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ABSTRACT

Periodic variations in patterns within a group of pixels provide important information about the surface of interest
and can be used to identify objects or regions. Hence, a proper analysis can be applied to extract particular
features according to some specific image properties. Recently, texture analysis using orthogonal polynomials has
gained attention since polynomials characterize the pseudo-periodic behavior of textures through the projection
of the pattern of interest over a group of kernel functions. However, the maximum polynomial order is often linked
to the size of the texture, which implies in many cases, a complex calculation and introduces instability in higher
orders leading to computational errors. In this paper, we address this issue and explore a pre-processing stage to
compute the optimal size of the window of analysis called “texel.” We propose Haralick-based metrics to find the
main oscillation period, such that, it represents the fundamental texture and captures the minimum information,
which is sufficient for classification tasks. This procedure avoids the computation of large polynomials and
reduces substantially the feature space with small classification errors. Our proposal is also compared against
different fixed-size windows. We also show similarities between full-image representations and the ones based
on texels in terms of visual structures and feature vectors using two different orthogonal bases: Tchebichef and
Hermite polynomials. Finally, we assess the performance of the proposal using well-known texture databases
found in the literature.
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1. INTRODUCTION

Traditionally, texture is defined, in a broad sense, as periodic-like behavior patterns within a spatial region in
an image.1 It is also a property related to material, roughness, or the shape of a surface. Furthermore, it
provides important information that is suitable for further processing in: synthesis and perception,2,3 remote
sensing,4,5 medical imaging,6,7 image retrieval and classification,8 among others. The latter is still an open and
important problem that deals with the correct identification of a given texture from a set of different classes.
According to Petrou et al.,9 approaches to image retrieval and classification can be categorized into four groups:
(i) statistical methods analyze the spatial distribution of pixels and extracts a set of statistics; (ii) structural
methods represent textures by large primitives and placement rules; (iii) model-based methods estimate
parameters using a model that resembles the texture of interest; and (iv) spatial-frequency methods use a
set of filters to highlight and localize salient features.

Texture may appear in many different ways, so that, classification algorithms should also consider the purpose
for which a texture is used. Commonly, texture classification can be divided into two stages. During the
first step, extraction of salient characteristics is computed to create a representation that acts as a texture
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signature. Such a representation must be robust to environmental changes including both geometrical and
photometric transformations. In this regard, some methods in the literature are focused on the extraction of
texture characteristics; for instance, Haralick10 introduced the gray-level co-occurrence matrices (GLCM) and
Cross et al.11 used Markov random fields to create texture models. Other approaches are local binary patterns12

and Gabor filters.13 On the other hand, the goal during the second step is to assign a texture sample to a class
that best describes the sample.

The continuous development of texture analysis techniques has allowed to increase the information that can
be obtained from a region of interest. Specifically, feature extraction with orthogonal bases has gained attention
due to the ability of the bases to describe textures by projecting an image over a set of functions that describes
the oscillation behavior of all the elements that constitute the image. First, Mukundan et al.14 proposed
discrete Tchebichef moments (DTMs) to describe textures and overcome limitations of bases such as Zernike
and Legendre.15 Later, Marcos et al.16 analyzed DTMs and classified large textures, whereas Nava et al.17

suggested Tchebichef polynomials to describe emphysematous tissue. Furthermore, Estudillo et al.18 explored
the use of Hermite polynomials to characterize textures, while Yang et al.19 discussed the advantages of Hermite
polynomials on texture characterization.

However, the aforementioned methods have limitations as they calculate a single feature vector for the whole
texture or use a fixed-size window of analysis. These approaches do not consider the size of the texel, which
implies the computation of high-order moments and leads to numerical instabilities due to the fast oscillations
of polynomials.20,21 In this paper, first, we propose a novel technique to find the window of analysis or texel
that captures on both X- and Y-axes the fundamental pattern, which is able to describe the complete image of
interest. This methodology avoids the computation of higher-order polynomials and reduces substantially the
feature space. We perform experiments to validate our proposal using a texture dataset composed of 40 images.
Second, we conduct texture classification using the resulted texels and compare our results against well-known
algorithms using fixed-size windows on the Brodatz22 database using 34 textures.

Next, we review the fundamentals of the orthogonal moments and briefly introduce Tchebichef and Hermite
polynomials in the following Section 2. Our proposal is detailed in Section 3. The validation of the texel
size procedure is presented in Section 3.1, while texture classification results are shown in Section 4. Finally,
conclusions are discussed in Section 5.

2. ORTHOGONAL BASES

Bases play a prominent role in the analysis of vector spaces. They are used in both finite- and infinite-dimensional
cases and allow to represent the signal of interest through projections by using a subset of vectors. We can
define an orthogonal basis {tpq} as a group of vectors P (x) that satisfies a relation of orthogonality or weighted
orthogonality as follows: ∫

Pp(x)Pq(x)dx = hδpq (1)

where h = ‖Pp(x)‖‖Pq(x)‖ is the product of the norms of the polynomials Pp(x) and Pq(x) and δpq = 1 if p = q,
otherwise δpq = 0.

On the other hand, orthogonal moments are scalar quantities that characterize a function of interest in
terms of the basis {tpq} and possess the ability to represent texture features with the minimum amount of
redundancy.15 They are computed as projections between the texture f(x, y) and the basis {tpq} within the
region Ω : Tpq =

∫∫
Ω
tpq(x, y)f(x, y) dxdy where p and q are non-negative integers and s = p + q represents the

order of the moment. Tpq measures the correlation between f(x, y) and the corresponding polynomials tpq(x, y).21

The discrete version holds most of the useful properties embedded in the continuous analysis. The implemen-
tation of the discrete orthogonal moments does not require any numerical approximation or large computational
development since the basis is orthogonal over the domain of image coordinate space. Thus, the expansion of a
given texture in the discrete domain onto the basis of {tpq} is calculated according to the following formula:

Tpq =
1

ρ(p,N)ρ(q,N)

N−1∑
x=0

N−1∑
y=0

f(x, y)tp(x)tq(y) (2)
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Figure 1. Orthogonal bases. (a) Tchebichef polynomials of order tp from 0 to 4. (b) Hermite analysis functions of order
n from 0 to 4.

where N is the size of the texture and ρ(n,N) is a normalization factor.

2.1 Discrete Tchebichef moments

The introduction of the discrete Tchebichef moments (DTMs) was made by Mukundan et al.14,20 They are
based on the scaled Tchebichef polynomials tp that can be generated using the following recurrent relation, (see
Figure 1(a)):

t0 (x) =
1√
N
,

t1 (x) = (2x+ 1−N)

√
3

N (N2 − 1)
, and

tp (x) = K1xtp−1 (x) +K2tp−1 (x) +K3tp−2 (x)

(3)

with x = 0, 1, . . . , N − 1. K1 = 2
p

√
4p2−1
N2−p2 , K2 = 1−N

p

√
4p2−1
N2−p2 , and K3 = p−1

p

√
2p+1
2p−3

√
N2−(p−1)2

N2−p2 are the

coefficients that ensure stability in case of large order polynomials.

Marcos et al.16 suggested that the correlation between the basis and the texture can be observed in terms of
the magnitude of the moment M . The larger the moment, the higher the correlation when repetitive patterns
occur at a similar rate to some polynomials. Therefore, it is possible to build a texture signature as follows:

M(s) =
∑
s=p+q

|Tpq| (4)

with s = 1, ..., 2N − 1. The moment of order s = 0 is discarded because it does not contain information about
the texture. Eq. (4) evaluates similarities between the texture and the varying patterns implemented by DTMs
yielding a 2N-1 vector that describes the texture attributes.

2.2 Steered Hermite transform

Hermite polynomials resemble receptive fields in the human visual system23 and have proven to be highly effective
in texture analysis.18,24 They can be interpreted as local generic operators in the scale-space representation and
are constructed as the product of Hermite polynomials and a Gaussian window,25 (see Figure 1(b)).

Let fn(x) be a function that locally represents a signal f(x) in terms of the windowed function V (x) expanded
onto the orthogonal polynomials Gn(x) at xi. If Gn represents the Hermite polynomials Hn(x); then, Eq. (5)
defines the Hermite transform:

fn(xi) =

∫
x

f(x)Gn(xi − x)V 2(xi − x)dx (5)
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Figure 2. Steered Hermite coefficients at different scales of analysis and two orders of expansion. (a) with scale Hσ = 4
and (b) with scale Hσ = 80.

The discrete version can be obtained by convolving the signal with the Hermite analysis functions defined by
dn(x) = HnV

2 where V is a Gaussian function.

dn(x) =
(−1)n√

2nn!

1

Hσ
√
π
Hn

(
x

Hσ

)
e−x

2/H2
σ (6)

where n is the order of the Hermite polynomials Hn and Hσ is the standard deviation of the Gaussian function.

In this study, we use the steerable Hermite filters24,26 that are a class of rotated Hermite filters and are used
to define the Steered Hermite transform (SHT) as follows:

fθn−m,m(x0, y0, θ) =

n∑
k=0

fn−k,k(x0, y0)αn−k,k(θ) (7)

where αn−m,m(θ) approximates a binomial window rotated θ degrees, n−m and m represent the corresponding
orders in X- and Y-axes, respectively.

The Hermite filters can adapt to the local orientation providing a reduced representation because they con-
centrate most of the visual information along the coefficients fθn,0(x0, y0, θ), (see Figure 2). Following the idea of
the scale-space representation,24 we used four different moments n at four different scales Hσ to generate four
groups of coefficients, (see Figure 2).

The feature vector is built18 by concatenating the mean and the standard deviation of the steered Hermite
coefficients of order n at every scale Hσ as follows:

F =
{
µHσ
n , σHσ

n

∣∣n = 0 , . . . N ;Hσ = n . . . , N
}

(8)

where µHσ
n and σHσ

n represents the mean and the standard deviation of the coefficient fθn,0(x, y, θ,Hσ), respec-
tively.

3. FINDING THE WINDOW OF ANALYSIS

The aim of this study is to propose a methodology to find the smallest window of analysis that captures the basic
oscillating pattern of the texture also know as texel. So that, the texel is able to describe the complete texture.
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Figure 3. Texel size estimation process for the three methodologies proposed.

For this purpose, we used GLCM,10 which is a well-known technique for computing spatial and statistical features.
It defines the relative position of pairs of pixels using a distance d and orientation θ. With this information, a
matrix C(d, θ) is built with elements cij = {hij |i, j = 1, . . . , 8}. hij represents the probability to find a pair of
pixels i, j separated by the distance d on the direction of θ.

In this way, each matrix emphasizes salient structures according to pixels variations. The size of the matrices
depends on the number of gray levels in the texture. Eight levels and four orientations are commonly used.
We computed correlation, contrast, energy, and homogeneity in every matrix C(d, θ) to generate characteristic
curves tθ that describe the texture oscillation. This analysis was performed with d = [2, . . . , N2 ] and θ = [0, π2 ]
that produced four 256-length feature vectors.

In order to find the texel’s size, we proposed to apply the cepstral analysis (CA)27 to the curves tθ. CA
is a form of spectral analysis and is used in speech processing and telecommunications28,29 and echo signal
detection of earthquakes.30 Although CA is a hardly new technique in signal processing, it can be a useful tool
in computer vision.31 CA relies on the fact that the Fourier transform of a pitched signal has a number of
regularly spaced peaks. Such peaks represent the harmonic spectrum of the signal. When the logarithm of the
magnitude spectrum is applied, the peaks are reduced and the amplitude is represented in a more suitable scale.
After applying the inverse Fourier transform, the maximum value D indicates the main period of signal, (see
Figure 4).

CA is defined as the inverse Fourier transform of the logarithm of the magnitude spectrum of a signal as
follows:

CAt = F−1 {log (|T |)} (9)

where T is the Fourier transform of the function tθ, which is built by concatenating the correlation values of all
matrices C(d, θ).

Since the CA is performed on two directions, we obtain two values D that describe the size of the texel on
X- and Y-axes. Therefore, the texel is rectangular.

In order to validate our proposal, we compared CA against two other methods: Four metrics and correlation,
(see Figure 3).

� Four metrics: In this method, we concatenated correlation, contrast, energy, and homogeneity to produce
four curves tθ, separately. The power spectrum is applied to each curve and the value D is chosen by a
majority rule.
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Figure 4. Cepstral analysis (CA) applied to a periodic signal. (a) The original signal. (b) The logarithm of the magnitude
spectrum and (c) the salient signal in the quefrency domain.

� Correlation: This method measures the gray level linear dependence between two pixels using marginal
distributions. Here, we built the curve tθ using correlation values of all matrices C(d, θ). The power
spectrum is applied to tθ and the maximum value D indicates the main period of signal.

D values indicate the number of pixels per cycle of texture oscillation. Since both Tchebichef and Hermite
polynomials use square windows, we only consider the maximum value D of X- and Y- axes because the maximum
value captures the slower oscillation period. Hence, we generate square texels.

3.1 Texel size validation

Next section shows the experiments we have conducted to validate our proposal. First, we constructed a dataset
composed of 40 textures from Brodatz,22 Vistex,32 and Klette33 databases. Each original texture of 512×512
px. was cropped to extract a basic pattern that was tiling to produce a new texture. In this way, we know the
texel size of the pattern employed in each texture. Every new generated texture has different texel size.

We evaluated three different degradations: (i) Blurring, we simulated this degradation using a Gaussian
low-pass filter with σ = 0.5 and repeated this degradation L = {5, 10, 15, 20, 25, 30} times; (ii) Gaussian
noise, we considered five different levels of variance σ2 = {0, 0.2 , 0.4, 0.6, 0.8, 1} and; (iii) impulsive noise, it
was also evaluated according to noise occupancy. 100% represents a totally corrupted image.

Finally, the mean error was computed in terms of error percentage for each level of distortion. The results
(see Figure 5) show that the texel estimation based on CA achieved better results and is the most robust model
to degradations.

4. CLASSIFICATION RESULTS

We are interested in comparing the performance of texture classification using texels in order to reduce the
feature space. One motivation is to avoid the computation of high-order moments that introduce instability,
increase the number of samples needed to classification, and cause the course of dimensionality.

We generated different texture sets using 34 non-rotated textures of 512×512 px. from the Brodatz database.
We only selected textures with a periodic behavior and created independent subsets for training and testing
tasks. Each texture was divided into two non-overlapping patches of 256×512 px. Then, each generated set was
further divided into patches of sizes 128×128, 64×64, and 32×32 using a sliding window. In addition, another
set was created using our proposal based on texels, so that, every image in this set has different window size of
analysis.

We conducted experiments to estimate the size of the texels on both training and testing sets. In the ideal
case, texels must be the same size in both sets, Table 1 shows the 34 textures with their respective texel in terms
of pixels per side. The average error between training and testing sets is 1.91 pixels.

We found there is a relationship between the feature vectors computed on texels and those calculated on the
complete images. Regarding DTMs, although the length of the feature vector is linked to the window of analysis,
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Figure 5. Results for the three methodologies on textures with degradation. Results on the first column correspond to
examination on the Horizontal axis, while second column correspond to examination on the Vertical axis.

DTMs applied to texels produce scaled feature vectors compared to the ones obtained on complete images, (see
Figure 6(b)). On the other hand, the length of the feature vectors generated by SHT is independent of the size of
the window of analysis. Nevertheless, the length of the feature vectors is associated to the order of expansion and
the number of scales used. Here, we compute four orders with four scales. Thus, 32-length feature vectors are
obtained. Figure 6(c) shows a comparison between feature vector of a complete texture and the corresponding
representation using texels.

Finally, we performed texture classification using DTMs (Eq. 4) and SHT (Eq. 8) using three fixed-size
windows and texels. Since DTMs feature vectors are not the same size, we include a interpolation stage to set
all the feature vectors to 126 bins. A basic k-NN classifier with k = 1 and city-block distance were used. A
summary of classification results is shown in Figure 7. The correct classification rate (CCR) was also assessed.
CCR is a ratio between the number of texture patches correctly classified and the total number of patches, (see
Table 2).
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Figure 6. (a) Complete image texture D11 from Brodatz, divided by a grid of texels. (b) Tchebichef feature vector corre-
sponding to the complete texture and the first texel and (c) feature vectors corresponding to steered Hermite coefficients.

Table 1. Texel sizes for training and testing data. Values at each column indicate the number of pixels per side of the texel
window computed for the corresponding training and testing subimages. DX value indicates the number of the Brodatz
texture.

Texture | Texel train | Texel test

D1 59 64

D10 63 64

D101 30 31

D102 30 29

D105 34 38

D11 63 63

D110 53 58

D111 38 46

D112 50 39

D15 64 58

D16 24 23

D17 53 53

D18 46 46

D20 26 26

D21 22 22

D28 23 22

D3 24 25

Texture | Texel train | Texel test

D34 33 33

D4 61 61

D52 26 26

D53 31 30

D55 38 40

D56 64 64

D6 30 29

D64 64 61

D65 54 55

D67 64 64

D74 45 57

D76 24 24

D77 24 24

D8 64 63

D81 30 30

D86 56 56

D87 50 50

Table 2. Correct classification rate for DTM’s and SHT. The columns indicates the size of window.

Basis | Texel | 128 | 64 | 32

DTM 88.0 93.0 83.4 67.3

SHT 91.3 96.3 94.5 83.3
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Figure 7. First row displays confusion matrices of (a) 128x128 pixeles, (b) 64x64, (c) 32x32 and (d) texel sizes for DTMs.
Second row display confusion matrices of (e) 128x128 pixeles, (f) 64x64, (g)32x32 and (h)texel sizes for SHT.

5. CONCLUSIONS

In this paper, we proposed a novel method to compute texels that are later used to characterize a full image
texture. This methodology incorporates the use of orthogonal bases such as Tchebichef and Hermite polynomials
for classification tasks. We prove that the usage of the correlation metric in GLCM is able to capture the
main texture oscillation. Furthermore, a validation process was carried out by comparing three methodologies,
and we can show that the CA analysis has shown more tolerance to degradations. We showed there is a close
relationship between representation of the complete image and the scheme based on texels, so that, the orthogonal
projections of texels are similar to the obtained with full texture images and preserve the sufficient information
for classification.

Texture classification using fixed-size windows has shown good results, however in many cases, it captures
redundant information. Also the number of computational operations are related to the size of the window of
analysis. Therefore, it is possible to represent textures using a minimum amount of information with actually
small error rates. This methodology may be applied in other scenarios.
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