimation and Retrieval (Moliere), developed at the Bordeaux 
Astronomical Observatory (France), is the versatile forward and inversion model for  
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Fig. 9. The radiation path and its modification due to atmospheric refraction 

millimeter and sub-millimeter wavelength observations on board the Odin satellite, 
including a non-scattering radiative transfer model, a receiver simulator and an inversion 
code. The forward models comprise spectroscopic parameters, atmospheric radiative 
transfer model, and instrument characteristics in order to model and compute the searched 
atmospheric quantities. In parallel, inversion techniques have been developed to retrieve 
geophysical parameters such as temperature and trace gas mixing ratios from the remotely 
measured spectra. (Urban et al., 2004) 

Moliere is presently applied to data analysis for ground-based and space-borne heterodyne 
instruments and definition studies for future limb sensors dedicated to Earth observation 
and Mars exploration. However, this code can not be used when both up-looking and 



 
Atmospheric Propagation of Terahertz Radiation 

 

383 

down-looking geometries should be considered together, and for limb geometry if the 
receiver is inside the atmosphere, such as balloon and airplane. 

3.2 SARTre 

The new radiative transfer model [Approximate] Spherical Atmospheric Radiative Transfer 
model (SARTre) has been developed to provide a consistent model that accounts for the 
influence of aerosols and clouds, e.g. water droplets or ice particles. It includes emission and 
absorption as well as scattering as sources/sinks of radiation from both solar and terrestrial 
sources in the spherical shell atmosphere and is able to analyze data measured over the 
spectral range from ultraviolet to microwaves. (Mendrok et al., 2008) SARTre is designed for 
monochromatic, high spectral resolution forward modeling of arbitrary observing 
geometries, especially for the limb observation technique. 

The line-by-line calculation of molecular absorption cross sections has been adapted from 
the radiative transfer package MIRART (Modular Infrared Atmospheric Radiative Transfer). 
And the DISORT (Discrete Ordinate Radiative Transfer Model) package is used for the 
calculation of the incident radiation field when taking multiple scattering into account, 
under the assumption of a locally plane-parallel atmosphere. (Mendrok et al., 2008) 

3.3 AMATERASU 

The Advanced Model for Atmospheric Terahertz Radiation Analysis and Simulation 
(AMATERASU) is developed by the National Institute of Information and Communications 
Technology (NICT) THz project. This project aims to develop THz technology for various 
applications concerning the telecommunications, atmospheric remote sensing to retrieve 
geophysical parameters and the study of the thermal atmospheric emission in the Earth 
energy budget. The framework of AMATERASU has been shown in Figure 10, mainly 
consisting of the spectroscopic parameters and the radiative transfer equation, as mentioned 
above. 

 
Fig. 10. The framework of AMATERASU from NICT 
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The AMATERASU has a strong heritage from the two models above, respectively in the 
non-scattering and scattering case. The first stage concerns a non-scattering and 
homogeneous atmosphere, based on the original Moliere receiver simulator and retrieval 
codes. The absorption coefficient module has been extent to THz region and a more general 
radiative transfer module has been implemented to handle different geometries of optical 
paths and any location for the receiver. (Baron et al., 2008) The advanced version has taken 
the scattering effect into consideration. Modules related to optical properties of atmospheric 
particles and to scattering have been adapted from SARTre. The complex refractive index 
data of aerosols in THz region should be emphasized as a crucial parameter for radiative 
transfer algorithms. (Mendrok et al., 2008) 

As for the practical applications, the THz atmospheric propagation models above should be 
compared with each other and validated against the real laboratory measurements in order 
to verify the data accuracy and correctness of the algorithm hypothesis. (Wang et al., 2011) 

4. Conclusion 
In this chapter, we have discussed the fundamental theory in the process of THz 
atmospheric propagation. Several kinds of THz atmospheric propagation models have been 
introduced as well. The critical issues lie in the construction of radiative transfer algorithm, 
the collection of accurate spectral parameters, such as linear and continuum absorption and 
complex refractive index in THz region, and the standardization of measurement 
procedures. The ultimate objective is to construct the atmospheric propagation model in 
different kinds of climatic conditions on the basis of the theoretical analysis and the material 
database. 
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1. Introduction

Accurate, detailed and up-to-date road information is of special importance in geo-spatial
databases as it is used in a variety of applications such as vehicle navigation, traffic
management and advanced driver assistance systems (ADAS). The commercial road maps
utilized for road navigation or the geographical information system (GIS) today are based on
linear road centrelines represented in vector format with poly-lines (i.e., series of nodes and
shape points, connected by segments), which present a serious lack of accuracy, contents,
and completeness for their applicability at the sub-road level. For instance, the accuracy
level of the present standard maps is around 5 to 20 meters. The roads/streets in the
digital maps are represented as line segments rendered using different colours and widths.
However, the widths of line segments do not necessarily represent the actual road widths
accurately. Another problem with the existing road maps is that few precise sub-road details,
such as lane markings and stop lines, are included, whereas such sub-road information is
crucial for applications such as lane departure warning or lane-based vehicle navigation.
Furthermore, the vast majority of road maps are modelled in 2D space, which means that some
complex road scenes, such as overpasses and multi-level road systems, cannot be effectively
represented. In addition, the lack of elevation information makes it infeasible to carry out
applications such as driving simulation and 3D vehicle navigation.

Traditional methods for acquiring road information include i) ground surveying and ii)
delineating roads from remotely sensed imagery (Zhang & Couloigner, 2004). Ground
surveying can be carried out by using devices such as total stations and GPS receivers. As both
devices are point-based, rendering this method labour-intensive and time-consuming, and
therefore more suitable for detailed road surveying for small areas rather than for large-scale
road mapping. Road information can be delineated from remote sensing images in three
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ways: i) manual delineation, ii) semi-automated extraction, iii) and fully automated detection.
Manual extraction of roads from remotely sensed imagery is a simple stretching operation.
However, the operation is impractically time consuming when the scenes are very complex.
In addition, not only are such complex maps required for large geographic areas, frequent
updating is also needed. In the semi-automatic road extraction method, approximations
or seed points are given manually followed by an automatic algorithm which uses these
approximations as input to enable them to automatically extract the road. Approximations
can be a starting point, an ending point, intermediate points, road directions, road widths, and
prior knowledge from a GIS database (Zhang, 2003). Full automatic road feature extraction is
pursed by automating the selection of the necessary initial information.

As well as the advancement of innovative sensors and platforms, road network spatial
information can be acquired from aerial and satellite imagery, synthetic aperture radar (SAR)
imagery, airborne light detection and ranging (LiDAR) data, and from image sequences
taken from ground-based mobile mapping systems (MMS) with different spatial and spectral
resolutions (Quackenbush, 2004). Aerial images and LiDAR point clouds are promising data
sources for generating road maps and updating available maps to support various activities
and missions of government agencies and consumers (Mokhtarzade & Zoej, 2007). However,
it has often been the case that while large amounts of high resolution aerial images and dense
LiDAR data are being collected, piled up and remain unprocessed or unused, new data sets
are continuously being gathered. This phenomenon is caused by the fact that development
of automatic techniques for processing aerial imagery and LiDAR data is far behind that of
the hardware sensor technologies. Object extraction for full exploitation of these data sources
is very challenging. There are more challenges for automatic road information extraction in
urban areas due to its much more complex circumstances.

Research on road feature extraction from aerial and satellite images can be traced back to
the 1970s (Bajcsy & Tavakoli, 1976). Over three decades, a large number of automatic and
semi-automatic algorithms have been attempted. Although many different approaches have
been developed for the semi-automatic or automatic extraction of road information, none of
these can solve all the problems without human interactions. This is because of the wide
variations of roads (urban, rural, precipitous) and the complexities of their environment
(occlusions caused by cars, trees, buildings, shadows etc.) (Poullis & You, 2010). It is worth
noting that the existing road feature generation algorithms are all task-based and data-based.
For instance, road surfaces have a quite different appearance from pavement markings; thus,
approaches that are suitable for road surface extraction usually cannot be applied in the
detection of pavement markings without modification. Due to the inherent difference in the
data style, methods utilized for road extraction in aerial images may not be appropriate for
LiDAR data sets. Therefore, in this work, an effective road information extraction system,
which deals with road features in rural and urban regions respectively, is proposed based on
very high resolution (VHR) aerial images.

The research is structured to present the main contributions as follows. Section 2 provides a
review of the relevant work published over the past 20 years. Road feature extraction for rural
and urban areas from high spatial resolution remotely sensed imagery is discussed separately
in this section. In Section 3, an effective road network extraction method is presented. The
homogeneity histogram thresholding algorithm utilized to detect road surface from VHR
aerial images, and detected road features are then thinned and vectorized to reconstruct the
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digital road map. A novel road surface and lane marking extraction approach is presented
in Section 4, which detects road surface from VHR aerial images based on support vector
machine (SVM) classification method, and the lane markings are further generated using 2D
anisotropic Gaussian filter as well as Otsu’s thresholding algorithm. Concluding remarks and
future work recommendations are given in Section 5.

2. Review of the related work

The review conducted by Mena (2003) cites more than 250 road extraction studies, and
classifies different road extraction approaches based on three principal factors: i) the preset
objective, ii) the extraction technique applied, and iii) the type of sensors utilized. Although
the developed approaches exhibit a variety of methodologies and techniques, different
categorizations for road extraction work can still be sought in order to better match the
available data and methods to its ultimate purpose. In this review, we consider the use
of major state-of-the-art data sources, aerial imagery, airborne LiDAR data, and categorize
the existing road extraction methods into two classes, i) road detection in rural or non-urban
regions, and ii) urban area road extraction. As the aerial imagery and LiDAR data are usually
collected in the same flight missions, the extraction of road information from LiDAR data only
is uncommon. This review is by no means exhaustive; instead, it focuses mainly on commonly
used road extraction techniques.

Subsection 2.1 examines the work on rural area road extraction, and the review of road
detection in urban regions is presented in Subsection 2.2. In addition, a brief summary of
the road pavement marking extraction algorithms is provided in Subsection 2.3. Last but not
least, the qualitative and quantitative evaluation of results is reviewed in Subsection 2.4.

2.1 Rural road extraction techniques

Roads in rural or non-urban areas have characteristics such as constant widths, continuous
curvature changes, and homogeneous local orientation distributions, which can moderate
the complexity of their extraction. Basically, rural road extraction approaches, either
semi-automatic or automatic, can be classified into i) artificial intelligent, ii) multi-resolution
analysis, iii) snakes, iv) classification, and v) template matching.

An automatic road verification approach based on digital aerial images as well as GIS data is
developed in (Wiedemann & Mayer, 1996) as a part of the update procedure for GIS data. The
candidates for roadsides, which are obtained by searching the surroundings of GIS road-axes
in the image based on profiles, are tested, and a measure of confidence is also calculated.
However, user interaction is still required, as the results of the method are far from perfect.
Roads that do not exist in the GIS data will not be detected.

In (Doucette et al., 2001), a fully automated road extraction strategy based on Kohonen’s
self-organizing map (SOM) is proposed to detect road information in high-resolution
multi-spectral aerial imagery. The core algorithms implemented include i) anti-parallel edge
centerline extractor, ii) fuzzy organization of elongated regions, and iii) self-organizing road
finder. A covariance-based principal component analysis (PCA) is performed to determine
the intrinsic dimensions of the image bands, and to classify the image using a maximum
likelihood classifier with manually selected training samples. The extraction results over
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several different areas and sensors show that the highest extraction quality and correctness
rates are from anti-parallel edge analysis of spectral band and class layers, respectively.

Rellier et al. (2002) propose a model to locally register cartographic road networks on SPOT
satellite image based on Markov random fields (MRF) so as to correct the errors and improve
map accuracy. The method first translates the road network into a graph where the nodes are
characteristic points of the roads. Then local registration is performed by defining a model in a
Bayesian framework. One interesting point of the model is that the registration is done locally,
which is very useful when the map exhibits local errors. The biggest problem with the model
is still the computational time, which remains too long due to the frequency of computations
of the path between nodes.

To extract roads from aerial images, Amo et al. (2006) employ the region competition
algorithm, a mixed approach which combines region growing techniques with active contour
models. Region growing makes the first step faster and region competition delivers more
accurate results. However, this method is appropriate for roads in agricultural fields only,
where roads are quite homogeneous and their homogeneity is sufficiently different from that
of their surroundings.

Mayer et al. (1998) utilize the ribbon snake for the extraction of salient roads from aerial
images based on the extracted lines at a coarse scale and the variation of road width at a
fine scale. Non-salient roads are extracted by connecting two adjacent ends of salient roads
with a road hypothesis, which is then verified based on homogeneity and the constancy of
width. Finally, a closed snake is initialized inside the central area of the junction and expanded
until delineating the junction borders. Mayer’s method can overcome some problems such as
extraction of shadowed and occluded roads, but it cannot deal with the complex road scenario
in urban areas.

Laptive et al. (2000) use ribbon snakes to remove irrelevant structures extracted by a
preliminary line detection algorithm at a coarse resolution. The method initializes a ribbon
snake for each line detected and sets the width property to zero. The snake positions
are optimized at a coarse scale to get a rough approximation of the road position. A
second optimization process is used at a finer scale where the road position precision was
increased and the width property expanded up to the structure boundary. Finally, road width
thresholding is applied in order to discard any irrelevant structures.

A prior work for road detection based on image segmentation is conducted by Wang and
Newkirk (1988), where a system is developed for automated highway network extraction
from Landsat Thematic Mapper (TM) imagery supported by knowledge analysis and expert
system. Three steps are involved in the system: i) binary image production, ii) tracing and
feature extraction, and iii) highway identification. K-means clustering is employed to classify
the image into two categories: road and non-road features. Analysis and processing are then
performed on the linear patterns which are generated by labeling the binary image using
a tracing algorithm. The proposed method is fairly simple and fully automatic, but the
experiments are limited to the extraction of highways in rural areas.

Amini et al. (2002) utilize a segmentation method called the split and merge algorithm to
automatically extract roadsides from large-scale image maps. The proposed method consists
of two stages: i) straight lines extraction, and ii) roads skeleton extraction. The authors firstly
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generate a simpler image by grey scale morphological algorithms. Then the split and merge
algorithm is applied on the simplified image, which is converted to a binary image. After that,
the binary image map objects are labeled using the connected component analysis (CCA), and
the skeletons of roads are extracted in the classified image by morphological operations. The
roadsides are finally extracted by combining the skeleton of roads and the generated straight
line segments.

Steger et al. (1995) propose a multi-resolution road extraction approach, where a different
extraction method is utilized for each scale level. One method is applied on a fine scale with
25 cm GSD, while the other is applied at a lower resolution, which is reduced by a factor of
eight. The larger scale method extracts roads based on a structural model matching technique,
while the smaller scale method detects lines based on the image intensity level. Finally, the
outputs are combined by selecting roads that are extracted at both levels.

An approach based on particle filtering is proposed in (Ye et al., 2006) to automatically extract
roads from high resolution imagery. The road edges are extracted by the Canny detector, then
the edge point distribution and the similarity of grey value are integrated into the particle filter
to deal with complex scenes. To handle road appearance changes, the tracking algorithm is
allowed to update the road model during temporally stable image observations.

Baumgartner et al. (1999) extract roads from multi-resolution images based on the work of
Heipke (1995). In this paper, they emphasize the concept of "road model" comprising explicit
knowledge about geometry, radiometry, topology, and context. They firstly segment the aerial
image into global contexts (forest, rural and urban) to guide the extraction process in the
various regions. In the coarse image, the line features are extracted using Steger’s algorithm
(1998). In the fine image, parallel edges are extracted and grouped into rectangles, which are
then connected into the road segments. Finally, roads are generated through grouping road
segments and closing gaps between them.

Dal-Poz et al. (2005) present an automatic method for road seed extraction from medium
and high resolution images of rural scenes. The road-sides candidates are firstly detected by
the Canny edge detector; the road objects are then built based on a set of rules constructed
from a prior road knowledge. The rules used to identify and build road objects consist
of anti-parallelism, parallelism and proximity, homogeneity, contrast, superposition, and
fragmentation. Due to incompatibility with any road objects, road crossings cannot be
extracted.

2.2 Road extraction in urban areas

Roads in urban areas have some unique characteristics absent in rural areas. There are often
many shadows and occluded regions on road surfaces in urban areas due to the obstruction of
tall buildings, vehicles, and trees. Furthermore, the contrast between roads and surrounding
objects deteriorates significantly, since roads, side-walks, building roofs, and parking lots are
usually constructed using similar materials, such as concrete and asphalt. Therefore, road
extraction in urban areas cannot copy or enhance the methods and procedures which have
been effective in the rural road extractions, such as the algorithms discussed above. Instead,
it is necessary to develop an automatic system that can extract road information accurately
as well as deal with the effects of background objects like cars, trees, or buildings. The key
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techniques used to reconstruct the urban road model include road tracking, segmentation
and classification, mathematical morphology, and model based road extraction, which will be
depicted in detail in the following paragraphs.

Shukla et al. (2002) applies a path-following method to extract road from high-resolution
satellite imagery by initializing two points to indicate the road direction. Scale space and
edge-detection techniques are used as pre-processing for segmentation and estimation of road
width. The cost minimization technique is used to determine the road direction and generate
the next seeds. This method performs better than the work of (Kim et al., 2002) because it can
generate seeds in different directions at intersections. The limitations are that the algorithm
may not work on roads on which shadows are cast.

Zhao et al. (2002) imposes a semi-automatic method by matching a rectangular road template
with both road mask and road seeds to extract roads from IKONOS imagery. A road mask
is the road pixels generated from maximum likelihood classification, and the road seeds can
be generated by tracing the long edge of the road mask. The problem is all of the extracted
road masks are not road area, and not all the extracted long edges are road edge; this results
in misclassification.

Kim et al. (2004) initializes one seed point on the centerline of the road to determine the
position of the reference template. The orientation of the road centerline, which is calculated
with Burn’s algorithms, guides the optimal target window. A least square template matching
approach, which puts emphasis on the central part of the road, is utilized to determine the
new location of the next road template. The limitations of this algorithm are i) that it cannot
work with shadows, which may terminate the tracking process, ii) that the operator must
select the initial seeds on road central lines, and iii) that one seed can be used to extract only
one direction, leading to too many seeds when the scene is large and complex.

Hu et al. (2004) present a semi-automatic road extraction method based on a piecewise
parabolic model with zero-order continuity, which is constructed by seed points placed by a
human operator. Road extraction becomes a problem of estimating the unknown parameters
for each piece of the parabola, which could be solved by least square template matching based
on the deformable template and the constraint of the geometric model. In densely populated
areas, where roads have sharp turns and orthogonal intersections, many seed points need to
be located, which results in degrading the efficiency.

Shi and Zhu (2002) propose an approach to extract road network in urban areas from
high-resolution satellite images. The basic procedures include binary image production by
a threshold selection interactively, and a line segment match for road network processing.
Binary image production is not automatic and the threshold parameter may change with
the variation of image input, so it lacks a degree of automatic process and robustness, and
further improvement is required. Grey-scale mathematical morphology is tested as one of the
potential solutions in the proposed approach.

Haverkamp (2002) extracts road centerlines in urban areas from road segments and
intersections based on size, eccentricity, length of the object and spatial relationships between
neighboring intersections. A vegetation mask is derived from multi-spectral IKONOS
imagery, and these objects are generated by grouping pixels with similar road directional
information, based on texture analysis in a panchromatic IKONOS imagery. This method
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requires the predetermination of road width, which is tuned to detect roads with a specific
level of contrast and a low along-road variance.

Two novel methods are developed in (Wang, 2004) to extract roads from high-resolution
satellite images. One is a semi-automated road extraction method based on profile
matching optimized by an auto-tuning Kalman filter, and the other is based on edge-aided
multi-spectral classification. Experimental results from several aerial images show that
both methods could accurately extract road networks from IKONOS and QuickBird satellite
images, and could significantly eliminate the misclassification caused by small driveways,
house roofs connected with the road networks, and extensive paved grounds.

Based on the fact that structural information obtained using mathematical morphological
operators can provide complementary information to improve discrimination of different
urban features that have a spectral overlap, Jin and Davis (2004) present applications
of mathematical morphology for urban features extraction from high-resolution satellite
imagery. To efficiently extract the road networks, directional morphological filtering is
exploited to mask out those structures shorter than the distance of a typical city block.
Directional top-hat operation is employed to mask out bright structures shorter than a city
block. Similarly, dark structures shorter than a city block could be marked out by thresholding
on the directional bottom-hat images.

Zhu et al. (2005) extract road network from 1-meter spatial resolution IKONOS satellite
images based on the mathematical morphology and a line segment match method. The
authors firstly generate the binary road image by adopting morphological leveling. Secondly,
the coarse road network is detected using the proposed "Line Segment Match Method", which
determines straight parallel line segments corresponding to roads. The holes are finally filled
by using mathematical morphological operation. The proposed algorithm is based on the
assumption that roads are a darker tone compared with the surrounding features, which may
induce some problems in different situations.

Valero et al. (2010) propose a method for extracting roads in very high resolution (VHR)
remotely sensed images, based on the assumption that roads are linear connected paths. Two
advanced directional morphological operators, path opening and path closing, are utilized to
extract structural pixel information; these remain flexible enough to fit rectilinear and slightly
curved roads segments, due to their independence from the choice of a structural element
shape. Morphological profiles are used to analyze object size and shape features so as to
determine candidate roads in each level, since the morphological profiles of pixels on the
roads are similar. Finally, a classical post-processing is employed to link the disconnected
road segments using higher level representations (Tupin et al., 1998).

A Gibbs point process framework, which is able to simulate and detect thin networks from
remotely sensed images, is constructed in (Stoica et al., 2004) to form a line-network for the
road segments connection. The estimate for the network is found by minimizing an energy
function. In order to avoid local minima, a simulated annealing algorithm based on a Monte
Carlo Dynamics is utilized for finite point processes.

Based on Gaussian scale-space theory, a Gaussian comparison function is developed for
extracting the linear road features from urban aerial remote sensing images (Peng & Jin,
2007). The curvilinear structures of the roads are verified, grouped and extracted, based on
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locally oriented energy in continuous scale-space combining the geometric and radiometric
features. The system can significantly reduce computation complexity in the line tracking, and
can effectively depress the zero drift caused by Gaussian smoothing, comparing with other
edge-based line detection algorithms. The proposed curvilinear feature detection method is
tested to be superior to the Canny operator and the Kovesi detector, in that it can detect not
only urban highways but also the non-salient rural roads.

Peng et al. (2008) update digital road maps in dense urban areas by extracting the main road
network from VHR QuickBird panchromatic images. A multi-scale statistical data model,
which integrates the segmentation results from both coarse and fine resolution, is employed to
overcome the difficulties caused by the complexity of information contained in VHR images.
Furthermore, an outdated GIS digital map is utilized to provide specific prior knowledge of
the road network. The experiments indicate that the combination of generic and specific prior
knowledge is essential when working at full resolution.

2.3 Lane marking extraction techniques

The popular method for road pavement marking reconstruction is through a vehicle-based
mobile mapping system (MMS), where the road lane markings can be detected and
reconstructed in the field using laser scanners or close range photogrammetric imagery. Due
to the difference in devices used and types of features fused, approaches developed for lane
feature extraction have been quite distinct from one another. For instance, lane markings
are extracted based on structures (Lai & Yung, 2000), image classification (Jeong & Nedevschi,
2005), and frequency analysis (Kreucher & Lakshmanan, 1999). An exhaustive review of road
marking reconstruction approaches using MMS can be seen in (Soheilian, 2008). Although
accurate lane features can be obtained through MMS, it is costly and time-consuming to
produce lane data over large areas.

Lane information reconstruction through feature extraction from remote sensed images
has been a long-standing research topic within the photogrammetry and remote sensing
community. However, due to the limitation of the ground resolution of images, the majority
of existing approaches concentrate on the detection of road centerline rather than sub-road
details. Research efforts have been focused in a number of institutions, resulting in various
approaches to the problem, including multi-scale approaches (Baumgartner et al., 1999),
knowledge-based extraction (Trinder & Wang, 1998) and context cues (Hinz & Baumgartner,
2000).

Only a few approaches involve the detection of lane marking in road extraction. Steger et
al. (1997) extract the collinear road markings as bright objects with the algorithm given in
(Steger, 1996) in large scale photographs when the roadsides exhibit no visible edges. Only
the graph search strategy is adapted to extract road markings automatically, and a best-first
search from a few salient road markings is also utilized. The strategy adds the road marking
to the best connection evaluation only, which would add a global evaluation step following
each marking, and try to add a new road marking if the directions of the road markings are
not extracted perfectly.

In a more recent work, Kim et al. (2006) build a system to extract pavement information in
complex urban areas relying on a set of simple image processing algorithms. The pavement
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information included land and symbol markings that guide direction, and the geometric
properties of the pavement markings and their spatial relationships are analyzed. Moreover,
road construction manuals and a series of cutting-edge algorithms, including template
matching, are involved in the analysis. The evaluation of accuracy by comparing the data with
manually plotted ground truth data validate that road information can be extracted efficiently
to an extent in a complex urban region.

Tournaire et al. (2009) propose a specific approach for dashed lines and zebra crossing
reconstruction. This approach relies on external knowledge introduced in the detection and
reconstruction process, and is based on primitives extracted in the images. The core of the
approach relies on defining geometric, radiometric and relational models for dashed lines
objects. The model also deals with the interactions between the different objects making up a
line, which means that the algorithm introduces external knowledge taken from specifications.
To sample the energy function, the authors also use Green’s algorithm, complete with a
simulated annealing, to find its minimum.

2.4 Result evaluations

Internal diagnosis and external evaluation for the extracted road models are two important
aspects of assessment of the relevant automatic road extraction system (Wiedemann et al.,
1998). However, relatively little work has been carried out in this area.

In (Heipke et al., 1997) and (Wiedemann et al., 1998), an external evaluation approach of
automatic road extraction algorithms is developed by comparison of these to manually plotted
linear road axes used as reference data. The quality measures proposed for the automatically
extracted road data comprise completeness, correctness, quality, redundancy, planimetric
RMS differences, and gap statistics, and are all aimed at exhaustive evaluation as well as
assessing geometrical accuracy. The proposed evaluation method is tested by comparing
evaluations of three different automatic road extraction approaches, and demonstrating its
applicability.

An in-depth usability evaluation of a semi-automated road extraction system is presented in
(Wilson et al., 2004), highlighting both strengths and areas for improvement. The evaluation
is principally conducted on the timing and statistical analysis as well as on factors that affect
the extraction speed. Peteri et al. (2004) present a method to guide the determination of a
reference based on statistical measures from several image interpretations. A tolerance zone
representative of the variations in interpretation is defined that allows both the determination
of the uncertainty of the reference object and the possibility of defining criteria for a
quantitative evaluation. A few criteria defined by Musso and Vuchic (1988), including the
size, form, and topology indices of the road network, are employed to carry out evaluation of
the planimetric accuracy and the spatial characterization of a road network.

To qualitatively evaluate the performance of the semi-automatic road extraction algorithms,
four criteria (correctness, completeness, efficiency, and accuracy) are utilized in (Zhou et al.,
2006) and further in (Zhou et al., 2007). Completeness and correctness are the priority criteria
in cartography, while the efficiency measurement principally takes the savings of human input
into consideration. Tracking accuracy is assessed as the root mean square error between the
road tracker and the human input.
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To sum up, the typical result evaluation approach for road extraction has been carried
out by comparing the generated roads with manually plotted reference data. Correctness
and completeness are the two most frequently used criteria, while other measurements are
dependent on specific road extraction algorithms and objectives.

3. Road extraction in rural regions

In this section, we developed a new approach for automatic road network extraction, where
both spatial and spectral information from aerial photographs or pan-sharpened QuickBrid
images is systematically considered and fully used. The proposed approach is performed by
the following three main steps: (i) the image is classified based on homogeneity histogram
segmentation to roughly identify the road network profiles; (ii) the morphological opening
and closing is employed to fill tiny holes and filter out small road branches; and (iii) the
extracted road surface is further thinned by a thinning approach, pruned by a proposed
method and finally simplified with Douglas-Peucker algorithm.

Utilize m orphologic al
opening &  c los ing

Generated road features

Apply thinning algorithm

Vec torize road skeleton

Input im age Color im age (R,G,B bands)

Final road netw ork

Extrac ted road skeleton

Calc ulate hom ogeneity
features  &  generate his togram

Apply 2D Gauss
sm oothing algorithm

Perform  segm entation in
hom ogeneity dom ain

Prune short segm ents

Sim plify the road netw ork us ing
Douglas-Peuc ker algorithm

Image segmentation

Road network extraction

Fig. 1. Flowchart of the proposed method

As a popular technique for image segmentation, histogram based thresholding only takes the
occurrence of the gray level into account without any local information. But the segmentation
based on the property of image homogeneity involves both the occurrence of the gray levels
and the neighbouring homogeneity value among pixels; thus it will be employed in this
study to obtain a more homogeneous segmentation result. Gaussian smoothing algorithm is
then applied to this obtained homogeneity histogram, which can, in turn, ease the threshold
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finding procedure for segmentation. After achieving image segmentation, morphological
opening and closing is utilized to remove small holes and noise from the road surface as
well as narrow pathways connected to the main road. Then a thinning method is further
applied to extract the skeleton of the road network. Finally, the generated road network
is vectorized, and then pruned and simplified respectively by a proposed pruning method
and Douglas-Peucker algorithm. Fig. 1 illustrates the flowchart for the developed approach.
Basically, the performance includes two individual processes, namely, image segmentation
and road network extraction, which will be elaborated in the following sections.

3.1 Image segmentation

Road network is detected using homogeneity histogram segmentation, which comprises the
following two basic operations: contrast stretching, homogeneity histogram construction and
smoothing.

Contrast stretching

Colour images can be represented by linear RGB colour space or their non-linear
transformation of RGB, e.g. HSI (hue, saturation and intensity). It is, in general, easier to
discriminate highlights and shadows in a colour image by using the HSI colour space than the
RGB colour space, but the hue is rather unstable at low saturation and makes the segmentation
unreliable. Although the three basic RGB components are highly correlated in RGB colour
space, the latter is applied in this paper due to its efficiency in distinguishing small variations
in colour.

All of the RGB channels, especially the blue channel, in an original aerial photo (Fig. 2 (a))
have relative contrast deficiency which will impose challenges to the segmentation process.
Therefore, contrast stretching is individually applied to each channel by assigning 5% and 95%
in the histogram as the lower and upper bounds over which the image is to be normalized. It
is clear that the contrast stretched images (shown in figure 2 (b), (c) and (d))have significantly
higher contrast than the original RGB channels.

Homogeneity histogram construction

A general concept of the homogeneity histogram is referred to Cheng (2000). The homogeneity
histogram takes into account not only the gray level but also spatial information of pixels
with respect to each other. Therefore, homogeneity histogram thresholding tends to be more
effective in finding homogeneous regions than histogram thresholding approaches.

The homogeneity vector of the pixel with its eight neighbours is calculated by Z-function,
allowing the homogeneity histogram to be defined by normalization of the homogeneity
vector. The normalized homogeneity histogram for Red, Green and Blue channels are shown
in Fig. 3.

It is still difficult to detect the modes of homogeneity histogram in the above normalized
homogeneity histogram when they are corrupted by noise. Therefore, once the homogeneity
histogram for R, G and B channels are established, Gaussian filter is firstly applied to smooth
them, instead of finding the thresholds directly by a complex peak finding algorithm proposed
by Cheng (2000). In Gaussian filtering process, the spread parameter σ, which determines the
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(a) RGB bands (b) Stretched R band

(c) Stretched G band (d) Stretched B band

Fig. 2. The original aerial photo and its Red, Green, and Blue channels.
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Fig. 3. Normalized homogeneity histogram for Red, Green and Blue channel images

amount of smoothing, is determined with the algorithm proposed by Lin et al. (1996). Each
peak in the homogeneity histogram represents a unique region. Accordingly, the valleys in
the homogeneity histogram can be used as the thresholds for segmentation, as they can be
easily found in the smoothed homogeneity histogram (see Fig. 4).

Each colour channel is segmented using the above obtained thresholds separately, and then
all three segmented channel images are fused to yield the final result of segmentation (see e.g.,
Fig. 5). It is observed from Fig. 5 (d) that almost all the road networks are correctly extracted,
but there are still many small family driveways connected to road networks and many house
roofs are misclassified into the road network. These make it impossible to obtain an accurate
road network without further processing.

3.2 Road network extraction

Up until now we have obtained the segmented result for road objects (see e.g. Fig. 6(a)), but
the probability of misclassification is still relatively high and many small holes enclose the
main road network. These holes and pathways must be removed to correctly extract the road
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Fig. 4. Normalized homogeneity histogram for Red, Green and Blue channel images

(a) Segmented Red
channel

(b) Segmented Green
channel

(c) Segmented Blue
channel

(d) Fused result

Fig. 5. The segmented Red, Green and Blue channel images, and the final fused result.

skeleton. In this section, a novel road network extraction approach is developed to accurately
extract road networks from a segmented road image. This extraction process includes two
main steps: morphological operation and thinning and vectorization.

(a) Segmented result of
road objects

(b) Connection component
analysis result

(c) Result of
morphological operation

Fig. 6. The noise removal of the segmented result.
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Morphological operation

Mathematical morphology is a structure-based mathematical set theory that uses set
operations such as union, intersection and complementation, so it is favoured for
high-resolution image processing (Mohammadzadeh et al., 2006). Connected component
analysis is firstly used to group pixels into different components based on pixel connectivity,
then components whose surface area are smaller than a given threshold will be removed. The
filtered image is shown in Fig. 6 (b), it can be clearly seen that all the misclassified objects
unconnected to the main road network were removed. Morphological closing is then applied
to remove small holes and noise from the road surface, while an opening operation is used
to eliminate small pathways with a structuring element size that is smaller than the main
roadâĂŹs width but larger than those of the pathways, resulting in the extracted road network
as shown in Fig. 6 (c).

Thinning and vectorization

After the morphological operation, we further employ the thinning algorithm proposed by
Wang and Zhang (1989) to extract the road skeleton, where the real road is replaced by its
centreline with representation by a pixel. To remove short dangling branches of the centrelines
caused by driveways, a novel pruning algorithm is performed as follows.

P N[1]

N[1]N[1]N[1]

N[1]

N[1]N[1] N[1]

Fig. 7. Pixel P and its eight neighbours.

First of all, we introduce the definitions of four-neighbourhood and eight-neighbourhood
neighbour for point P in Fig. 7. Here four-neighbourhood refers to N[1], N[3], N[5] and
N[7], while eight-neighbourhood neighbour involves N[0], N[2], N[4] and N[6].

The pruning algorithm includes three steps:

Step 1 Find all the intersection points

1. Scan the image (up to bottom, left to right), if current pixel P has more than three
foreground neighbours, namely, {N [xi ] | i = 1, 2, · · · , k; k ≥ 3, xk = 0, 1, · · · 7} , go to
2.

2. Initialize the feature point counter c=0, and then from i=1 to k, set c=c+1 if either
condition (a) or (b) is satisfied.
(a) N[xi] is four-neighbourhood neighbour of P.
(b) N[xi] is eight-neighbourhood neighbour of P and neither N[xi − 1] nor N[xi + 1] is

foreground pixel. P is supposed to be a intersection point if c ≥ 3.

Step 2 Line tracking

1. If there is no intersection point in the image, then go to 3.
2. Tracking lines from the intersection point.
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(a) Start from the intersection point P found in Step 1, initialize n (number of P’s feature
points) arrays to store lines started from P.

(b) Set the current tracking pixel to background after storing its position into the array,
go on using the condition in Step 1 to find the next pixel on current tracking line
until moving to the endpoint or other intersection point.

3. Tracking lines from endpoint.
(a) Scan the image (up to bottom, left to right).
(b) Find the endpoint, start line tracking from it and set the pixels on the line to

background (endpoint’s number of feature point is 1 using the condition in Step
1).

(c) Go on scanning until to the end of the image.

Step 3 Small line pruning

1. Delete line from the line array if both the following conditions are satisfied:
(a) The length of line is shorter than the threshold T.
(b) If both endpoints of the line are not intersection points, and then go to Step 1.

2. Output the final result.

Finally, Douglas-Peucker simplification algorithm, which not only decreases the number of
data points but also retains the similarity of the simplified shape to the original one as close as
possible, is employed to the pruned line network. The whole procedure of vectorization and
simplification is shown in Fig. 8. The vectorization process consists of two steps: intersection
point searching and line tracking, followed by small lines pruning and simplification. The
final result is shown in Fig. 9. It can be seen that this approach works quite well that all the
small road branches are removed.

3.3 Experimental results and evaluation

In order to demonstrate the efficient performance of the proposed procedures outlined in
this paper, two additional experiments have been implemented from the QuickBird satellite
images, and their extraction accuracies are also evaluated. The final road network extracted
using the proposed method is shown in Figure 10. Almost all the main roads are correctly
extracted. However, the developed method is still experiencing difficulties in road extraction
from the images where indistinct contrast between the road surface and its surroundings, as
well as shadows, exist. This is another important research topic to be resolved.

Variables Completeness Correctness Quality
Figure 9 98.5% 96.2% 94.7%

Figure 10 (a) 98.8% 99.3% 98.1%
Figure 10 (a) 81.9% 98.2% 80.7%

Means 93.1% 97.9% 91.2%

Table 1. Evaluation of the test results.

Basing on the method developed by Wiedemann (1996) for evaluating automatic road
extraction systems, we use three indexes to assess the quality of the generated road network.
The completeness is defined as the percentage of the correctly extracted data over the reference
data and the correctness represents the ratio of correctly extracted road data. The quality
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Fig. 8. Flowchart for implementation of the vectorization and pruning.

Fig. 9. Final centreline laying on the original road surface.
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(a) Riyadh, Saudi Arabia

(b) Hurghada, Egypt

Fig. 10. Road extraction tests on QuickBird images.

is a more general measure of the final result combining the completeness and correctness.
The optimum values for the above three defined indexes are all equal to one. Comparing
automatically achieved results from the proposed process with the manual ones, the following
quantified indicators have been calculated and presented in Table 1. The results demonstrate
that the proposed method achieved a significantly high level of accuracy.

3.4 Summary

In this section, we have presented a new approach for road extraction from large scale remote
sensing images. The tests have demonstrated that considerable success can be achieved by
adopting the overall flowchart presented in this paper, particularly when the contrast between
road surface and background is distinct, and there is a significant proportion of road surface
in the image. Importantly, a novel algorithm is developed to vectorize and prune the extracted
road network. The experimental results for road extraction from aerial photo and QuickBird
satellite images demonstrate that the proposed approach could extract most of the main roads
despite the fact that some roads are missing or are slightly distorted.

4. Road detection in urban areas

Accurate and detailed road models are of great importance in many applications, such as
traffic monitoring and advanced driver assistance systems. However, the majority of road
feature extraction approaches have only focused on the detection of road centerline rather
than the lane details. Only a few approaches involved the detection of lane markings in
the road extraction. For instance, Steger et al. (1997), Hinz and Baumgartner (2003), and
Zhang (2004) extracted the road markings in their attempts to obtain clues as to the presence
of road surface. Consequently, important requirements (Tournaire & Paparoditis, 2009) such
as robustness, quality, completeness, are achieved less consistently compared to the lane level
applications. In more recent works, Kim et al. (2006) and Tournaire et al. (2009) presented
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systems for pavement information extraction from remote sensing images with high spatial
resolution.

In this section, the support vector machine (SVM) and Gabor filters are introduced into a
framework for precise road model reconstruction from aerial imagery. The experimental
practices using a data set of aerial images acquired in Brisbane, Queensland are utilized to
evaluate the effectiveness of the proposed strategy.

4.1 Methodology

Supervised SVM image classification technique is employed to segment the road surface from
other ground details, and the road pavement markings are detected on the generated road
surface with Gabor filters.

An SVM is basically a linear learning machine based on the principal of optimal separation
of classes (Vapnik, 1998). The goal is to find a linear separating hyperplane that separates
the classes of interest provided the data is linearly separable. The hyperplane is a plane
in a multidimensional space and is also called a decision surface or an optimal separating
hyperplane or a maximal margin hyperplane.

Consider a set of l labelled training patterns (x1, y1) , (x2, y2) , · · · , (xi, yi) , · · · , (xl , yl), where
xi denotes the i-th training sample and yi ∈ {1,−1} denotes the class label. If the data are
not linearly separable in the input space, a non-linear transformation function Φ (·) is used to
project xi from the input space to a higher dimensional feature space. An optimal separating
hyperplane is constructed in the feature space by maximizing the margin between the closest
points Φ (xi) of two classes. The inner-product between two projections is defined by a kernel
function K (x, y) = Φ (x) ·Φ (y). The commonly used kernels include polynomial, Gaussian
RBF, and Sigmoid kernels. Further details about kernels can be found in (Vapnik, 1998).

The decision function of the SVM is defined as

f (x) = w ·Φ (x) + b =
l

∑
i=1

αiyiK (x, xi) + b

subject to ∑l
i=1 αiyi = 0 and 0 ≤ α ≤ C, where C denotes a positive value determining the

constraint violation during the training process.

Due to its properties of non-parametric, sparsity, and intrinsic feature reduction, SVM is
superior to conventional classifiers, such as the maximum likelihood classifier, for image
classification in very high resolution (VHR) remotely sensed data, since the estimated
distribution function usually employs the normal distribution, which may not represent the
actual distribution of the data (Huang & Zhang, 2008).

4.1.1 Gabor filters

2D Gabor filters, extended from 1D Gabor by Daugman (1985), have been successfully applied
to a variety of image processing and pattern recognition problems, such as texture analysis,
and image segmentation. 2D Gabor filters can be used to extract the road lane markings thanks
to their following properties: (i) tuneable to specific orientations, (ii) adjustable orientation
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bandwidth, and (iii) robust to noise. Furthermore, it has optimal joint localization in both
spatial and frequency domains. Therefore, Gabor filters can be considered as orientation
and scale tunable edge and line (bar) detectors (Manjunath & Ma, 1998), which makes these
a superior tool to detect the geometrically restricted linear features, such as road pavement
markings.

Gabor functions

The general functionality of the 2D Gabor filter family can be represented as a Gaussian
function modulated by a complex sinusoidal signal. Specifically, the 2D Gabor filter can be
defined in both the spatial domain g (x, y) and the frequency domain G (u, v). The 2D Gabor
function in spatial domain can be formulated as (Cai & Liu, 2000):

g (x, y) = exp

{
−π

(
x2

r

σ2
x
+

y2
r

σ2
y

)}
exp {j2π (u0x + v0y)}

Its 2D Fourier transform is expressed as

G (u, v) = exp
{
−π

[
(u− u0)

2
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y

]}

where j =
√−1; (x0, y0) indicates the peak of the Gaussian envelope;

(
σx , σy

)
are the two axis

scaling parameters of the Gaussian envelope; (u0, v0) presents the spatial frequencies of the
sinusoid carrier in Cartesian coordinates, which can also be expressed in polar coordinates

as ( f , φ), where f =
√

u2
0 + v2

0, φ = arctan (v0/u0), and the subscript r stands for a rotation
operation as follows:

xr = x cos θ + x sin θ

yr = −x sin θ + y cos θ

where θ is the rotation angle of the Gaussian envelope.

Determination of Gabor filter parameters

Road markings, which are presented as linear features with certain widths and orientations
within local areas, can be considered as rectangular pulse lines. The correct determination of
Gabor filter parameters is the central issue for lane pavement markings’ extraction process.
In order to effectively and accurately extract road lane markings with different sizes and
thicknesses from aerial images using Gabor filters, we proposed an efficient method to
determine the Gabor filter parameters.

Determination of θ

θ stands for the orientation of the span-limited sinusoidal grating. The orientation
θ (θ ∈ [0, π)) of Gaussian envelope is given as perpendicular to the direction ϕ (ϕ ∈ [0, π))
of the road surface by:
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θ = (ϕ + π/2)%π

where % is the modulo operator.

Determination of f

f is the frequency of the sinusoid, which determines the 2D spectral centroid positions of
the Gabor filter. This parameter is derived with respect to the width of road lane markings.
In order to produce a single peak for the given lane line as well as discard other ground
objects, such as white vehicles, the frequency f of the Gabor filter must satisfy the following
conditions:

1/W
′
< f ≤ 1/Wm

where where Wm is the width of the road marking in pixel, and W
′

is the width of other white
features. The details of the proofing process can be referred to (Liu et al., 2003).

In our experiments, we set f = 1/Wm, which will produce only a single peak in the output of
the filter on road markings regardless of the values of σx and σy.

Determination of σx and σy.

The parameters σx and σy determine the spread of the Gabor filter in ÏŢ and Îÿ directions
respectively. According to (Liu et al., 2003), σx and σy have the following parameter constraint:

σy = kσx

where k is a constant. As the road lane markings have strict orientation and enough distance
between adjacent lanes, we set k=1 to simplify the calculation.

The relationship between the orientation bandwidth �θ and the frequency f within the
frequency domain is illustrated in figure 1, which can be given by:

�θ = 2 arctan
(

l
f

)

where �θ is the orientation bandwidth. It give:

l = f tan (�θ/2)

Applying the 3dB frequency bandwidth in V direction when φ = 90◦ to equation (2), we have

G (u0, h) |φ=90= exp
[
−π (hσx)

2
]
=
√

2/2

It gives
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σx =

√
ln 2
2π

d tan (�θ/2)

According to orientation bandwidths of cat cortical simple cells (Liu et al., 2003), the mean
angle covers a range from 26◦ to 39◦. After examining the line extraction results over the
above range, we find it appropriate to set �θ = 30◦ . Then σx and σy can be further obtained
by:

σx = σy = 0.58/ f

4.2 Experiments and discussion

The objective of the experiment is to determine the performance of the proposed road feature
extraction approach quantitatively over the study area. A dataset of aerial images located in
South Brisbane, Queensland have been selected as the study areas. The selected aerial images
consist of three bands: Red, Blue and Green, with Ground Sampling Distance (GSD) of 7 cm.
Fig. 11 shows one of the testing images.

Fig. 11. One testing site (4096×4096 pixels).

Several training samples were used to train the support vector machine and the resulting
model was used to classify the whole image into two features: road and non-road. For the
implementation of SVM, the software package LIBSVM by Chang and Lin (2003) was adapted.
Gaussian RBF was used as the kernel function, and the constraint violation C was set to be 10.
After the image classification, the connected component analysis was used to remove small
noises misclassified into road class.

To this point, the road surface has been obtained using SVM classification. Gabor filter
was then utilized to extract the lane marking features while restrain the affection from other
ground objects. To reduce the calculation complexity, Principle Component Analysis (PCA)
was applied on the color image and only the 1st component was chosen for Gabor filtering.
The parameters of Gabor filters are determined as outlined in the previous section. For
instance, the orientation of the lane markings shown in Fig. 11 is approximately 130 degrees.
The average of width of the road markings is 6 pixels, thus the frequency f is set to be 0.17,
while the axis scaling parameters σx and σy of the Gaussian function is set to be 3.4. The
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Fig. 12. Gabor filtered result.

filtered image is as illustrated in figure 4, which was then masked by the road surface acquired
in the previous step.

Finally, the Gabor filtered image was then segmented by Otsu’s thresholding algorithm,
and directional morphological opening and closing algorithms were utilized to remove
misclassified features. Some white linear features such as house roof ridges may be
misclassified into lane markings, so we further utilized the extracted road surface in the
previous step as a mask to remove these kinds of objects. The lane segments may also be
corrupted by many facts: occlusion, e.g. trees above the road surfaces; worn-out painting of
lane lines; dirty markings on the road surfaces. We eliminated the affection from vehicles in
the road markings extraction by utilizing the following two indicators: (i) elongation - the
ratio of the major axis to the minor axis of the polygon, and (ii) lengths of the major and minor
axis. The elongation measure of vehicle is smaller than the road lane markings, and the length
of the major and minor axis of vehicle are within certain ranges. In this experiment, the major
axis length of the vehicle is set to be within 2 to 10m, while minor axis is set to be between
1.5m and 3m. The extracted pavement markings are superimposed on the road surfaces, as
given in Fig. 13.

Fig. 13. Final result.

The quantitative evaluation of the experimental results is achieved by comparing the
automated (derived) results against a manually compiled, high quality reference model.
Following the concept of error matrix, the evaluation matrices for the accuracy assessment
of road surfaces detection can be defined at the pixel level as follows:
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1. Detection rate
d =

TP
TP + FN

2. False alarm rate
f =

FP
TP + FP

3. Quality

q =
TP

TP + FP + FN

In the above equation, TP (true positive) is the number of road surface pixels correctly
identified, FN (false negative) is the number of road surface pixels identified as other objects,
FP (false positive) is the number of non-road pixels identified as road surfaces.

The evaluation of the extracted pavement marking accuracy is carried out by comparing the
extracted pavement markings with manually plotted road markings used as reference data as
presented in (Wiedemann et al., 1998), and both data sets are given in vector representation.
The buffer width is predefined to be the average width of the road markings, and we set it to
be 15 cm in our experiment. Then the accuracy measures are given as:

1. Detection rate

d =
lengtho f thematchedre f erence

lengtho f re f erence

2. False alarm rate

f =
lengtho f theunmatchedextraction

lengtho f extraction

3. Quality

q =
lengtho f thematchedre f erence

lengtho f extraction+ unmatchedre f erence

Road boundaries and road markings are firstly digitized from the test images and used as
ground truth. Three measures of the extraction results for both road surfaces and pavement
markings are given in Table 2.

Test image Road features Detection rate False alarm rate Quality
Image I Surface 91.8% 12.9% 80.3%

Markings 93.3% 10.6% 83.7%
Image II Surface 93.2% 7.2% 88.5%

Markings 94.5% 2.7% 92.7%
Image III Surface 88.3% 2.2% 86.2%

Markings 83.5% 15.2% 71.8%

Table 2. Evaluation of the test results.

For the entire four test sites, nearly 90% of the road surfaces are correctly detected, and the
relevant false alarm rate is about 10%. The completeness of road pavement marking extraction
reaches above 87%, except for test site IV, which is seriously affected by shadows. The
shadows on the road surfaces can reduce the intensity contrast between pavement markings
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and the road surface background, which makes it difficult to enhance the road markings using
the Gabor filter. The average false alarm rate of the four test sites is about 10%.

4.3 Summary

In this section, an automatic road surface and pavement marking extraction approach from
aerial images with high spatial resolution is proposed. The developed method, which is based
on SVM image classification as well as Gabor filtering, can generate accurate lane level digital
road maps automatically. The experimental results using the aerial image dataset with ground
resolution of 7 cm have demonstrated that the proposed method works satisfactorily. Further
work will concentrate on the process of seriously curved road surface and large images, which
may be achieved by using knowledge based image analysis and image partition technique.

5. Conclusions and future work

5.1 Conclusions

In conclusion, we have presented an integrated approach for road feature extraction from both
rural and urban areas. Road surface and lane markings have been extracted from very high
resolution (VHR) aerial images in rural areas based on homogeneity histogram thresholding
and Gabor filters. The homogeneity histogram image segmentation method takes into account
not only the color information but also the spatial relation among pixels to explore the features
of an image. We further proposed a road network vectorization and pruning algorithm, which
can effectively eliminate the short tracks segments. In the urban area, the road surface is firstly
classified by SVM image segmentation method, and then Gabor filter is further employed
to enhance the road lane markings whilst constraining the effects of other ground features.
The experimental results from several VHR satellite images in rural areas have indicated
that over 95% of road networks have been correctly extracted. The omission of road feature
is a result of occlusions, poor contrast with the surrounding scenario, and partial shadows
over the road. This has preliminarily demonstrated that the presented extraction strategy
for road feature extraction in rural areas is promising. Experiments with three typical test
sites in urban areas have resulted in over 90% of the road surfaces being corrected extracted,
with the misclassification rate below 10%. The correction rate for lane marking extraction is
approximate 95%, and only about 10% of the other ground objects are misclassified as lane
marking.

5.2 Future work

Although the proposed approach has generated satisfactory results on the testing datasets,
problems still exist: for example, lane markings obstructed by vehicles may not be effectively
detected. Therefore, future work will focus on the improvement of detection accuracy and
precise model reconstruction. For instance, an automatic vehicle detection approach may be
introduced to efficiently detect and remove vehicles from the road surface. GPS real-time
kinematic positioning solutions from a probe vehicle could beappropriate for the recovery
of lane markings in areas where there are large obstructions: for example, a large number of
skyscrapers or trees would greatly deteriorate the extraction result in urban or forest areas. We
also consider using the linear feature linking technique to connect the broken road features.
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1. Introduction 
The image data compression is very important to reduce the image data volume and data 
rate for the satellite remote sensing. The chapter describes how the image data compression 
hardware is implemented and uses the FORMOSAT-5 Remote Sensing Instrument (RSI) as 
an example. The FORMOSAT-5 is an optical remote sensing satellite with 2 meters 
Panchromatic (PAN) image resolution and 4 meters Multi-Spectrum (MS) image resolution, 
which is under development by the National Space Organization (NSPO) in Taiwan. The 
payload consists of one PAN band with 12,000 pixels and four MS bands with 6,000 pixels in 
the remote sensing instrument. The image data compression method complies with the 
Consultative Committee for Space Data Systems (CCSDS) standard CCSDS 122.0-B-1 (2005). 
The compression ratio is 1.5 for lossless compression, 3.75 or 7.5 for lossy compression. The 
Xilinx Virtex-5QV FPGA, XQR5VFX130 is used to achieve near real time compression. 
Parallel and concurrent handling strategies are used to achieve high-performance 
computing in the process. 

2. Image compression methodology 
The CCSDS Recommended Standard for Image Data Compression is intended to be suitable 
for spacecraft usage. The algorithm complexity is sufficiently low for hardware implement 
and memory buffer requirement. It can support strip-based input format for push broom 
imaging. The compressor consists of two functional blocks, Discrete Wavelet Transfer 
(DWT) and Bit Plane Encoder (BPE). The image compression methodology is described in 
the following sections. 

2.1 Discrete wavelet transform 

The CCSDS Recommendation supports two choices of DWT: an integer DWT (IDWT) and a 
floating point DWT (FDWT). The integer DWT requires only integer arithmetic, is capable of 
providing lossless compression, and has lower implementation complexity, but lower 
compression ratio. The floating point DWT provides improved compression effectiveness, 
but requires floating point calculations and cannot provide lossless compression. 

The DWT stage performs three levels of two-dimensional (2-d) wavelet decomposition and 
generates 10 subbands as illustrated in Fig. 1. The low pass IDWT is as Equation (1) and the 
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high pass IDWT is as Equation (2). The low pass FDWT is as Equation (3) and the high pass 
FWDT is as Equation (4), j=0, 1,…11999 for PAN band, j=0,1,…5999 for MS bands in 
FORMOSAT-5 case.  

 
Fig. 1. Three-Level 2-d DWT Decomposition of an Image 

 2 4 2 2 2 1 2 2 1 2 2 2 4
1 1 1 23 1 1 1

64 8 4 32 4 8 64j j j j j j j jC x x x x x x x             (1) 

 2 2 2 2 1 2 2 2 4
1 9 9 1

16 16 16 16j j j j j jD x x x x x         (2) 

 
4

2 1
4

; 0,1,...,11999j n j n
n

C h X j 


   (3) 

 
3

2 1
3

; 0,1,...,11999j n j n
n

D g X j 


   (4) 

For FDWT, the coefficients in the equation (3) and (4) are listed in Table 1. The coefficients 
used in the FORMOSAT-5 are a little different from those defined in the CCSDS 122.0-B-1. 
Just 24 bits, not 32 bits, are used for these coefficients in the FORMOSAT-5 to save FPGA 
multiplexer resource.  
 

 FDWT Coefficients defined in CCSDS  FDWT Coefficients used in FORMOSAT-5 

i Low Pass Filter, hi High Pass Filter, gi  Low Pass Filter, hi High Pass Filter, gi 

0 0.852698679009 - 0.788485616406  0.852698564529 - 0.788485646247 

±1 0.377402855613 0.418092273222  0.377402901649 0.418092250823 

±2 - 0.110624404418 0.040689417609  - 0.110624432563 0.040689468383 

±3 - 0.023849465020 - 0.064538882629  - 0.023849487304 - 0.064538883647 

±4 0.037828455507   0.037828445434  

Table 1. Coefficients of floating point DWT 

2.2 Bit plane encoder 

After DWT processing, the Bit Plane Encoder handles DWT coefficient for data compression. 
The Bit Plane Encoder encodes a segment of images from most significant bit (MSB) to least 
significant bit (LST). The BPE encoding uses less bits to express image data to achieve 
compression ratio. In CCSDS 122.0-B-1, the maximum number of bytes in the compressed 
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segment can be defined to limit the data volume. The quality limit can be defined to 
constraint the amount of DWT coefficient information to be encoded.  

The BPE performs DC and AC data encryption as the flow shown in Fig.2. In DC part data 
encryption, AC part maximum value of each block will be computed. Then, a scheme 
should be used to determine how many bits for “DC_MAX_Depth” and “AC_MAX_Depth” 
in this segment. In addition, the DC and AC optimized encryption type and value of W/8 
blocks should be determined. Finally, the DC part data and W/8 AC_MAX data will be 
encrypted and the bit stream is transmitted to next stage. W is the pixel size per image line, 
e.g. W is 12,000 for PAN image and W is 6,000 for MS image in FORMOSAT-5.  

In AC part data encryption, it consists of 5 stages. Data encryption and bit-out proceed block 
by block in each stage. The entropy coding scheme is used by data encryption. The stage 0 is 
for processing DC 3rd part data. The stage 1 is for processing Parent part coefficients in each 
block. The stage 2 is for processing Children part coefficients in each block. The stage 3 is for 
processing Grand-Children part coefficients in each block. The stage 4 is just concatenated 
stage 1, stage2 and stage 3 left data. After adding segment header, the compressed image 
data are finished. 

 
Fig. 2. BPE Encoding Flow  

3. Hardware implementation 
3.1 Architecture description 

The image flow of the Remote Sensing Instrument in the FORMOSAT-5 is shown in Fig. 3. 
Behind the telescope, there is one CMOS sensor module inside the Focal Panel Assembly 
(FPA) to take the images. The CMOS sensor module can be accessed by two FPA electronics. 
The output data stream is sent to the Image Data Pre-processing (IDP) module in the RSI EU 
for data re-ordering. Then the resultant data are sent to the Image Data Compression (IDC) 
module for data compression. The compressed data with format header are stored in the 
Mass Memory (MM) modules under the control of the Memory Controller (MC) module. 
While the satellite flies above the ground station, the image files can be retrieved and 
transmitted to the ground station.  
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Fig. 3. Image Flow of Remote Sensing Instrument 

3.2 Design and implementation 

The image data input interfaces between each functional module are shown in the Fig. 4. 
The serial image data from FPA are re-ordered in the IDP to make the image data output in 
correct pixel order. Then the image data are transferred to IDC in parallel on 12-bit data bus 
with lower transmission clock rate. One channel of PAN data and four channels of MS data 
are compressed individually in the IDC. The compressed PAN and MS data are stored 
individually in image files under the control of MC module. 

 
Fig. 4. Image Data Signal Interfaces between Functional Modules 

3.3 Hardware design 

The image data rate between each stage is shown in Fig. 5. The PAN sensors output are 
divided into 8 channels with 80Mbps rate individually to accommodate the high data rate. 
The channel rate for each MS band is 40Mbps. The parallel handling architecture can 
increase the image data handling speed. 

The PAN and MS image data compression boards are shown in Fig. 6 a) & b). The 
architecture block diagram of the PAN channel in IDC is illustrated in Fig. 7. The MS 
channels are similar. The space grade Xilinx FPGA, XQR5VFX130, is used for image 
compression processing. The major characteristics of the XQR5VFX130 are 130,000 logic cells, 
298 blocks of 36K bits RAM, 320 enhanced DSP slices,700Krad total dose, and etc. The 
PROM part for FPGA programming is XQR17V16, which has 16Mbits memory size with 
50krad total dose capability. One XQR5VFX130 FPGA is used for PAN data compression.  
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Fig. 5. Image Data Rate between each stage 

  
        a)       b) 

Fig. 6. a) PAN Compression Circuit Board; b) MS Compression Circuit Board 

 
Fig. 7. Architecture Block Diagram of the PAN Channel in IDC 
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Two XQR5VFX130 FPGAs are used for four MS data compression. The external memories, 
24 chips of 256K x 32 SRAM, are used as data buffer during compression process.  

3.4 DWT process 

The DWT flows at three levels are illustrated in Fig. 8a, 8b and 8c. The RAM memory banks 
are used for buffer storage. In the first level, the LL1, LH1, HL1 and HH1 are generated. 
Then, the LL1 is transmitted to level 2 DWT process to generate LL2, LH2, HL2 and HH2. 
The LL2 is transmitted to level 3 DWT process to generate LL3, LH3, HL3 and HH3. The 
LL3 contains the most information of the original image. These subbands are stored in the 
temporary buffers for BPE process. 

 
Fig. 8a. DWT Flow (1) 

 
Fig. 8b. DWT Flow (2) 
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Fig. 8c. DWT Flow (3) 

3.5 BPE process 

The BPE module is the actual unit to perform data compression. When DWT acknowledges 
that one section data is completed and saved in the buffer, BPE retrieves the wavelet domain 
data from buffer and uses different compression scheme for different DWT sub-section data. 
According to various compression ratio requirements, BPE performs data truncation or 
appends zero fill bits. After necessary header information is added, the compressed data is 
sent to mass memory word by word for storage.  

The compression data format is listed in Table 2. Within a segment, BitDepthDC is defined 
as the bit number of the maximum value in all DC coefficients. BitDepthAC is defined as the 
bit number of the maximum value in all AC coefficients. The amount of quantization q’ of 
DC coefficients is determined by the dynamic range of the AC and DC coefficients in a 
segment in Table 3. DC quantization factor q is defined as q= max(q’, BitShift(LL3)). The 
value of q indicates the number of least significant bits in each DC coefficient that are not 
encoded in the quantized DC coefficient values. The number of bits needed to represent 
each quantized DC efficient, N = max {BitDepthDC – q, 1}. For example, one segment has 
BitDepthDC=16 and BitDepthAC=4. According to Table 3, the DC quantization amount  
 

Segment Header 
Initial coding of DC coefficients 
Coded AC coefficient bit depths 
Coded bit plane b=BitDepthAC-1 
Coded bit plane b=BitDepthAC-2 
………… 
Coded bit plane b=0 

Table 2. Compression Data Format 
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DC and AC dynamic range q’ value Remark 

3BitDepthDC   q’ = 0 DC dynamic range is very small; 

no quantization is performed 

(1 / 2 ) 1
3

BitDepthDC BitDepthAC

and BitDepthDC

    
 

 
q’ = BitDepthDC-3 DC dynamic range is close to half 

the AC dynamic range 

(1 / 2 ) 10
3

BitDepthDC BitDepthAC

and BitDepthDC

    
 

 

q’ = BitDepthDC-10 DC dynamic range is much higher 

than half the AC dynamic range 

Otherwise q’ =1 / 2BitDepthAC     DC dynamic range is moderately 

higher than half the AC dynamic 

range  
Table 3. DC Coefficient Quantization 

q’ = 16 -10 = 6. Then, DC quantization factor q is 6 and N = 16 - 6 =10. So, each DC 
coefficient bit(15) ~ bit(6) are encoded using coding quantization method, and bit(5) ~ bit(4) 
will just concatenated immediately at the end of the coded quantized DC coefficients of the 
segment, finally bit(3) ~ bit(0) are encoded at AC stage0 phase. The detailed coding 
algorithm is described in CCSDS 122.0-B-1 (2005). 

The AC part data have the major portion of image (63/64), so AC part data coding dominates 
the whole compression performance. The CCSDS adopts bit plane encoding concept, that is, 
the most important bits of each AC subsection part data is encoded first, then less important 
bits, until specified segment byte limit size is achieved or bit 0 of each data segment is 
encoded. Even, it is needed to append zero bits to achieve segment byte limited size.  

In order to have good compression efficiency, the CCSDS standard specifies AC Parent, 
Children, and Grand Children data to proceed entropy symbol mapping scheme. The basic 
concept of entropy coding is to use smaller bit pattern to represent more frequently repeated 
bit pattern.  

In the CCSDS standard, a “gaggle” consists of a set of 16 consecutive blocks within a 
segment. There are two running phases in our design to use entropy coding scheme to 
represent the final coding result, pre-running phase and normal running phase. The pre-
running phase is designed to get 2-bits、3-bits、and 4-bits entropy value for each gaggle on 
each bit-plane. The normal running phase is to use entropy table to map the final coding bits 
string. The detailed coding algorithm is described in CCSDS 122.0-B-1 (2005). The IDC 
implementation block diagram is shown in Fig. 9.  

3.6 FPGA design optimization 

Some design skills are used to save the limited multiplier and memory resources in the 
FPGA chip. In the Equation (1) and (2), nine multipliers for Low Pass Filter and seven 
multipliers for High Pass Filter are needed. Totally 3 x 2 x (9+7) = 96 multipliers are needed 
for 3 layers, horizontal and vertical, low pass and high pass filter. By using the multiplexers, 
adders and timing sharing algorithm in our IDC design as in Fig. 10 and 11, three 
multipliers for Low Pass Filter and two multipliers for High Pass Filter are needed. In other 
words, totally 3 x 2 x (3+2) = 30 multipliers are needed for 3 layers 2 dimension FDWT 
architecture, i.e. 66 multipliers are reduced. 
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Fig. 9. IDC Implementation Block Diagram  

 
Fig. 10. Approach of 9 Taps Low Pass Filter in IDC  
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Fig. 11. Approach of 7 Taps High Pass Filter in IDC  

 
Fig. 12. DWT Timing Relation between Three Layers 

The timing relation chart of DWT three layers is shown in Fig. 12. The “W” is the original 
source image width (pixels/line) which is 12000 for PAN and 6000 for MS in FROMOSAT-5. 
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The source clock is 45 MHz for PAN and 11.25 MHz for MS. In the Layer1, LH1, HL1 and 
HH1 data are generated every two source clocks with data size W/2 words. In the Layer2, 
LH2, HL2 and HH2 data are generated every four source clocks with data size W/4 words. 
In the Layer 3, LL3, LH3, HL3, HH3 data are generated every 8 source clocks with data size 
W/8 words. The data in different layers are generated interleavely to achieve high 
throughput for real time data processing. 

The buffer size to handle the image compression is Width * Length for frame-based method. 
But for the strip-based method, just fixed buffer size, Width * 138, is needed. For 8 minutes 
FORMOSAT-5 PAN imaging data, the buffer size for frame-based will be 200,000 times of 
buffer size for strip-based. So, it is very important to use strip-based method to save 
memory size, cost, and handling time in satellite application, even for ground image 
handling. The total required memory can be reduced as shown in Table 4. It can save the 
cost and reduce the power consumption used by memory chips. 
 

 CCSDS 120.1-G-1 FORMOSAT-5 Approach 
Low Pass Filter [2 x (9 x W/2n)] x 32 bits [2 x (5 x W/2n)] x 32 bits 
High Pass Filter [2 x (7 x W/2n)] x 32 bits [2 x (4 x W/2n)] x 32 bits 

Where : W is pixels per line (12000); n is layer number (1~3) 

Table 4. Memory Size in FDWT Implementation 

The Xilinx Virtex-5QV FPGA static power is 2.49761 watts estimated by Xilinx XPower 
Analyzer tool. Since the throughput is 40.4 Msamples/sec for PAN, the power consumption 
of the compression FPGA is about 0.06 Watt/Msamples/sec. The total power consumption 
of the PAN compression board is about 5 watts, including SRAM and IO circuit, i.e. 
equivalent to 0.124 Watt/Msamples/sec. 

There are some benefits to use space grade FPGA chip than ASIC. The space grade FPGA 
has good anti-radiation capability. The line pixel number and clock rate can be reconfigured. 
There are some comparisons of data compression chips in Table 5.  
 

Model
Features 

FORMOSAT-5 
RSI EU IDC 

CAMBR DWT+BPE IC 
[Winterrowd 2009] 

ANALOG DEVICES 
ADV202 

Chip Type Xilinx Space Grade FPGA ASIC ASIC 
Compression Algorithm CCSDS 122.0 CCSDS 122.0 JPEG2000 
Line Width (Pixels) 12000 8192 4096 
Bits Per Pixel 12 16 8, 10, 12, 14, 16 
Input Data Rate 480Mbps 320Mbps 780Mbps 
Radiation(Total Dose, Si) 700K >=50K Commercial 
Power Consumption 
(Watt/Msamples/sec) 0.06 0.17 0.05 

Table 5. Data Compression Chip Comparison 

4. Image quality verification 
The 12-bit test images in the CCSDS official website have been tested and similar results are 
gotten as in the CCSDS report. In order to consider more practical case, one North 
Vancouver image taken by FORMOSAT-2 satellite on 2009/12/9 is adopted. The 
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compression ratios are set 1.5, 3.75 and 7.5. The Peak Signal to Noise Ratio (PSNR) is used as 
the performance index. 

  10
2 120log ,

B

PSNR dB
MSE


  (5) 

where B denotes the bit depth and the Mean Squared Error (MSE) is given by 

  
2

, ,
1 1

1 ˆ
w h

i j i j
i j

MSE x x
w h  

 
   (6) 

where ,i jx  is the pixel of the original image, ,ˆ i jx  is the pixel of the decoded image, w is the 
width of image and h is the height of image. 

In our verification, one 8-lines strip-based segment is adopted with 1500 blocks for PAN and 
375 blocks for MS. The average PSNR is calculated by Matlab® software. The test results are 
listed in the Table 6. 
 

Compression 
Ratio 

Image
 

Methods 

Panchro-
matic Band

Red Band Green Band Blue Band Infrared 
Band 

CR=1.5 IDWT Lossless Lossless Lossless Lossless 73.1 
FDWT 51.1 51.1 51.1 51.1 51 

CR=3.75 IDWT 47.3 47.8 44.3 45.3 41.1 
FDWT 47.7 48 45 45.8 41.7 

CR=7.5 IDWT 43.1 41.8 37.6 38.1 38.5 
FDWT 43.6 42.2 38 38.5 35.1 

* IDWT: Integer Discrete Wavelet Transform FDWT: Floating Point Discrete Wavelet Transform 

Table 6. Image PSNR under Various Compressions  

When the IDWT is used with compression ratio 1.5, the PSNR is very large to indicate near 
lossless compression, except the infrared band. When the FDWT is used with compression 
ratio 7.5, the PSNR may drop to 35dB which is worse than average PSNR 56.77dB using six 
12-bit CCSDS test images. This is mainly because North Vancouver image shown in Fig. 13 
is much more complicated than the standard CCSDS test images.  

To use the satellite image as data input to real compression hardware, a set of simulated 
Focal Plane Assembly (FPA) is under development as illustrated in Fig. 14. The satellite 
image taken by FORMOSAT-2 is expanded from 8 bits to 12 bits per image pixel by adding 
random value of 4 least significant bits to simulate FORMOSAT-5 image. The test image can 
be downloaded from the personal computer to the image sensors simulator which is to 
replace the real image sensor array in the FPA. Then the test image can be transmitted out 
by the FPA simulator like real push broom image data. The test image will be compressed 
by hardware, then decompressed by software to check the hardware compression 
performance to simulated satellite image. 

To have a quick check on hardware function, a test image with 1024 pixels x 1024 pixels size 
and 12 bits resolution has been downloaded to a prototype board. The test image is 
compressed by hardware, and then decompressed by software. These two images are shown 
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Fig. 13. North Vancouver Image Taken by FORMOSAT-2 satellite 

 
Fig. 14. Architecture of Image Compression Verification on Hardware 

in Fig. 15. The PSNR is 82.8dB for compression ratio 1.5, 56.9dB for compression ratio 3.75, 
and 49.2dB for compression ratio 7.5. 

 
Fig. 15. Test Image before Compression (left) and Test Image after Decompression (right) 
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5. Conclusion 
In this chapter there has been described the implementation of CCSDS recommended image 
data compression. The parallel processing, time sharing and computation via pure hardware 
in FPGA chip can achieve high-performance computing. The image data compression 
module based on FPGA has been developing to provide enough compression ratios with 
required image quality for FORMOSAT-5 mission. The performance has been verified by 
standard CCSDS 122.0 test images and FORMOSAT-2 images. The technology can be used 
on similar image data compression application in space. The compression throughput can 
be promoted following the improvement on the FPGA technology. The main advantage of 
this technique is that it allows real time image compression by efficient hardware 
implementation with low power consumption. This makes it especially suitable for satellite 
remote sensing. 
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1. Introduction 
After a recent series of unfortunate underground mining disasters, the vital importance of 
communications for underground mining is underlined one more time. Establishing reliable 
communication is a very difficult task for underground mining due to the extreme 
environmental conditions. Nevertheless, wireless sensors are considered to be promising 
candidates for communication devices for underground mine environment. Hence, they can 
be useful for several applications dealing with the mining industry such as Miners’ tracking, 
prevention of fatal accident between men and vehicles, providing warning signals when miner 
entering the unsafe area, monitoring underground gases, message communication, etc.  

Despite its potential advantages, the realization of wireless sensors is challenging and 
several open research problems exist. In fact, underground communication is one of the few 
fields where the environment has a significant and direct impact on the communication 
performance. Furthermore, underground mines are very dynamic environments. As mines 
expand, the area to be covered expands automatically.  

In mine, communication requires complete coverage inside the mine galleries, increasing 
system reliability and higher transmission rates for faster data throughput. It is extremely 
important for information to be conveyed to and gathered from every point of mine due to 
both safety and productivity reasons. In order to meet these needs, the communications 
industry has looked to Ultra-Wide-band (UWB) for wireless sensors. There have been 
numerous research results in the literature to indicate that UWB is one of the enabling 
technologies for sensor network applications [1, 2, 3, 4, 5, 6]. Therefore, UWB provides a good 
combination of high performance with low complexity for WSN applications [7, 8, 9, 10]. 

Since UWB has excellent spatial resolution it can be advantageously applied in the field of 
localization and tracking [11, 12, 13]. In addition to UWB technology, multiple antenna 
systems have drawn great interest in the wireless community. Multiple antenna systems 
employ multiple antennas at the transmitter, receiver, or both. By using the antennas in a 
smart fashion, it may be possible to achieve array gain or diversity gain when multiple 
antennas are located at either the transmitter or receiver link ends. When multiple antennas 
are present at both link ends, however, the achievable data rate can potentially be increased 
linearly proportional to the minimum of the number of antennas at the link ends. 
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In a sensor network, nodes are generally densely deployed. They do not compete with each 
other but collaborate to perform a common task. Consider a situation where multiple nodes 
sense the same object and feed the measurements to a remote data fusion center (relay 
station). Since nodes are spatially clustered, it is natural to let them cooperate as multiple 
inputs in transmission and receiving, for the ultimate objective to save energy. In [14], Cui, 
Goldsmith and Bahai investigated the energy efficiency of MIMO and cooperative MIMO 
techniques in sensor networks. They mainly consider using MIMO for diversity gain, which 
improves the quality of the link path.  

This chapter will study the application of UWB and MIMO techniques in wireless sensor 
networks. Hence, a channel characterization of the wireless underground channel is 
essential for the proliferation of communication protocols for wireless sensor network. 

2. UWB channel characterization 
2.1 Description of the underground mining environment 

The measurements were performed in various galleries of a former gold mine, at a 70 m 
underground level. The environment mainly consists of very rough walls and the floor is 
not flat and it contains some puddles of water. The dimension of the mine corridors varies 
between 2.5 m and 3 m in width and approximately 3 m in high. The measurements were 
taken in both line of sight (LOS) and non line of sight (NLOS) scenarios. Figure 1 illustrates 
photography of the underground gallery and the measurement arrangement. 

 
Fig. 1. Photography of the Underground Gallery and the Measurement Arrangement. 

2.2 Measurement campaign 

The transmitter antenna was always located in a fixed position, while the receiver antenna 
was moved throughout along the gallery on 49 grid points. As shown in figure 2, the grid 
was arranged as 7X7 points with 5 cm spacing between each adjacent point. The 5 
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centimetres corresponds to half of wavelength of the lowest frequency component for 
uncorrelated small scale fading. During all measurements, the heights of the transmitting 
and receiving antennas were maintained at 1.7 m in the same horizontal level, and the 
channel was kept stationary by ensuring there was no movement in the surrounding 
environment.  

 
Fig. 2. Overview of the Measurement Setup 

The UWB measurements were performed in frequency domain using the frequency channel 
sounding technique based on S21 parameter obtained with a network analyzer. In fact, the 
system measurement setup consists of E8363B network analyzer (PNA) and two different 
kinds of antennas, with directional and omnidirectional radiation patterns, respectively. 
There were no amplifiers used during the measurements because the distance between the 
transmitter and the receiver was just 10 meters. The transmitting port of the PNA swept 
7000 discrete frequencies ranging from 3 GHz to 10 GHz uniformly distributed over the 
bandwidth, and the receiving port measured the magnitude and the phase of each 
frequency component. Figure 3 shows a typical complex channel transfer function (CTF) 
measured with the Network Analyzer. 

 
Fig. 3. Channel Transfer Function Measured with the Agilent E8363B Network Analyzer 
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The frequency span of 1 MHz is chosen small enough so that diffraction coefficients, 
dielectric constants, etc., can be considered constant within the bandwidth of 7 GHz [15]. At 
each distance between the transmitter and the receiver, the channel transfer function was 
measured 30 times, to reduce the effects of random noise on the measurements, and then 
stored in a computer hard drive via a GPIB interface. The 7 GHz bandwidth gives a 
theoretical time resolution of 142.9 ps (in practice, due to the use of windowing the time 
resolution is estimated to be 2/bandwidth) and the sweeping time of the network analyzer 
is decreased to validate the quasi- static assumption of the channel. The frequency 
resolution of 1 MHz gives maximum delay range of 1 μs. 

Before the measurements, the calibration of the setup was done to reduce the influence of 
unwanted RF cables effects. Table 1 lists the parameters setup. 
 

Parameters Values 

Bandwidth 7 GHz 

Center Frequency 6.5 GHz 

Frequency Sweeping Points 7000 

Frequency Resolution 1 MHz 

Time Resolution 286 ps 

Maximum Delay Range 1000 ns 

Sweep Average 30 

Tx-Rx Antennas Height 1.7 m 

Table 1. Measurement System Parameters 

Since the measurements are performed in frequency domain, the inverse Fourier transform 
(IFT) was applied to the measured complex transfer function using Kaiser-Bessel window in 
order to obtain the channel impulse response. The Kaiser window is designed as FIR filter 
with parameter β=6 to reduce the side lobes of the transformation. 

2.3 Measurements results and analysis 

The large scale measurements are performed to determine the propagation distance-power 
law in the underground environment. The average path loss in dB for arbitrary transmitter-
receiver separation distance d can be represented as: 

     2

1 1

1 1 ,
M N

average i
i j

PL d H f d
M N  

   (1) 

where H( ݂,d) is the measured complex frequency response and N represents the number of 
data points measured during a sweep of 7000 discrete frequencies ranging from 3 GHz to 10 
GHz, and M represents the number of sweeps that has been averaged.  

According to the measured channel transfer function and the data fitting using the linear 
least squares regression, the computations of different transmitter-receiver antennas 
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combination have shown that the path loss PL (d) in dB at any location in the gallery can be 
written as a random log-normal distribution by : 

    0 10
0

10. .logdB dB
d

PL d PL d n X
d 

 
   

 
 (2) 

where PL(݀) is the path loss at the reference distance ݀ set to 1m, n is the path loss 
exponent and ܺఙ	is a zero-mean Gaussian distributed random variable in dB with the 
standard deviation. 

2.3.1 LOS scenario 

2.3.1.1 Path loss model 

The measurements of UWB propagations channel in line of sight case were made between 1 
m and 10 m with intervals of 1 m. Figure 4 illustrates the gallery layout and the 
measurements Tx-Rx arrangements under LOS and Figure 5 shows the results of path loss 
as function of distance for the three antennas combinations: directional - directional, 
directional-omni and omni-omni. 

 
Fig. 4. Gallery Layout and Measurement Setup in LOS 

As listed in Table 2, the path loss exponent n, in LOS scenario is equal to 1.99, 2.01 and 2.11 
for directional-omni, directional-directional, and omni-omni antennas combination 
respectively. It can be noted that the path loss exponent for all these combinations is close to 
free space path loss exponent where n=2, with the smallest path loss fluctuation for 
directional-omni antenna combination, and the standard deviation of Gaussian random 
variable ߪௗ	is smaller for directional antenna in LOS environment. The results of path loss 
exponent values observed in [16] [17] for indoor UWB propagation are lower to the results  
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Fig. 5. Path Loss vs. T-R Separation Distance in LOS  

obtained for underground UWB propagation. In an indoor environment, such as a corridor 
or a hallway clear of obstacles, the results may show lower path loss exponent due to 
multipath signal addition, whereas in the mine gallery, the walls are uneven, scattering the 
signal and thus showing results in closer agreement with the free-space path loss exponent, 
due mainly to the LOS component reaching the antenna. 

 

LOS  Omni Omni  Direct Direct  Direct Omni  

n  2.11 2.01 1.99 

dB  0.89 0.13 0.32 

Table 2. Summary of Path Loss Exponents n and Standards Deviations ߪௗ in LOS. 

2.3.1.2 RMS delay spread 

A statistical characterization of the channel impulse response is a useful process for 
describing the rapid fluctuations of the amplitude, phase, and multipath propagation delays 
of the UWB signal. The number of multipath in an underground environment is more 
important due to the reflection and scattering from the ground and surrounding rough 
surfaces. Figure 6 shows a typical power delay profile (PDP) measured with omni-omni 
antenna in LOS environment.  

In order to compare different multipath channels of different antennas combination, the 
mean excess delay and RMS delay spread are evaluated using the below equations [18] :  

- RMS delay spread is the square root of the second central moment of the power delay 
profile given by: 
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rms     (3) 

 
Fig. 6. Typical underground Power Delay Profile in LOS 

- Mean excess delay is the first moment of the power delay profile defined by: 
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Where ܽ, P(߬) and ߬ are the gain, power and delay of the ݇௧path respectively. From (3), 
(4) and (5) we have calculated the RMS delay spread for each antenna combination by using 
predefined thresholds. A threshold of 40 dB below the strongest path was chosen to avoid 
the effect of noise on the statistics of multipath arrival times. Fig. 7 shows the effects of 
antenna directivity on the RMS delay spread computed from the cumulative distribution 
function in LOS scenario. 

According to the figure 7, we can observe that for 50% of all locations, the directional - 
directional combination offers the best result of ߬௦	with 2 ns. However, the directional-
omni and the omni-omni combinations introduce 7.7 ns and 9.5 ns of ߬௦	respectively. 
Hence, we can say that the former combination reduces 7.5 ns of ߬௦	in comparison with 
the latter one. The effect of directional antenna in underground LOS environment is similar 
to the results reported in indoor channel [19] [20].  
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Fig. 7. Cumulative Distribution Function of RMS delay spread in LOS 

2.3.2 NLOS scenario 

2.3.2.1 Path loss model  

The measurements of UWB propagations in non line of sight were made between 4 m and 
10 m with intervals of 1m. Figure 8 illustrates the gallery layout and the measurements 
arrangement in NLOS. 

 
Fig. 8. Gallery Layout and Measurement Setup in NLOS 
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The results of path loss as function of distance for directional - directional and omni - omni 
antennas combinations are shown in Figure 9. 

 

Fig. 9. Path Loss vs. T-R Separation Distance in NLOS 

As listed in Table 3, the path loss exponent with directional antennas is twice larger than of 
the omnidirectional antennas. 

 

NLOS  Omni Omni  Direct Direct  

n  3.00 6.16 

dB  0.66 1.47 

Table 3. Summary of Path Loss Exponents n and Standards Deviations ߪௗ in NLOS 

2.3.2.2 RMS delay spread 

In NLOS scenario, the UWB signal reaches the receiver through reflections, scattering, and 
diffractions. Figure 10 shows that a typical power delay profile (PDP) measured with Omni-
Omni antenna in NLOS environment consists of components from multiple reflected, 
scattered, and diffracted propagation paths.  

Figure 11 shows that the use of directional antennas, for 50% of all locations in NLOS 
scenario, can reduce, 13 ns of ߬௦	compared to omnidirectional antennas. 
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Fig. 10. Path Loss vs. T-R separation distance in NLOS 

 
Fig. 11. Cumulative Distribution Function of RMS delay spread in NLOS 

3. MIMO channel characterization at 2.4 GHz 
3.1 Description of the underground environment 

Measurements were conducted in a gallery located at a 40-m deep underground level.  

In this gallery, the floor is uneven with bumps and several ditches. In addition, the walls are 
not aligned. Dimensions vary almost randomly throughout the gallery, although the latter is 
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supposed to have a width of about 4 to 5 m. The gallery also has several branches of 
different size at variant locations. The humidity is still high, drops of water falling from 
everywhere and big pools of water cover the ground. The temperature is stable of 6 to 15º C 
along the year. A photography of this underground gallery is shown in figure 12. 

 
Fig. 12. Photography of the mine gallery 

3.2 Measurement setup 

The MIMO antenna system consists of a set patch antenna, developed in our laboratory and 
have been used for transmission and reception of the RF signal, at 2.4GHz. Measurement 
campaigns under LOS and NLOS scenarios were performed in frequency domain using the 
frequency channel sounding technique based on measuring ܵଶଵ parameter with a network 
analyzer (Agilent E8363B). In fact, the system measurement setup, as shown in figure 13, 
consists of a network analyzer (PNA), 2X2 MIMO antenna set, two switches, one power 
amplifier for the transmitting signal and one low noise amplifier for the receiving signal. 
Both amplifiers have a gain of 30 dB.  

For the Line-of-Sight (LOS) scenario, the transmitter remained fixed at ௫ܶଵ , where the 
receiver changed its position along the gallery, from 1 meter up to 25 meters far from the 
transmitter. While for NLOS the transmitter remained fixed at ௫ܶଶ and the ௫ܶ − ܴ௫ 
separation varies from 6m up to 25m. Figure 14 illustrates photography of the receiver 
location and a map of the underground gallery.  
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Fig. 13. Measurement setup 

 
Fig. 14. The underground gallery plan 
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3.3 Measurement results 

3.3.1 RMS delay (ૌ܁ۻ܀) 
The RMS delay spread roughly characterizes the multipath propagation in the delay 
domain. The RMS delay spread is the square root of the second central moment of the 
averaged power and it is defined as: 

τ୰୫ୱ = ටτଶഥ − (τത)ଶ = ඨ∑ Piτ୧ଶ୧∑ P୧୧ − ቆ∑ Piτ୧୧∑ P୧୧ ቇଶ (6)

where τത is the mean excess delay, τଶഥ 	is the average power and ܲ is the received power (in 
linear units) at τ୧ corresponding arrival time. We have a threshold of 10 dB for all power 
delay profiles, in order to guarantee the elimination of the noise. 

The RMS delay spread has been computed for each impulse response of all the gallery 
measurements using the 2X2 MIMO system under LOS and NLOS scenarios and plotted in 
terms of the separation distance ்݀௫ିோ௫	in figure 15.  
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Fig. 15. RMS delay spread as a function of the distance 

For the considered underground gallery, the profile seen in figure 15 is not monotonically 
increasing as may be expected. Results thus show propagation behavior that is specific for 
these underground environments. This is likely due to scattering on the rough sidewalls' 
surface that exhibit a difference of 25 cm between the maximum and minimum surface 
variation. Moreover, the RMS delay for the MIMO in NLOS scenario is higher than the one 
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of MIMO by about 5 ns due to the walls attenuation. Table 4 summarizes the RMS values for 
LOS and NLOS locations. 
 

RMS (ns) MIMO LOS MIMO NLOS 
Minimum / Maximum 0.44 / 2.64 2.7815 / 10.292 

Mean / Standard deviation (σ) 1.33 / 0.68 5.6081 / 2.0750 

Table 4. Summary of the RMS delay spread for measurements corresponding to LOS and 
NLOS galleries 

3.3.2 Path loss 

Path loss in the channel is normally distributed in decibel (dB) with a linearly increasing 
mean and is modeled as: 

= ௗ(݀)ܮܲ ) ௗതതതതതതത (݀) + 10αlogܮܲ ௗௗబ) + X (7)

where 	ܲܮௗതതതതതതത (݀) is the mean path loss at the reference distance ݀, 10αlog (d/݀) is the 
mean path loss referenced to ݀, and X is a zero mean Gaussian random variable expressed 
in dB. Path Loss as a function of distance are shown in figure 16 and figure 17 for both LOS 
and NLOS galleries respectively. The mean path loss at ݀ and the path loss exponent α 
were determined through least square regression analysis [21]. The difference between this 
fit and the measured data is represented by the Gaussian random variable X. Talble 5 lists 
the values obtained for α and ߪ (standard deviation of X). 
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Fig. 16. Average Path versus distance in LOS scenario 
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Fig. 17. Average Path versus distance in NLOS scenario 
 

 MIMO LOS MIMO NLOS 
α 1.73 3.03ો1.29 ܆ 2.75

Table 5. Path Loss exponent α and standard deviation of X (ߪ) 

From the results shown in Table 5 the NLOS scenario have path loss exponent greater than 2 
and also have larger ߪ	value compared with LOS scenarios. While, for the LOS case the 
exponent α=1.73, is smaller than the free space exponent α=2, the reason behind this is 
because of the collection of all multipath components so that a higher power is received than 
the direct two signals in the free space.  

3.3.3 Capacity 

If we consider a system composed on m transmitting antennas and n receiving antennas, the 
maximum capacity of a memoryless MIMO narrow band channel expressed in bits/s/Hz, 
with a uniform power allocation constraint and in the presence of additional white Gaussian 
noise is given by Foschini et al.[22]: 

 C = log2 det (Im + .HHH) (8) 

where  is the average signal to noise ratio per receiving antenna; Im denotes the identity 
matrix of size m, the upper script H represents the hermitian conjugate of the matrix and 
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det(X) means the determinant of a matrix X. To clearly point out the MIMO system 
performance for the LOS and NLOS cases, the ergodic capacity is calculated for a fixed  
transmitted power and the SNR at the receiver is determined by the path loss. In this case, 
the capacity includes both effects related to received power and spatial richness. The 
relationship between the channel capacity C and the distance ்݀௫ିோ௫ based on equation (8) 
is shown in figure 18. Obviously, one can see that the NLOS suffer from its higher path-loss 
exponent which is due to the directional radiation pattern of the MIMO patch antenna 
resulting in lower capacity compared to the LOS case by about 3 bit/s/Hz. 
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Fig. 18. Channel capacity for LOS and NLOS scenarios 

4. Conclusion 
This study deals with several aspects relative to UWB and MIMO propagation channel and 
its deployment for wireless sensors. Successful design and deployment of these techniques 
require detailed channel characterization. Measurement campaigns, made at two different 
deep levels in a former gold mine under LOS and NLOS scenarios, have been analyzed to 
obtain the relevant statistical parameters of the channel. 

Although MIMO system can offer high capacity performance through multipath 
propagation channel but it has some drawbacks such as complexity, power consumption 
and size limitation of the wireless sensor. However, UWB has several advantages 
compared to narrowband systems. The wide bandwidth (typically 500 MHz or more) 
gives UWB excellent immunity to interference from narrowband systems and from 
multipath effects. Another important benefit of UWB is its high data rate. Additionally, 
UWB offers significant advantages with respect to robustness, energy consumption and 
location accuracy.  
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Nevertheless, UWB technology for wireless networks is not all about advantages. Some of 
the main difficulties of UWB communication are low transmission power so information can 
only travel for short distance comparing to 2.4 GHz which can rich long distance. Moreover 
UWB in the microwave range does not offer a high resistance to shadowing, but this 
problem can be mitigated in sensor networks by appropriate routing, and possible 
collaborative communications. 
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1. Introduction 
Cold gas propulsion systems play an ideal role while considering small satellites for a wide 
range of earth orbit and even interplanetary missions. These systems have been used quite 
frequently in small satellites since 1960’s. It has proven to be the most suitable and 
successful low thrust space propulsion for LEO maneuvers, due to its low complexity, 
efficient use of propellant which presents no contamination and thermal emission besides its 
low cost and power consumed. The major benefits obtained from this system are low 
budget, mass, and volume. The system mainly consists of a propellant tank, solenoid valves, 
thrusters, tubing and fittings (fig. 1). The propellant tank stores the fuel required for attitude 
control of satellite during its operation in an orbit. The fuel used in cold gas systems is 
compressed gas. Thrusters provide sufficient amount of force to provide stabilization in 
pitch, yaw and roll movement of satellite. From design point of view, three important 
components of cold gas propulsion systems play an important role i.e. mission design, 
propellant tank and cold gas thrusters. These components are discussed in detail in section 
3. Selection of suitable propellant for cold gas systems is as important as above three 
components. This part is discussed in section 2 of this chapter. Section 4 describes the case 
study of cold gas propulsion system which is practically implemented in Pakistan’s first 
prototype remote sensing satellite PRSS.  

 
Fig. 1. Schematic of cold gas propulsion system 
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2. Cold gas propellants 
Table 1 shows typical performance values for selected cold gas propellants. Nitrogen is most 
commonly used as a cold gas propellant, and it is preferred for its storage density, 
performance, and lack of contamination concerns. As shown in table below, hydrogen and 
helium have greater specific impulse as compared to other propellants, but have a low 
molecular weight. This quality causes an increased tank volume and weight, and ultimately 
causing an increase in system weight. Carbon dioxide can be a good choice, but due to its 
toxic nature, it is not considered for cold gas systems. 

Another good alternative propellant could be ammonia, which stores in its liquid form to 
reduce tank volume. Its specific impulse is higher than nitrogen or other propellants and 
reduces concerns of leakage, although it also necessitates a lower mass flow rate. Despite the 
benefits, ammonia is not suitable for this system as one alternative to decrease the system 
size and weight includes pressurizing the satellite and allowing the entire structure to act as 
a propellant tank, as previously mentioned. In this system, the ammonia could cause 
damage to electrical components. 
 

Propellant Molecular Weight 
(Kg/Kmole) 

Density 
(g/cm3) 

Specific Thrust (s) 
Theoretical Measured 

Hydrogen 2.0 0.02 296 272 
Helium 4.0 0.04 179 165 
Nitrogen 28.0 0.28 80 73 
Ammonia 17.0 Liquid 105 96 
Carbon dioxide 44.0 Liquid 67 61 

Table 1. Cold Gas Propellant Performances  

3. Cold gas propulsion system design 
3.1 Mission design 

In order to design a cold gas propulsion system for a specific space mission, it is important 
first to find out the V requirements for the maneuvers listed in table 2. Table 2 gives 
information about all the operations performed for spacecraft attitude and orbit control. 
However, cold gas systems are used only for attitude control and orbit maintenance and 
maneuvering (table 3).  

Tsiolkowski equation and its corollaries are used to convert these velocity change 
requirements into propellant requirements.  
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Task Description 

Mission Design 
Orbit changes 
Plane changes 
Orbit trim 
Stationkeeping 
Repositioning 

(Translational velocity change) 
Convert one orbit to another 
 
Remove launch vehicle errors 
Maintain contellation position 
Change constellation position 

Attitude Control 
Thrust vector control 
Attitude control 
Attitude changes 
Reaction wheel unloading 
Maneuvering 

(Rotational velocity change) 
Remove vector errors 
Maintain an attitude 
Change attitudes 
Remove stored momentum 
Repositioning the spacecraft axes 

Table 2. Spacecraft Propulsion Functions 

 

Propulsion 
Technology 

Orbit Insertion Orbit Maintenance 
and Maneuvering

Attitude Control Typical Steady 
State Isp (S) Perigeee Apogee 

Cold Gas 
 

Solid 
 

Liquid 
Monopropellant 

Bipropellant 
Dual Mode 

Hybrid 
 

Electric 

 
 

Yes 
 
 
 

Yes 
Yes 
Yes 

 
 

Yes 
 
 
 

Yes 
Yes 
Yes 

 
Yes 

Yes 
 
 
 
 

Yes 
Yes 
Yes 
Yes 

 
Yes 

Yes 
 
 
 
 

Yes 
Yes 
Yes 

 

30-70 
 

280-300 
 
 

220-240 
305-310 
313-322 
250-340 

 
300-3,000 

Table 3. Principal Options for Sapcecraft Propulsion Systems  

 exp 1p f
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In case of cold gas propulsion systems, the pressure, mass, volume and temperature of the 
propellant are interconnected by general gas equation.  

 PV mRT  (4) 

3.2 Tank design 

Satellite propellant tanks used in cold gas propulsion systems are either spherical or 
cylindrical in shape. Tank weights are a byproduct of the structural design of the tanks. The 
load in the walls of the spherical pressure vessels is pressure times the area as shown in 
figure 2. The force PA  tending to separate the tanks is given as, 
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2PA P r  (5) 

 
Fig. 2. Spherical Tank Stress 

Stress   is calculated as, 

 
2

2 2
load P r Pr

stress
area rt t




     (6) 

The thickness of the tank is accurately calculated by including joint efficiency in eq. (7) and 
is given as follows, 

 
2 0.2

P r
t

e P





 (7) 

In case of cylindrical pressure vessel, the hoop stress is twice that in spherical pressure 
vessels. The longitudinal stresses in cylindrical pressure vessels remain the same as in 
spherical pressure vessels. To determine the hoop stress h , a cut is made along the 
longitudinal axis and construct a small slice as illustrated in figure 3.  

  
Fig. 3. Cylindrical Pressure Vessel Stresses 

The equation may be written as, 
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2. . . .2. .h x xt d p r d   

 
h

pr
t

   (8)  

3.3 Thrusters design 

Thrusters are the convergent-divergent nozzles (fig. 4) that provide desired amount of 
thrust to perform maneuvers in space. The nozzle is shaped such that high-pressure low-
velocity gas enters the nozzle and is compressed as it approaches smallest diameter section, 
where the gas velocity increases to exactly the speed of sound. 

 
Fig. 4. Convergent-Divergent Nozzle 

Thrust is generated by momemtum exchange between the exhaust and the spacecraft and by 
the pressure imbalance at the nozzle exit. According to Newton’s secomd law the thrust is 
given as 

 eF mV   (9) 

or we may write as, 

 p
e

w
F V

g



 (10) 

 e eF P A  (11) 

In case of satellites, the thrusters are designed for infinite expansion i.e. for vacuum 
conditions where ambient pressure is taken as zero. The thrust equation for infinite 
expansion is given as, 
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The area ratio and pressure ratio is given as, 



 
Remote Sensing – Advanced Techniques and Platforms 452 

 

1
2 121 2 11

1 2
e

e
t e

A
M

A M







              

 (13) 

 1211
2

e
e

c

P
M

P


    

 
 (14) 

The specific impulse (Isp) for cold gases ranges from 30-75 seconds and may be calculated as, 
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Pressure at throat can be calculated by the following formula 
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The characteristics velocity ( *C ) can be calculated by following formula 
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The exite velocity is given as 
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The above equations are helpful in designing of a cold thruster.  

4. Case study 
The author has personally leaded and guided the satellite Research and Development Centre 
research team of Pakistan Space and Upper Atmosphere Research Commission in designing 
and development of cold gas propulsion system of prototype of Pakistan’s first remote 
sensing satellite (PRSS). Satellite research and development center Karachi has produced an 
inexpensive and modular system for small satellites applications. The cold gas propulsion 
resulting from the effort is unique in several ways. It utilizes a simple tank storage system in 
which the entire system operates at an optimum design in line pressure. In order to minimize 
the power consumption, the thrusters are operated by solenoid valves that require an electric 
pulse to open and close. Between the pulses the thruster is magnetically latched in either the 
open or closed position as required. This dramatically reduces the power required by the 
thruster valves while maintaining the option for small impulse bit. Flow rate sensors are used 
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in the system in order to avoid any failure i.e. complete pressure lost during opened valve 
position. The system uses eight Thrusters of 1N each functioning with inlet pressure of 8 bars. 
By integrating these thrusters to the spacecraft body, pitch, yaw and roll control as well as 

V  can be accomplished. The choice of suitable propellant also plays an important role in 
designing cold gas systems. Compressed nitrogen gas offers a very good combination of 
storage density and specific impulse, as compared with other available cold gas propellants. 
The use of Hydrogen or helium requires much larger mass, because of their low gas density. 
Since the propellant is simple pressurized nitrogen, a variety of suitable tank materials can be 
selected. The tank designed and developed for this mission is Aluminum 6061 spherical tank 
which stores 2 kg of gaseous nitrogen. The whole system is well tested before mounting on 
the honeycomb PRSS structure.  

4.1 Introduction to PRSS 

PRSS is a prototype satellite which is not developed for flight in future. The purpose of this 
work is to design, develop and test a small satellite on ground so that the experience can be 
utilized in near future on engineering qualified and flight models. The CAD model of PRSS 
is shown in fig. 5. This model is developed in PRO/E wildfire 2.0 software. 

 
Fig. 5. CAD model of PRSS 

The satellite mainly consists of 

 1 Telescope 
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 CCD Camera 
 Optics Electronics 
 Cold Gas Propulsion System which includes 8 
 thrusters, 1 propellant tank and regulators and 
 fittings 
 3 Reaction wheels 
 3 Gyros 
 3 Torque Rods 
 3 Digital Sun Sensor DSS 
 RF systems & Antennas 
 On Board Computer Electronics 
 Power System 
 4 Solar Panels on each side of the cube 
 Honeycomb Aluminum Structure 

All the above mentioned systems have been integrated successfully on Al 6061 honeycomb 
structure which is cubical in shape with dimensions 1 m x 1m x 1.2 m. All subsystems have 
been designed for 3 years satellite life. PRSS has an overall weight of 100 kg and therefore 
falls into the category of small satellites. 

4.2 System design 

Cold gas propulsion systems use thrusters which utilize smallest rocket technology 
available today. These systems are well known for their low complexity when characterized 
by low specific impulse. They are the cheapest, simplest and reliable propulsion systems 
available for orbit maintenance and maneuvering and attitude control. Cold gas Propulsion 
systems are designed for use as satellite maneuvering control system where a limited 
lifetime is required. Their specific impulse ranges from 30 seconds to 70 seconds, depending 
on the type propellant used. They usually consist of a pressurized gas tank, control valves, 
regulators, filters and a nozzle. The nozzle can be of bell type, conical, or a tube nozzle. 
SRDC-K will be using a standard conical nozzle, with a 160 half-angle and nozzle area ratio 
of 50:1. A schematic of a cold gas thruster system used by PRSS is shown below in Fig 6. 
System weight is mainly determined by the pressure in the thrust chamber. The increased 
chamber pressure results in increase propellant tank and piping masses, therefore, an 
optimum pressure must be used so that the system weight can be minimized. Nitrogen is 
stored at 100 bar pressure in propellant tank. Fill and drain valves facilitates filling and 
venting nitrogen from the system. Eight Thrusters are connected to solenoid valves and 
propellant tank with PTFE tubing which can carry a pressure of more than 20 bars. The 
inline and the thrusters operating pressure is 8 bars. The system also contains pressure 
transducer before and after pressure regulator to sense the tank pressure and inline pressure 
respectively. 

4.3 Propellant tank design, development and testing 

The propellant tank as shown in fig. 7 is a standard spherical pressure vessel. It is being 
designed and built by SRDC-K, with the detailed analysis also being performed at SRDC-K. 
In order to reduce costs the tank is being welded by two hemispherical Aluminum parts.  
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Fig. 6. Cold Gas Propulsion System for PRSS 

 
Fig. 7. Propellant Tank 
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The hemisphere has a wall thickness of 4.2 mm and a factor of safety of 1.5 is used. This 
gives a minimum theoretical burst pressure of 200 bars. ASME section VIII pressure vessel 
code is used for the designing the spherical propellant tank. Table 4 presents the calculated 
values of design tank design parameters. Titanium could have been another choice for the 
designing of propellant tank. The space grade of titanium is TiAl4V. The weight of the 
propellant tank would have been less with titanium as compared with aluminum but the 
cost in manufacturing titanium tank is much higher as compared with aluminum.  

 
Parameters Designed Parameters 

Propellant N2 Gas 
Tank volume 0.016 m3 

Operating pressure 100 bars 
Proof pressure 150 bars 
Burst pressure 200 bars 

Thickness of tank shell 0.0042 m 

Table 4. 

The tank design analyses included stress analysis for the tank shell. This approach used 
assumptions, computer tools, test data and experimental data which are commonly utilized 
on a majority of the pressure vessels for successful design, fabrication, testing and 
qualification. The following factors have been taken in to consideration for performing 
stress analysis on the tank shell. 

 Temperature environment 
 Material properties 
 Volumetric properties 
 Mass properties of the tank shell material 
 Mass properties of fluid 
 Fluids used by the tank 
 External loads 
 Size of girth weld 
 Resonant frequency 
 Tank boundary conditions 
 Residual stress in girth weld 
 Load reaction points and 
 Design safety factors 

The validation of tank shell design has been done by stress analysis and also the resonant 
frequencies have been obtained. The propellant tank is subjected to the following sequence 
of acceptance tests, 

 Preliminary visual examination 
 Ambient proof pressure test 
 External leakage test 
 Penetrant inspection 
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 Radiographic inspection 
 Mass measurement 
 Final examination 
 Cleanliness verification 

The ambient hydrostatic proof pressure test is conducted at 130 +20/-0 bars for a pressure 
hold period of 300 seconds. Post acceptance test, radiographic inspection of the girth weld 
and penetrant inspection of the entire external surface are conducted to verify that the tank 
is not damages during acceptance testing. All units successfully passed acceptance testing. 
After the conclusion of acceptance testing one propellant tank was subjected to the 
following sequence of qualification tests prior to delivery: 

 Proof pressure cycling test 
 MEOP pressure cycling test 
 External Leakage test 
 Radiographic inspection 
 Penetrant inspection 
 Burst pressure test 
 Visual inspection 
 Data review 

The propellant tank assembly has successfully completed all acceptance and qualification 
level testing. The tank meets or exceeds all requirements that provide the low cost solution 
to the spacecraft. 

After successful testing, propellant tank is then mounted on PRSS structure as shown in  
fig. 8. 

 
Fig. 8. Installation of Propellant Tank on PRSS Structure 

4.4 Thrusters design, development and testing 

This system uses 8 thrusters (fig 9.a) of 1N mounted on PRSS as shown in fig. 10. These 
thrusters have been designed and developed for infinite expansion i.e. for vacuum  



 
Remote Sensing – Advanced Techniques and Platforms 458 

 
      (a) Cold Gas Thruster                  (b) Test Bench 

Fig. 9. 

 
Fig. 10. PRSS Structure 

conditions and hence, the atmospheric pressure is zero. Area ratio of 50 has been used while 
the combustion chamber pressure is 8 bars. The characteristics velocity has been calculated 
and equals to 433.71 m/sec and as result of that the Isp came out to be 73 seconds. Assuming 
a nozzle efficiency of 98% the nozzle cone half angle has been calculated as 160. Thrusters 
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have been developed using stainless steel material. The use of the stainless steel eliminates 
the potential for reaction between propellant and thruster and also outgassing concerns. The 
test bench developed at S/P/T laboratory as shown in fig.9.b is capable of testing cold gas 
thrusters from 1 to 5N. The system consists of an aluminum plate which is mounted on a 
ball bearing. The thruster is connected to a plate and fitted with solenoid valve through SS 
316 tubing.  

The system uses FUTEK load cell which is basically a force sensor to measure the force from 
the thruster. Pressure data logger and transducer are also connected to the system to 
measure the pressure during testing. 

4.5 Propulsion system integration on PRSS structure 

All components of propulsion system have been successfully integrated with PRSS structure 
as shown in fig. 10. The structure has been assembled using Al6061 honeycomb structure 
with the help of end attachments and inserts. Inserts are designed and developed according 
to ESA standards and end attachments are developed using AU4G. Thrusters have been 
mounted on each panel with the help of inserts and titanium bolts. Titanium bolts are used 
for the purpose of high strength and light weight. Four thrusters are mounted on right face 
of the structure, four on the left side while set of two thrusters are mounted in the middle of 
each panel for pitch stabilization. Propellant tank is mounted on the inner side of the top 
panel with the help of inserts and titanium bolts. 

 
Fig. 11. Thrust Control Panel for PRSS Propulsion System 
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4.6 Thrust control mechanism 

The control panel for the thrust system has been designed on Lab view software as shown in 
fig. 11 to test the system on ground level. This controller monitors the position of the 
satellite as well as pressure of the propellant tank and solenoid valves from pressure 
transducers present in the system. It also observes the impulse bit of the system and the 
temperature of the propellant tank. Firing time of thrusters is well adjustable on the panel. 
Ground test of the propulsion system can be monitored by this control system. The test 
results are listed in table 5. 

 

 
Opening Coil 

Response @ 8bars, 
24 VDC (msec) 

Minimum Impulse 
Bit, msec 

Opening Coil 
Response @ 10 
bars, 24 VDC, 

msec 

Minumum Impulse 
Bit, msec 

Thruster # 1 
2.9 

6.20 
3.20 

6.15 
3.3 2.95 

Thruster # 2 
2.95 

6.60 
3.30 

6.15 
3.65 2.85 

Thruster # 3 
2.85 

6.10 
3.50 

6.40 
3.25 2.90 

Thruster # 4 
2.80 

5.80 
2.90 

6.65 
3.00 2.75 

Thruster # 5 
2.77 

6.02 
3.25 

6.25 
3.25 3.00 

Thruster # 6 
2.86 

6.72 
3.10 

6.30 
3.86 3.20 

Thruster # 7 
2.90 

6.56 
3.10 

6.25 
3.66 3.15 

Thruster # 8 
2.80 

6.53 
3.25 

6.40 
3.73 3.15 

Table 5. Minimum Impulse Bit 

5. Conclusion 
In conclusion, this work results in reduction of the size, mass, power, and cost of system. 
Use of Titanium bolts, Aluminum Inserts, Aluminum Tank, and PTFE Tubing gives great 
reduction in mass by 35% and ultimately benefits in lowering the cost. Electric Solenoid 
valves reduce the power consumption by 40%. The main purpose of this work is to 
document the potentials of low power Cold Gas Propulsion System adequately to allow the 
engineers and designers of small satellites to consider it as a practical propulsion system 
option. 
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6. Abbreviations 

iW   Initial vehicle weight, Kg 
fW   Final vehicle weight, Kg 
pW   Propellant weight required to produce the given V  

V   Velocity increase of vehicle, m/s 
cg   Gravitational constant, 9.8 m/s2 

P   Pressure of the gas, bars 
V   Volume of the gas, m3 
m   Mass of the gas, Kg  
R   General gas constant, KJ/KgK 
T   Temperature of the gas, K 
A   Area, m2 
r   Internal radius of the tank, m 
t   Thickness of the tank wall, m 
   Allowable Stresses, MPa 
e   Joint Efficiency 

h   Hoop Stress 
dx  Length of an element in Cylindrical pressure vessel, m 
m   Mass flow rate of the propellant, Kg/s 

eV   Exit velocity, m/s 
w   Weight flow rate of propellants, N/s 

eP    Exit pressure of the propellant, bars 
Ae   Exit Area, mm2 

eM   Exit Mach number 
eP   Exit pressure, Bars 

   Specific heat ratio 
spI   Specific Impulse, S 
*C   Characteristics velocity, m/s 

cP   Chamber pressure in the nozzle, Bars 
tP   Pressure at throat, Bars 

a0    Sonic velocity of the gas, m/s 
cT   Chamber temperature, K 
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