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Abstract

In recent years, computed tomography (CT) has become a standard technique

in cardiac studies because it provides detailed images of human organs that

may help to improve the diagnosis of the conditions that interfere with the

proper operation of the heart. In this paper, we propose a novel multi-

technique approach to segment endocardium and epicardium boundaries in

CT. The proposal computes visually relevant information of the left ventricle

and its adjacent structures using the Hermite transform and combines it with

active shape models and level sets to improve the segmentation. We use 28

cardiac CT volumes manually segmented by expert physicians to validate

the proposal and four-fold cross-validation to reduce bias. The assessment of

the segmentation is computed using Dice index and Hausdorff distance. In

addition, we introduce a novel metric called “ray feature error” to evaluate

the segmentation performance. The results show that the proposal accurately

discriminates cardiac tissue; thus, it may be useful for the support of diagnosis
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1. Introduction

According to the World Health Organization, cardiovascular diseases

(CVDs) rank number one as cause of death worldwide and were responsible

for 31% of all deaths in 2012 [1]. CVDs are generally characterized by a

blockage of blood vessels that does not allow part of the heart muscle to5

receive blood flow, which may lead to an acute myocardial infarction (AMI)

or a stroke. Although sex, age, and race are related to heart failures; tobacco,

unhealthy diet, and obesity also represent a major risk factor for AMI [2].

The estimated cost for CVDs and strokes in the United States during 2011

reached $320.1 billions; it cost more than any other diagnostic group [3].10

Conditions that interfere with the proper operation of the left ventricle

(LV) are considered forms of CVDs. Some cardiomyopathies may cause LV

to lose its ability to contract or relax normally. As a consequence, the heart

cannot pump or fill with blood. In response, LV compensates for this stress by

modifying its behavior, which creates a hypertrophy that causes enlargement15

and hardening of the LV muscle and progresses to a congestive heart failure

[4]. Follow-up medical checkups and clinical controls increase the probability

of survival of patients [5]. Thus, early detection of LV disorders has gained

attention in the cardiology community [6].

Information about the current state of anatomical structures of the heart20

is needed for an early and accurate diagnosis. The most common modality

for cardiac analysis is ultrasound-echocardiography mainly because of its low

cost and good spatial resolution. Nevertheless, it depends on an acoustic

window that causes large variability. Magnetic resonance imaging (MRI)

has also been used as a reference method [7]. It is useful for the scanning25
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and detection of abnormalities in soft organs and there is no involvement

of any kind of radiation yet it is pretty expensive compared with computed

tomography (CT) [8].

On the other hand, CT imaging provides insights and detailed information

of the heart to support and tailor treatments. Furthermore, heart examination30

using CT generates 2D and 3D high-resolution images throughout the entire

cardiac cycle, which are useful for segmentation tasks.

As a prerequisite for LV visualization, the heart must be oriented in order

to obtain a canonical view: horizontal, long, and short axis views. Short

axis view shows a plane that is perpendicular to the long axis and gives a35

suitable cross-sectional view of both ventricles [6, 9]. On the short axis view,

LV is displayed as an alignment from the base of the heart to the apex and

is particularly appropriate for the assessment of volumetric measurements,

ejection fraction, and myocardial mass (see Figure 1). Strain rate, which is

defined as a change in the myocardial tissue length, can also be evaluated on40

this view [7]. Note that the aforementioned parameters are quantified only

after the segmentation of the LV.

Several techniques have been developed for epicardium and endocardium

segmentation in the short axis view. In [10], Petitjean and Dacher presented

a review of a large group of automated and semi-automated segmentation45

methods that includes those based on atlases, deformable models, pixel

classification, region and edge detectors, and active shape models. However,

these methods are focused on MRI.

Although CT imaging does not provide suitable contrast resolution in com-

parison with MRI, it is far more accessible and has enough spatial resolution50
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to distinguish adjacent organs [11].

To the best of our knowledge, there is a limited number of scientific papers

addressing CT-based heart segmentation. For instance, Funka-Lea et al.

[12] proposed an automatic heart segmentation method in CT using graph-

cuts. Jolly et al. [13] also used graph-cuts and the expectation maximization55

algorithm to segment myocardium in 4D cardiac MRI and CT, but finding the

optimal cost-cut may cause the procedure stops at local minimum. Region

growing and threshold methods have been used to assess the ventricular

function and for quantification of pericardial fat [14, 15]. Nevertheless, these

methods are sensitive to initialization, noise, and image characteristics.60

Ecabert et al. [16] addressed heart segmentation using active shape models

(ASMs) but it requires a large training set in order to compensate problems

such undefined boundaries, noise, and lack of contrast. Zheng et al. [17]

presented an improvement of the previous algorithm to localize heart chambers

with steerable filters. Kang et al [7] presents a review about the most used65

methods on cardiac segmentation. However, classic active contours and level

sets are associated with a minimum, which often leads to over-segmentation

[18].

Due to the complexity of the segmentation tasks, other studies have

suggested that the combination of different techniques may improve organ70

segmentation [19, 20, 21, 22].

In [23] the authors combined well-known segmentation methods with

fitting algorithms to improve the results. Also in [24], the authors used a

combined approach based on local binary patterns (LBPs) and ASMs to

segment the mesencephalon. The results have shown that such a combination75
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outperforms single approaches.

LBPs are also proven to be a suitable tool when they are used in combina-

tion with active contours because LBPs are able to model local structures in

a robust way against illumination changes, while ASMs take advantage of the

velocity of local variations to localize landmarks [25]. In addition, features80

such as texture, color, or morphology should be included in a deeper analysis

in order to enhance the performance of the final segmentation [26].

On the other hand, methods that resemble the human visual system

have increased in popularity because they allow to expand images into local

decompositions that describe intrinsic attributes related to important cues85

and highlight structures useful for segmentation purposes [27]. In particular,

the Hermite transform (HT) [28, 29] has been used successfully as a texture

descriptor [30, 31]. HT is a special case of the Polynomial transform; it is

based on Gaussian derivatives and allows us to compute local orientation

analysis.90

Cardiac segmentation is still a challenging task due to biological aspects

that depend on the organ anatomy diversity and physical issues that image

modalities must face. For example, noise from the respiratory system and

unwanted movements, cardiac synchronization, and differences in anatomy

when a pathology occurs.95

In this paper, we propose a novel multi-technique strategy to segment

LV boundaries with more precision. This strategy includes a combination of

information produced by HT with ASM and LS approaches, therefore, the

proposal takes advantage of the relevant perceptual information about LV

and its adjacent structures to improve the segmentation. This procedure100
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considers endocardium (inner wall) and epicardium (outer wall) delineations.

Although papillary muscles are typically excluded, here we also consider

them in our segmentation approach. Such a consideration may allow to mea-

sure the total volume of blood throughout the entire cardiac cycle. Specifically,

we conduct several evaluations using Dice coefficient, Hausdorff distance, and105

also introduce a novel metric called ”ray feature error” (see Appendix A).

Furthermore, we include a comparison between our proposal and different

schemes based on ASMs. LBPs, and LS.

The remainder of the paper is organized as follows: Section 2 presents the

mathematical foundations; in Section 3 the dataset is described; in Section 4,110

under the hypothesis that combined methods may improve LV segmentation,

we introduce our proposal; in Section 5 the experiments are shown; finally,

Section 6 concludes the paper addressing unresolved challenging problems.

2. Theoretical Background

In this section, we briefly present the mathematical foundations that are115

used in this proposal.

2.1. Active shape models

In [32], Cootes et al. proposed active shape models as a refinement of

statistical deformable models. An ASM consists of an average shape, X̄, that

is derived from a point distribution model (PDM). The goal of the approach120

relies on the idea that it is possible to deform X̄ to some extent in order to

produce certain variability until the ASM meets the boundaries of the object

of interest. The algorithm includes also a gray-level appearance model. It is

divided into the following steps:
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(i) A set of M aligned shapes is built. For each training shape, a vector of125

landmarks is obtained: Si = {(x0, y0), . . . , (xi−1, yi−1)}T . So that, the

average shape is the mean of all landmarks X̄ = 1
M

∑M−1
k=0 Sk.

(ii) Single value decomposition is used to find the PDM parameters. The

least significant eigenvalues and eigenvectors are removed to avoid

singular correlation matrix and data over-fitting [24].130

(iii) The mean shape is deformed within certain limits to recognize a new

shape as follows:

X̂ = X̄ + Pb (1)

where X̄ is the average shape, P is the matrix of the t first principal

components, b is the weight vector, and X̂ is the estimated shape. Eq.

(1) is know as PDM.135

(iv) X̄ is placed close to the object of interest manually. Each landmark in

X̄ is compared against its corresponding profile, which is a line of pixels

that is perpendicular to the landmark. Then, the landmarks are moved

iteratively towards those that obtain the lowest distance to the desired

contour. The process is iterative and stops when a specific number of140

iterations or a threshold is reached.

2.2. Deformable models based on level sets

Nowadays, a multitude of deformable models based on level set exists in

the literature. However, the Chan-Vese model [33] is one of the best known

algorithms.145
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Let u0 be an image such that u0 : Ω → R. Then, the objective of the

Chan-Vese model is to minimize an energy functional and finds a partition

C that forms a border between two regions of interest in u0. The model is

useful when an image does not contain well-defined boundaries; furthermore,

it is less sensitive to noise.150

An extension of this model also exists, called vector-value model [34]

where complimentary information of the image can be considered to obtain

an improved segmentation.

This model minimizes the energy functional using the Euler-Lagrange

equation:155

∂φ

∂t
= δε

[
µdiv

(
∇φ
|∇φ|

)
− 1

N

N∑
i=1

λ+i
(
u0,i − c+i

)2
+

1

N

N∑
i=1

λ−i
(
u0,i − c−i

)2] (2)

c+ and c− are constant vectors that represent the average value of u0 inside

and outside the curve C, respectively. µ and λ+,− allow to tune the object

detector sensitivity. However, this method is computationally demanding

[35, 36].

In this paper, we use a model called fast level set (FLS) [37], which160

is a variation of the classic Chan-Vese algorithm. FLS aims to improve

performance and reduce computational complexity by avoiding the iterative

solution of the partial differential equation, Eq. (2). It has a simple discrete

representation that reduces computational complexity. The idea of FLS is to

represent the zero level set as a list of boundary points that moves towards a165

discrete edge without computing Eq. (2). At the same time, FLS preserves

the advantages of traditional methods.
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Further simplifications come from the the fact that the evolution of FLS

needs binary information that derives into a speed function v(x) as follows:

v(x) =

1 if − λ1(f(x)− c1)2 + λ2(f(x)− c2)2 ≥ 0

−1 if − λ1(f(x)− c1)2 + λ2(f(x)− c2)2 < 0

(3)

170

The algorithm includes a regularization phase whith an anisotropic Gaus-

sian filter applied to the level set function.

FLS is a reliable algorithm. However, the main drawback is that the initial

regions must be well defined in order to create the initial speed.

2.3. Steered Hermite Transform175

Over the last decades, many computational methods have incorporated

simple biological properties of vision. One example is the Hermite transform

[28] that allows performing local orientation analysis by windowing an image

with a Gaussian function. On each window position, an expansion using

orthogonal polynomials is calculated; such an expansion is called steered180

Hermite coefficients (HCs).

The importance of HT relies on the fact that its characteristics mimic re-

ceptive fields of the human visual system and extract relevant image structures

efficiently [38, 39].

HT is associated with a class of orthogonal polynomials called Hermite185

polynomials, Hn(x), defined as follows:

Hn(x) = (−1)nex
2 dn(e−x

2
)

dxn
(4)

where n denotes the order of the polynomial.
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The Cartesian Hermite coefficients, Ln−m,m, can be directly obtained by

convolving the image, I(x, y), with the Hermite analysis functions, Dn, (see

Figure 2(a)) as follows:190

Ln−m,m(x0, y0) =

∫∫
I (x, y)Dn−m,m (x0 − x, y0 − y) dxdy (5)

with Dn(x) = Hn(x) ·G2(x) where G2(x) represents a Gaussian function.

The steered Hermite transform (SHT) is derived from a linear combination

of rotated Cartesian Hermite coefficients [40] (see Figure. 2(b)). The rotation

follows a maximum energy criteria [27]. SHT produces a new and reduced

set of HCs oriented over the angle θ:195

Lm,n−m,θ(x0, y0) =
n∑
k=0

Lk,n−k(x0, y0)Rk,n−k(θ) (6)

where Rm,n−m(θ) =
√

(nm) cosm(θ) sinn−m(θ).

SHT has proven to be effective in texture analysis [40, 27]. It is well suitable

for multi-resolution analysis and can be implemented as a fast algorithm [40].

3. Materials

A dataset of 28 annotated tomographic cardiac studies in healthy subjects200

was taken with a CT Siemens dual source scanner (128 channels) at Hospital

Ángeles Pedregal México. The volumes were captured in signed 12-bits

DICOM format without any personal information.

Each study belongs to a unique subject and consisted of 10 volumes taken

at different times during the electrocardiography (ECG)-synchronized cardiac205

cycle. This method is called ECG-gating where a volume is acquired only

during certain consecutive period of the cardiac cycle; it covers systolic and

diastolic cardiac phases. Our studies start on a final diastolic (relaxing) phase,
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go throughout the systolic (contraction) phase and return to the diastolic

phase, providing images at 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%210

and 90% of the cardiac cycle. The spatial resolution values range from

0.302734×0.302735×1.5 [mm] to 0.433593×0.433593×1 [mm].

Since the volumes are oriented on different angles, an alignment with the

short axis view was performed. Thus, it was necessary to rotate at least two

of the axes and apply translations (see Figure 3). This step was reviewed215

by experienced physicians. Furthermore, due to the fact that modern CT

scanners have a wide range of Hounsfield units (HU), the volumes were mapped

into a more suitable range from -1024HU to 2200HU. Then, a normalization

step was applied to avoid negative values.

4. Methodology220

The objective of this study is to identify with a better precision endocardial

and epicardial walls that contain myocardium.

In our dataset the endocardium possesses good contrast, while the epi-

cardium is not always well-defined. Several attempts to segment such struc-

tures have been made but still better techniques are needed to improve results.225

As mentioned in section 1 deformable models such as ASMs and active con-

tours based on LS have been intensely used on the ventricle segmentation.

We suggest to take advantage of the SHT to characterize important tissue

structures and incorporate them into the ASMs and LS schemes to improve

the segmentation. A block diagram resumes the proposal in Figure 4.230

The first step is to seed a suitable initialization for the ASM and LS

algorithms. This is accomplished by estimating the position of the centroid
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of the LV blood pool using a compactness metric during the diastole phase

(see Figure 5). This is a simple yet effective way to compute the initial pose.

We perform this step on the middle slices of the volumes. A limitation is that235

in the case of failure, the LV cavity center must be manually specified.

4.1. Combining active shape models

We propose to combine ASMs and HCs to improve the segmentation of

the LV. In addition, we made changes to the original ASM algorithm and

explore four methods. For all cases, the initial parameters are set to: number240

of landmarks = 70, normal profile length = 11, and search iterations = 60.

4.1.1. ASM/HCs

First, the HCs using Eq. (6) are computed and then incorporated into the

ASM in a multi-spectral fashion. Namely, every steered Hermite coefficient

vector {Lk|k = 0, . . . , 3} is considered a multi-spectral band. Thus, the245

multi-spectral values of the landmarks and profiles, gi, are defined as follows:

gi =

[
gpL0(xp, yp : L0), gpL1(xp, yp : L1), . . . ,

gpL2(xp, yp : L2), gpL3(xp, yp : L3)

] (7)

where gpLk are the gray values at the position (x, y) that correspond to

the profile p of the HCs L0, L1 L2, and L3 respectively. Here, we use the

Mahalanobis distance to calculate the closest point to the landmark.

4.1.2. ASM/Profile-HCs250

For every landmark and their corresponding profile, the HCs are computed

over a 9×9 pixel window. The final histogram is built by concatenating the
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histograms of all the HCs (see Figure 6).

p (rkLn) =
1

MN
{nkL0 , nkL1 , nkL2 , nkL3} (8)

4.1.3. ASM/Quadratic-HCs

Here, we propose to compute HCs over four square regions around land-255

marks defined by a 7×7 pixel window. According to our results, this method

outperforms ASM/Quadratic-LBP (see Figure 7).

p (rQkLn) =
1

MN
{nQkL0 , nQkL1 , nQkL2 , nQkL3} (9)

4.1.4. ASM/Quadratic-LBP

In [24], the authors proposed to combine ASMs and LBPs by considering

only profiles of landmarks (see Figure 8(a)). Here, we extend the area of260

analysis. During the training phase, LBPs are calculated over four square

regions of 5×5 pixels around the landmarks, then a histogram is built by con-

catenating the four local histograms to describe the corresponding landmark

(see Figure 8(b)). LBP is a simple powerful method to describe textures.

Despite the fact that there are quite a few versions [41], here, we opted for265

the original LBP because of its good performance and simplicity.

In the recognition phase, the previous procedure is performed over all the

profiles. The resulted histograms are compared against the histogram of the

corresponding landmark, so that, the closest point to the boundary is the one

with the smallest histogram distance. Here, we used Chi-square distance. A270

diagram with the description of the method is shown in Figure 8.
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4.2. Combining fast level sets

Level sets are an efficient method for segmenting organ tissue when the

borders possess good contrast as in the case of the endocardium. However,

the main bottleneck is the computation time. Thus, we use fast level sets in275

combination with the Hermite coefficients. After testing with several iteration

values we studied the behavior of the number of iterations vs. the error, in

order to obtain the best value, the final value for number of iterations is 60.

4.2.1. FLS/HCs

The steered Hermite coefficients are used as a simplified vector model that280

defines the initial velocity field as follows:

∂φ

∂t
= δε

[
µdiv

(
∇φ
|∇φ|

)
−

1

4

{
λ+0

(
L0 − c+0

)2
+ λ+1

(
L1 − c+1

)2

+ λ+2

(
L2 − c+2

)2
+ λ+3

(
L3 − c+3

)2
}

+
1

4

{
λ−0

(
L0 − c−0

)2
+ λ−1

(
L1 − c−1

)2

+ λ−2

(
L2 − c−2

)2
+ λ−3

(
L3 − c−3

)2
}]

(10)

where Lx are the HCs, C−x are the average values inside the curve C, and

C+
x represent average values outside the curve.

5. Experimental results

The aforementioned algorithms were validated against manual annotations285

made by expert physicians in 28 studies throughout the entire cardiac cycle

from different healthy subjects.

We used the middle slices of the volumes, so that, every study was com-

posed of ten images, which covered diastole and systole phases. We also identi-

fied each slice with the percentage of the cardiac cycle [0%, 10%, 20%, . . . , 90%].290

In conjunction a total of 280 different images were tested.

15



In order to reduce bias, we used four-fold cross-validation to train the

ASM. Every fold was chosen randomly. Our experiments were divided into

two groups: Endocardium (Section 5.1) and epicardium segmentation (Section

5.2).295

Experiments with fast level sets include an expansion of the resulted

contour that encloses the cavity segmentation. The procedure segments

papillary muscles followed by a convex hull in order to generate a rounded

envelope to enfold them (see Figure 9(a)). This step represents a refinement

of the segmentation that allows us to resemble boundaries manually drawn300

by clinicians.

On the other hand, in the case of ASM-based segmentation, only the

algorithm approximation was used (see Figure 9(b)). Therefore, we compared

blue contours against ground-truth boundaries in red.

Regarding steered Hermite coefficient computation, different window sizes305

were evaluated. However, the window of size of 9 × 9 pixels achieved better

quantitative results.

We performed a quantitative analysis using three metrics: (i) Hausdorff

distance (HD); (ii) Dice index (DI); and (iii) Ray feature error (RFE). RFE

is a novel metric for segmentation evaluation based on ray features [42]. It310

allows us to measure in a simple and robust way shape similarities between

two overlapping objects. The method is introduced in Appendix A. Examples

of the best segmentation cases for endocardium and epicardium are shown in

Figure 10(a) and Figure 10(b), respectively.
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5.1. Endocardium segmentation315

Seven different schemes were computed. Two methods using fast level

sets: FL and FL/HCs; and five methods using ASM-based schemes: ASM,

ASM/HCs, ASM/Profile-HCs, ASM/Quadratic-HCs, and ASM/Quadratic-

LBP.

The best results were achieved with FL and FL/HCs, while ASM/Quadratic-320

LBP presents the worst results. Since level set-based algorithm performance

strongly depends on the number of iterations, then we include a comparison

of the two best algorithms and their behavior when the number of iterations

changes (see Figure 11 and Figure 12). The average results are resumed in

Figure 13, Figure 14, and Figure 15 using HD, DI, and RFE respectively.325

5.2. Epicardium segmentation

Six different approaches were computed: FL/HCs, ASM, ASM/HCs,

ASM/Profile-HCs, ASM/Quadratic-HCs, and ASM/Quadratic-LBP. In this

section we did not include FL because the algorithm did not converge due to

the lack of contrast.330

ASM/Quadratic-HCs outperformed all the methods, whereas ASM/HCs

achieved the poorest results. The average results are resumed in Figure 16,

Figure 17, and Figure 18 using HD, DI, and RFE respectively.

Segmentation of endocardium and epicardium throughout the cardiac

cycle is presented in Figure 19.335

6. Conclusions and future work

In this work, we have implemented a semi-automatic segmentation method

for the left ventricle on the short axis view throughout the entire cardiac
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cycle. Due the tomographic image qualities, we used different approaches

based on region characteristics. Thus, we explored the performance of two340

types of deformable models: Active shape models and level sets. Hermite

features help to improve the segmentation, specially when we deal with noise

and lack of contrast.

We consider fast level sets as a first option when endocardium is segmented

because border tissues are well-defined. Notice from Figure 11 and Figure345

12 that the results when FL is combined with HCs are better because the

information given from HCs controls the speed function.

ASMs in combination with Hermite coefficients also improved the endo-

cardium segmentation. Notice how ASM/Profile-HCs and ASM/Quadratic-

HCs maintain second places on the bar graphs (see Figures 13, 14, and 15)350

mainly because the image expansion with the steered Hermite transform

allows us to extract features based on Gaussian derivatives that highlight

salient visual cues. The steered Hermite transform enhances segmentation

because it adapts to local orientation content.

As we mentioned before, the window of analysis used to compute the355

steered Hermite coefficients was set to 9×9 on all algorithms. We evaluated

different sizes: 5×5, 7×7, and 11×11 with suboptimal results. Nevertheless

the Hermite window size is not related with the LBP window used because

in both cases they belong to a different analysis and also the LBP size was

previously evaluated and taken from the results shown on the paper [24]360

where multiple variations of LBPs were studied.

Regarding epicardium segmentation, fast level sets are not presented in this

study because they never converge due to the lack of contrast. Nevertheless,
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when Hermite coefficients and fast level sets were used in combination, the

epicardium segmentation significant improved in spite of poor contrast.365

Even more, the combination of HCs and ASMs also improved the perfor-

mance on the epicardium, and to this matter, the contribution of the shape

restriction, inherent to the method, also benefits. Important to mention is

that in other variations of ASMs like in the case of adding Hermite coeffi-

cients and LBP information, the algorithm behavior also improved, specially370

in the case of using a local approach such as in ASM/Quadratic-HCs and

ASM/Quadratic-LBP, which suggests that not only adding the coefficients is

enough, but also using this coefficients as part of a regional approach.

From result tables we can infer that in most cases the segmentation

algorithm changes its error performance when dealing with a systole or375

diastole phase.

The segmentation of the left ventricle presented in this work constitutes

a way of understanding the complex heart dynamics. The obtained results

resemble clinical delineations in CT imaging and prove that the methods may

help to reduce bias in diagnosis and treatment procedures.380

In the last part of this study, we introduced a novel method to assess

contour-based segmentation called ray feature error. This method is a simple

way to estimate border errors in a range [0, 1). Since the error is anywhere

between zero and one, it gives an estimation of the magnitude of the error

Future work should include datasets with cardiomyopathies and 3D im-385

plementation of the best methods. Also a further analysis must be conducted

to obtain quantitative LV parameters such as ejection percentage that is

essential for all medical diagnosis.
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A. Ray feature error

Since active contours have become a popular technique frequently used in390

image segmentation, it is necessary to use a metric that allows us to assess

their performance objectively. Here, we propose a fast and robust yet simple

method for quantitative evaluation of contour-based segmentation called

ray feature error (see Figure 20). RFE is based on the original proposal of

ray features [42] where authors compute four image features to characterize395

irregular shapes: Distance difference, distance feature, orientation, and norm

feature.

RFE allows measuring shape similarities between two overlapping objects

as follows:

• Given two closed objects A and B, we define the location CAB as the400

common centroid of both objects.

• It is possible to calculate the distance from the location p in A to the

nearest border in the direction of θ as follows:

dAθ (p, θ) = ‖f(A, p, θ)− p‖ (11)

where f(A, p, θ) returns the location of the nearest border to p in A in

the direction of θ and ‖•‖ is the Euclidean norm.405

• The local error between two objects in the direction of θ is obtained as

the absolute value of the difference of the distances:

E(AB)θ = |dAθ − dBθ| (12)
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• Finally, RFE is computed as:

RFE(A,B) =

∑
θ

|dAθ − dBθ|

DA+DB
(13)

where DX =
∑
θ

dXθ.

REF represents a simple and fast way to compare two overlapping closed410

shapes. It varies within the range [0, 1) and RFE(A,B) = 0 if and only if A

and B have the closure, A = B.
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Figure 1: CT image of the heart displayed using the short axis view where it is possible
to see the right and left ventricles. The red ellipse defines the endocardium, whereas the
blue ellipse defines epicardium. This segmentation resembles typical boundaries drawn by
clinicians.
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(a) (b)

Figure 2: (a) Ensemble of spatial Hermite filters (left) and their corresponding frequency
responses (right). We display orders from N = 0 to N = 4. (b) Cartesian (left) and steered
Hermite coefficients (right). Note that most coefficient energy is concentrated in the upper
row of the steered Hermite coefficients.
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(a) (b)

Figure 3: CT dataset example. The original dataset was captured on different orientations.
Therefore, the slices were preprocessed, so that, all images are aligned with the short axis
view. Images taken (a) before and (b) after the alignment.
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Figure 4: Overview of the experiments conducted in this study. First, feature extraction is
performed and then incorporated into both ASMs and LS methods to improve segmentation
of cardiac walls. The assessment is conducted with three metrics: Hausdorff, Dice, and,
Ray feature error.
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Figure 5: Metric of compactness. The blue numbers indicate the compactness value. A
value of 1 means that the shape of the object is closer to a circle. During this step, we
keep the object with the larger compactness value.
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Figure 6: ASM/Profile-HCs scheme. The diagram shows the construction of the histogram
for each landmark. For a given point in a profile the four histograms of the corresponding
Hermite coefficients are concatenated.
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Figure 7: ASM/Quadratic-HCs scheme. The diagram shows the construction of the
histogram. For a given point, four regions on every Hermite coefficient are considered to
build the histogram.
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(a) (b)

Figure 8: Two different ways to combine ASMs and LBPs. (a) For every landmark, the
LBP histograms are computed on all points of the corresponding profile of length n. (b)
Quadratic-LBP histogram computes LBPs on four square regions of 5 × 5 pixels around
each landmark, then a histogram is built by concatenating the four local histograms one
after another.
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(a) (b)

Figure 9: (a) Endocardium segmentation with fast level sets that includes papillary muscles
(yellow); convex hull (blue); and manual segmentation (red). After cavity segmentation,
a refinement is conducted in order to generate contours that resemble the expert ground
truth. (b) Epicardium segmentation ASM (blue) and its corresponding manual contour
segmentation (red).
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(a) (b)

Figure 10: Segmentation details. Expert contour (red), algorithm result (blue). Best
segmentation cases for (a) HEQ algorithm on the epicardium and (b) FL/HCs algorithm
on the endocardium, it includes the contour (yellow) delineating papillary muscles.
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Figure 11: Dice index endocardium segmentation using FL and FL/HCs methods. The
plots depict performance of the algorithms when the number of iterations are changed.
The values were taken during (a) 0%, (b) 30%, (c) 60%, and (d) 90% of the cardiac cycle.
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Figure 12: Ray feature error endocardium segmentation using FL and FL/HCs methods.
The plots depict performance of the algorithms when the number of iterations are changed.
The values were taken during (a) 0%, (b) 20%, (c) 50%, and (d) 90% of the cardiac cycle.
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Figure 13: Average distances computed between the computed contour and the expert
contour with Hausdorff distance for endocardium segmentation. X-axis represents the
percentages during the cardiac cycle (diastole-systole). Note that lower values indicate
more alike boundaries.
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Figure 14: Average distances between the computed contour and the expert contour with
Dice index for endocardium segmentation. X-axis represents the percentages during the
cardiac cycle (diastole-systole). Note that values close to 1 indicate more similar contours.
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Figure 15: Average distances between the computed contour and the expert contour with
ray feature error for endocardium segmentation. X-axis represents the percentages during
the cardiac cycle (diastole-systole).

46



0 10 20 30 40 50 60 70 80 90

15

20

25

Cardiac cycle [%]

H
au

sd
or

ff
d

is
ta

n
ce

ASM/Quadratic-HCs ASM

ASM/Quadratic-LBP ASM/Profile-HCs

FL/HCs ASM/HCs

Figure 16: Average distances between the computed contour and the expert contour with
Hausdorff distance for epicardium segmentation. X-axis represents the percentages during
the cardiac cycle (diastole-systole). Note that lower values indicate more alike boundaries.
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Figure 17: Average distances between the computed contour and the expert contour with
Dice index for epicardium segmentation. X-axis represents the percentages during the
cardiac cycle (diastole-systole). Note that values close to 1 indicate more similar contours.
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Figure 18: Average distances between the algorithm contour and the expert contour with
ray feature error for epicardium segmentation. X-axis represents the percentages during
the cardiac cycle (diastole-systole).

49



(a) 0% (b) 10% (c) 20% (d) 40%

(e) 50% (f) 70% (g) 80% (h) 90%

Figure 19: Final segmentations of endocardium (red), epicardium (blue), and papillary
muscles (yellow) throughout the whole cardiac cycle.
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Figure 20: Ray feature error method. Given two closed overlapping objects, RFE measures
similarities between them by computing and adding Eθ with θ = {0, . . . , 2π}.
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