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ABSTRACT

Medical image watermarking is an open area for research and is a solution for the protection of copyright and
intellectual property. One of the main challenges of this problem is that the marked images should not differ
perceptually from the original images allowing a correct diagnosis and authentication. Furthermore, we also aim
at obtaining watermarked images with very little numerical distortion so that computer vision tasks such as
segmentation of important anatomical structures do not be impaired or affected.

We propose a preliminary watermarking application in cardiac CT images based on a perceptive approach that
includes a brightness model to generate a perceptive mask and identify the image regions where the watermark
detection becomes a difficult task for the human eye. We propose a normalization scheme of the image in order to
improve robustness against geometric attacks. We follow a spread spectrum technique to insert an alphanumeric
code, such as patient’s information, within the watermark. The watermark scheme is based on the Hermite
transform as a bio-inspired image representation model.

In order to evaluate the numerical integrity of the image data after watermarking, we perform a segmentation
task based on deformable models. The segmentation technique is based on a vector-value level sets method such
that, given a curve in a specific image, and subject to some constraints, the curve can evolve in order to detect
objects. In order to stimulate the curve evolution we introduce simultaneously some image features like the gray
level and the steered Hermite coefficients as texture descriptors.

Segmentation performance was assessed by means of the Dice index and the Hausdorff distance. We tested
different mark sizes and different insertion schemes on images that were later segmented either automatic or
manual by physicians.

Keywords: Perceptive watermarking, Hermite transform, deformable models, texture segmentation.

1. INTRODUCTION

Digital multimedia and communication system has increased the distribution of medical data in a digital format,
because in this way is easy to support diagnosis tasks related to computer tomography images, also it is possible
to exchange databases between hospitals. But these advantages have introduced new risks for inappropriate use
of medical information, given the ease with which digital content can be manipulated or copied for illegal uses.
It is thus necessary to develop security mechanisms that guarantee protection of medical contents, specially their
integrity.1 Medical image watermarking is an open area for research and is a subcategory of image watermarking
that is a solution for the protection of copyright and intellectual property.2 Watermarking in digital images
consists of embedding information into the code related to the author or copyright holder. The quality of a
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watermarking technique and the corresponding resultant image is measured in terms of robustness, legibility,
imperceptibility, and ambiguity.3 In the case of medical images, watermarking has been proposed as a mechanism
to improve their security. In this area is important to take account that images have special requirements,
i.e., watermarked images should not differ perceptually from their original, because the clinical reading of the
images must not be affected. Also reversibility of the watermarking algorithm is an important requirement
to ensure lossless detection of both host image and the watermark at destination for correct diagnosis and
authentication.4 The watermark can be patient’s information, patient’s code number, doctor’s number code,
etc., and it is important to take account robustness and imperceptibility aspects, because robustness implies
introducing stronger image distortions that compromise the watermark imperceptibility and the perceptual
changes in the original medical image. There are many medical application scenarios for digital watermarking:

1. Integrity control, to verify that the image has not been modified without authorization, in order to preserve
their diagnostic value.

2. Authenticity, that is to verify that the image is really what the user supposes it is.

3. Access control, digital watermarking provides an efficient access control mechanism and enforces medical
confidentiality protection, by embedding patients personal/examination data into medical images.

4. Indexing, digital watermarking has the potential of being an alternative for indexing, archiving, and man-
aging medical data in hospital information systems. Watermarks can play the role of keywords, based on
which efficient archiving and easy data retrieval from querying mechanisms can take place.

Many watermark systems have been developed either in the spatial domain and the transform domain. In
the spatial domain5–7 the watermark is embedded into the LSBs (Least Significant Bits) of the original image.
But the inserted information maybe easily detected and modified using computing analysis, so this technique is
not robust and rarely survives various attacks. In the transform domain the watermark is embedded into the
transform coefficients of the original image. Transforms most used are the Discrete Fourier Transform (DFT), the
Discrete Wavelet Transform (DWT), the Discrete Cosine Transform (DCT), the Contourlet Transform.8–11 Some
models use the Human Vision System (HVS) characteristics in order to obtain good results of imperceptibility
and robustness, taking advantage of the sensitivity of frequency, luminance and masking contrast. A watermark
that exploits the perceptual information is named a perceptual watermark.10, 11 Transform domain techniques
that use perceptual masks based on HVS properties have proved to be more robust since they resist geometric
and filter attacks. In the medical area different watermarking scheme has been proposed. For example Wu et
al12 proposed a scheme that divides an image into blocks and each block is embedded with the authentication
message and the recovery information of other blocks. In this scheme is carried out tampering detection. If
tampering is detected, recovery information is extracted from the corresponding block. Also reversible image
watermarking algorithms had been proposed.13, 14 Jasni et al.14 developed a reversible watermarking where
hash function is used to protect the ROI (Region of Interest). Hash value of the whole image is embedded in
the RONI (Region Of Non Interest) as the watermark. The beauty of ultrasound images and all other medical
images is that the LSBs for all pixels in the RONI are zeroes. The watermark is reversed by simply setting the
LSBs of RONI back to zero.

In this work we develop a watermarking application in Computed Tomography (CT) cardiac images using
the Hermite transform as bio-inspired image model that incorporates a brightness model and a normalization
scheme of the image to improve robustness against geometric attacks. Image normalization15, 16 is well known in
computer vision and pattern recognition areas. With this process the original image must be transformed into
another one in which the orientation and scale of objects in the image are fixed, thus the effects of a geometric
attack are minimize. We use a brightness model in order to build a perceptive mask that helps determining the
image positions where it is more likely to hide information without producing perceivable artifacts, i.e. this model
exploits the limited sensibility of the human visual system to noise detection in areas of high or low brightness.
Moreover, we performed a segmentation of left ventricle in order to evaluate how the watermarking algorithm
modifies the visual information, as well as the data integrity, and consequently harm the correct diagnosis by
physicians. This segmentation is carried out using a deformable model approach that incorporates gray level

Proc. of SPIE Vol. 9287  928717-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 02/05/2015 Terms of Use: http://spiedl.org/terms



and texture image descriptors. For this purpose, we used the steered Hermite coefficients to describe important
image structures such as edges and oriented patterns.

The Hermite transform17, 18 is an image representation model that mimics some of the more important
properties of early vision such as local processing and the Gaussian derivative models of receptive fields. We
used the Hermite transform to embedded the watermark into the transform coefficients of the original image.
A rotated version of the Hermite transform provides a very efficient representation of oriented patterns which
enables an adaptation to local orientation content at each window position over the image, indicating the direction
of one-dimensional pattern. The steered Hermite coefficients were used as texture descriptors in the deformable
model to handle the curve evolution and allowing left ventricle segmentation.

We evaluated both watermark and segmentation performances. In the first case we used objective metrics
to evaluate the insertion and extraction of the watermark process, and verified that watermarked images do not
considerably differ perceptually nor numerically from their originals. For the segmentation algorithm, we used
two metrics to compare differences between the segmentation of the original and watermarked images.

This paper is organized as follows: Section 2 is dedicated to introduce the cartesian and steered Hermite
transform. In Section 3 the proposal watermarking algorithm is explained. The segmentation method used is
reported in Section 4. Section 5 is dedicated to the experiments, where in Section 5.2 we present results about
insertion and extraction watermark and in Section 5.3 we shown the results of segmentation of left ventricle in
original and marked images. Finally, we conclude this study in Section 6.

2. HERMITE TRANSFORM

The Hermite transform (HT) is an image description model17, 18 that is obtained by performing a convolution of
the image L(x, y) with the filter functions Dm,n−m(x, y):

Lm,n−m(x0, y0) = L(x, y)⊗Dm,n−m(x, y) (1)

where Lm,n−m(x, y) are the Hermite coefficients, m and (n−m) denote the analysis order in x and y direction
respectively with n = 0, 1, . . . ,∞, m = 0, 1, · · · , n and Dm,n−m(x, y) are the Hermite filters which are deter-
mined by an analysis window v2(x, y) that expands the local information in terms of a family of polynomials
Gm,n−m(x, y).

Physiological experiments suggest using overlapping Gaussian windows separated by twice the standard
deviation σ, in agreement with the overlapping receptive fields of the human visual system.19 The polynomials
that are orthogonal with respect to the Gaussian window function are defined by:

Gm,n−m(x, y) =
1

√
2nm!(n−m)!

Hm

(x
σ

)
Hn−m

( y

σ

)
(2)

where Hn represents the generalized Hermite polynomials.

The Hermite filters Dm,n−m(x, y) = Dm(x)Dn−m(y) are separable because the Gaussian window is rotation-
ally symmetric and can be computed by:

Dn(x) =
(−1)n√
2nn!

1

σ
√
π
Hn

(x
σ

)
exp

(
−x2

σ2

)
(3)

In Fig. 1(left) we show the Hermite coefficients for the left ventricle of a cardiac CT image for N = 3
(n = 0, 1, . . . , N and m = 0, 1, · · · , n).

The recovery process of the original image (inverse Hermite transform - IHT) consists of interpolating the
Hermite coefficients through the proper synthesis filters:

L̂(x, y) =

∞∑

n=0

n∑

m=0

∑

x0,y0∈S

Lm,n−m(x0, y0)Pm,n−m(x− x0, y − y0) (4)
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Figure 1. The Hermite coefficients N = 3 (left) for the left ventricle of a cardiac CT image

[
L0,0 L1,0 L2,0 L3,0

L0,1 L1,1 L2,1

L0,2 L1,2

L0,3

]

.

The steered Hermite coefficients N = 3 (right)
[
L0,0 l1,θ
l2,θ l3,θ

]
.

where Pm,n−m(x, y) =
Gm,n−m(x,y)v2(x,y)∑

(x0,y0)∈S v2(x−x0,y−y0)
for m = 0, ..., n and n = 0, ...,∞.

Steered Hermite filters belong to a class of filters that are rotated copies of each filter, constructed as a
linear combination of a set of basis filters.20 The orientation feature of the Hermite filters explains why they are
products of polynomials with a radially symmetric window function (Gaussian function). The N + 1 Hermite
filters of order n form a steerable basis for each individual filter of order n. Because of this characteristic, Hermite
filters at each position in the image are adapted to local content.21 The resulting filters can be interpreted as
directional derivatives of a Gaussian function.

A steered version of Hermite transform is obtained by projecting the Hermite coefficients towards an orienta-
tion angle θ. The Hermite filters at each position in the image are projected to an angle given by the orientation
of the local image feature:21

lm,n−m,θ(x0, y0) =

n∑

k=0

Lk,n−k(x0, y0)gk,n−k(θ) (5)

where gm,n−m(θ) =

√( n

m

)(
cosm (θ)

)(
sinn−m (θ)

)
are the cartesian angular functions of order n that express

the directional selectivity of the filter and lm,n−m,θ(x0, y0) are the steered Hermite coefficients.

In order to obtain the steered Hermite coefficients, the Hermite coefficients are rotated toward the estimated
local orientation, according to a criterion of maximum oriented energy at each window position. For local 1D
patterns, the steered Hermite transform is an efficient way to compactly describe image features into a smaller
number of coefficients (l0,n,θ(x, y) = ln,θ(x, y)) that represent the profile of the pattern perpendicular to its
orientation (θ).21

In Fig. 1(right) we show the steered Hermite coefficients for the cartesian coefficients of Fig. 1(left).
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3. WATERMARK ALGORITHM

The watermark method is inspired in the algorithm proposed by Ping, et al.15 Originally, the algorithm uses
the Discrete Cosine Transform (DCT) and to insert the watermark use spread spectrum method. Instead, we
use the Hermite transform and include a perceptive mask in order to assure the invisibility of the mark. The
process consist of:

1. The original image is normalized. A normalization procedure is aimed to transform an image and each of
its affine transforms into a unique standard form, called the normalized image, and which meets a given
set of image moment values. Therefore, normalization is a way to compensate for any affine geometric
distortion and ensure invariance property to the normalized image.15 We use the normalization parameters
to normalize the perceptual mask (or template).

2. A binary pseudo random sequences is generated, as signature patterns using a private key as seed.

3. The alphanumeric code, such as patient’s information, is convert to binary code, to use as watermark.

4. A watermark signature is created, modulating the watermark message with the patterns generated.

5. The watermark signature is converted into a 2D signature considering the watermarking strength.

6. Generate Hermite coefficients with null values. We assume that predefined Hermite sub-bands are water-
marked. The watermark signature is inserted in those sub-bands. An inverse Hermite transform (IHT) is
applied in order to obtained a watermark prototype.

7. A perceptive mask is built. The algorithm proposed by Ping et al.15 originally uses a template of white
pixels to generate the final watermark. We build our mask based on the argument that there is a reduced
visual sensitivity to noise in high resolution bands, in areas with high or low brightness and in texture
areas. We include a brightness model that considers the multichannel mechanism that the human vision
system uses to build the psycho-physical perception of brightness.22 Schouten indicated that brightness
representation only depends on the objects properties, in other words, brightness is invariant to light
source properties and the observation conditions. For the construction of the luminance-to-brightness
map, Schouten divided the algorithm in three stages: scale representation, assembling the scaling signals
and local adjustment of the brightness scale. The perceptive mask is then created using the brightness
map and calculating the luminance masking from the Hermite approximation coefficients.23 Finally the
mask is normalized using the parameters obtained in step 1.

8. The final watermark is generated using the perceptive mask and the watermark prototype.

9. An inverse normalization procedure is applied to the final watermark so that it has the same size as the
original image.

10. The final watermark is embedded into the original image additively.

In order to extract the watermark, we use a correlation detector. First we apply the normalization procedure
to the watermark image. Then we decode the watermark message in the normalized image, as follows:

1. Regenerate the watermark patterns using the same key.

2. Apply the HT to the normalized image.

3. Convert the Hermite coefficient marked into a 1D vector.

4. Decode the alphanumeric watermark bit by bit, according to (Eq. 6):

Watermark =

{
1 if correlation = 0
0 otherwise

(6)
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4. SEGMENTATION METHOD

Deformable models and their implementation by level sets proposed in24 have been widely used in medical image
segmentation.25 Deformable models rely on the idea that a curve from a given image, subject to some constraints,
can evolve in order to detect objects. According to the image features used to handle the curve evolution, they
can be categorized as edge based,26 region based27, 28 and model shape based.29, 30 An extension of the method
for vector-value images was proposed by Chan and Vese31 and applied to color images. Additionally, Paraggios
et al.32 applied it to supervised texture segmentation problems. The vector value extension allows to introduce
different kinds of features at the same time without requiring any prior knowledge. For example, Brox et al.33

introduced simultaneously texture features, gray level and optic flow for the segmentation process.

To evaluate how the watermark algorithm modifies the visual information and the data content in marked im-
ages, we performed a segmentation using the Chan Vese vector-value image model.31 The vector-value extension
allows introducing different kinds of features at the same time without requiring any prior knowledge.

An important step in the algorithm is to construct the vector features. Different strategies are possible; one
way is to take each vector component and apply a classical Gaussian kernel. However, the major problem with
this approach is the attenuation of edges due to the smoothing of Gaussian Kernels that leads to an inaccurate
results.

In this paper, we chose a nonlinear diffusion strategy for building the vector features that are introduced into
the level set equation as in.33 We introduced simultaneously gray level and steered Hermite coefficients for the
nonlinear diffusion in the segmentation process as was presented in:34

∂tFi = div

(

g

(
∑N

k=1

∣
∣
∣Fk

∣
∣
∣
2
)

∇Fi

)

∀i = 1, · · · ,N . (7)

where F is an evolving vector channel and N is the total number of vector channels. The joint diffusivity
allows that an edge in one channel also inhibits smoothing in the others channels. For the initial condition

F :=
(
L(x, y), l(n,θ)

)
, where L(x,y) is the intensity of image and l(n,θ) are the steered Hermite coefficients for

n = 0, ..., N , with N as the order maximum of decomposition.

5. RESULTS

5.1 Materials

For our experiments, we used cardiac computed tomography studies from 2 patients. Such studies were performed
on a CT Siemens dual source scanner with 128 channels. Each study contains 10 volumes that correspond to
time percentage of the cardiac cycle divided by 10. None of them contain personal information.

The original volumes were aligned with the traditional short axis view by applying two spatial transformations
using the Amira R© software. The parameters of each transformation were obtained by visualizing the data volume
and rotating the axial and the coronal axis.

5.2 Watermarking results

First we present the results on watermark insertion and extraction. Then we evaluated our method comparing
the results obtained between perceptive mask and template. To identified the robustness algorithm we probe it
with and without normalize process. We use two images from different patients at 0% of cardiac cicle (Fig. 2)
and three different alphanumeric codes as watermark (80 bits, 104 bits and 140 bits).

To evaluate the algorithm performance we used two objective metrics by relating the original image L and
the distorted image L̂ both the same size (X × Y ):

1. PSNR (Peak Signal to Noise Ratio in dB):

PSNR = 10 log10

(
(M− 1)2

1
XY

∑
X,Y (L(i, j)− L̂(i, j))2

)

(8)

where M is the total number of gray levels of the image.
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(a) Patient 1 (b) Patient 2

Figure 2. Patients’ images.

Table 1. Metrics values using a template, and a perceptual mask with and without (Perceptual*) normalization process
(patient 1).

Watermark
Normalization

Template Perceptual Perceptual*
(bits) PSNR [dB] MSSIM PSNR [dB] MSSIM PSNR [dB] MSSIM

80 47.7055 0.9847 42.6609 0.9885 58.6617 0.9996
104 46.5680 0.9802 41.4967 0.9852 57.4961 0.9995
140 45.1338 0.9728 40.2018 0.9800 56.1818 0.9994

Table 2. Metrics values using a template, and a perceptual mask with and without (Perceptual*) normalization process
(patient 2).

Watermark
Normalization

Template Perceptual Perceptual*
(bits) PSNR [dB] MSSIM PSNR [dB] MSSIM PSNR [dB] MSSIM

80 43.7202 0.9663 41.9955 0.9870 57.6887 0.9996
104 42.5831 0.9568 40.8697 0.9836 56.5192 0.9994
140 41.1910 0.9419 39.4276 0.9777 55.0211 0.9992

2. MSSIM (Mean Structure Similarity Index) is given by Eq. 9:

MSSIM(L, L̂) =
1

M

M∑

j=1

SSIM(lj, l̂j) (9)

where lj , l̂j are the images contents at the jth local window and M is the number of local windows of the

image. If l, l̂ are two images with not negative values, SSIM is given by Eq. 10:

SSIM(l, l̂) =
(2μlμl̂ + C1)(2σll̂ + C2)

(μ2
l + μ2

l̂
+ C1)(σ2

l + σ2
l̂
+ C2)

(10)

μl and μl̂ are their respective averages, σl, σl̂ and σll̂ are the standard deviations and covariance, respec-
tively. C1 C2 are constants to avoid instability when the denominator is close to zero.35

Table 1 shows the metric values using a template, and a perceptual mask with and without (Perceptual*)
normalization process.

According to the results (Table 1), it is clear that better PSNR values are obtained using a template than
using a perceptual mask with normalization. However, it is important that watermarked images do not differ
perceptually from their originals, which can be assessed through the MSSIM metric. The best MSSIM value’s
are obtained using a perceptual mask.

In Table 2 we show the metrics values from patient 2.

In all cases the watermark was recovered successfully. The method without normalization process shows high
PSNR and MSSIM values, which indicates that it is possible to embed and extract the watermark and the image
will remain mostly unchanged.
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(a) (b) (c) (d)

Figure 3. Segmentation of left ventricle (patient 1) without mark (a) and segmentation with a 140-bit watermark and
three different insertion masks: (b) template, (c) perceptual mask with normalization, and (d) perceptual mask without
normalization.
Table 3. Dice index and Hausdorff distance for template and perceptual mask with and without (Perceptual*) normaliza-
tion (patient 1).

Watermark
Normalization

Template Perceptual Perceptual*
(bits) Dice Hausdorff Dice Hausdorff Dice Hausdorff

80 0.9891 3.6711 0.9956 1.1513 0.9961 1.0840
104 0.9888 3.1363 0.9951 1.1513 0.9956 1.0920
140 0.9291 48.0000 0.9947 1.1171 0.9949 1.1189

5.3 Segmentation results

In Fig. 3(a) we show the segmentation the original image (patient 1) without mark and in Fig. 3(b-d) the
segmentation of watermark images with a 140-bit mark using a template and perceptual mask with and without
normalization process respectively.

To evaluate the segmentation performance we use the Dice index and the Hausdorff distance. The Dice metric
dD is a measure of contour overlap between the segmentation reference (A) and the segmentation result (B) in
the watermarked image:

dD =
2× (‖A ∩B‖)
(‖A‖ + ‖B‖) (11)

The Dice value ranges between 0 and 1. Values close to 1 indicate more similar contours.

Moreover, the Hausdorff distance, dH , measures how close a point from a reference set is from another point
of the segmentation set in a metric space, in our case between two sets of points, P and Q (or boundaries). It
is defined as follows:

dH (P,Q) = max {d (P,Q) , d (Q,P )} (12)

where d (P,Q) = min {‖pmax − q‖ |pmax ∈ max {‖p− q‖} , q ⊂ Q, p ⊂ P}; intuitively, d (P,Q) finds the p point
from the set P that is the farthest from any point in Q and measures the distance from p to its closest neighbor
in Q. Hausdorff minimal values indicate more alike boundaries in a range from 0 to 100.

For patient 1 we used as the reference set of points the segmentation result on original image without
watermark and then we compared it with the watermarked images. In Table 3 we present the segmentation
measures for a template and perceptual mask with and without normalization (Perceptual*) for patient 1.

In these results we noticed that both metrics show that the segmentation is not significantly different when
using watermarks of different sizes. The Dice index gives values very close to 1 while Hausdorff distance gen-
erates very small values in most cases. Nevertheless using a perceptual approach, visual quality improves the
segmentation in the marked images. It should be noted that using a template the Hausdorff distance increases
considerably for large size marks.

In order to quantitatively evaluate the automatically detected endocardiadium, for patient 2 we computed
the Dice index and Hausdorff distance using a manual segmentation by physician (Fig. 4(a)) where papillary
muscles are included. In Fig. 4(b-d) we show the segmentation results using different mark sizes and the three
mask insertion approaches.
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(a) (b) (c) (d)

Figure 4. Segmentation of left ventricle (patient 2) by physician (a) and segmentation with a 144-bit watermark and
three different insertion masks: (b) template, (c) perceptual mask with normalization, and (d) perceptual mask without
normalization.

Table 4. Dice index and Hausdorff distance for template and perceptual mask with normalization (patient 2).

Watermark
Normalization

Template Perceptual Perceptual*
(bits) Dice Hausdorff Dice Hausdorff Dice Hausdorff

80 0.888 31.575 0.892 34.139 0.892 32.973
104 0.889 31.57 0.911 27.893 0.892 32.973
140 0.907 27.851 0.912 27.659 0.892 33.015

In Table 4 we present the segmentation measures for a template and perceptual mask with and without
normalization.

The results in Table 4 show that approach perceptual with normalization is more robust that use a template
or without normalization when we use large masks.

6. CONCLUSIONS

In this work, we have implemented a perceptive approach based on the Hermite transform to digital image
watermarking using a brightness model and an image normalization applied to cardiac CT images. The Hermite
transform is an image representation model that performs a decomposition of the images into relevant visual
patterns and mimics some of the more important properties of early vision such as the behavior of retinal ganglion
cell, e.g. local processing, and the Gaussian derivative models of receptive fields.

The proposed method allows inserting a perceptually invisible watermark using a brightness model to generate
a perceptive mask and identify the image regions where the watermark detection becomes a difficult task for the
human eye. In order to generate the mask, the following elements were considered: luminance to brightness map,
contrast sensitivity and light adaptation threshold. We used the Hermite transform to embed the watermark
into the transform coefficients of the original image.

In order to improve robustness against geometric attacks, we propose the use of image normalization tech-
niques that transform the original image so that the orientation and the scale of the objects are fixed. For this
purpose, we employ geometric moments and invariants. In order to determine the effectiveness of our algorithm,
we tested the algorithm using a template of white pixels instead of a perceptual mask.

The PSNR and MSSIM metrics show that marked images using a perceptual mask preserve the visual
information and do not differ perceptually from their originals. In all cases the watermark was successfully
recovered. We performed tests with different mark sizes in order to evaluate the capacity of the proposed
method to insert patient’s information.

In order to evaluate the data integrity on the watermarked images and how the visual information is modified,
we evaluated the segmentation performance on these images. We used the steered Hermite coefficients as texture
descriptors into a vector-value level sets framework using a joint nonlinear anisotropic diffusion of the gray
level and the steered Hermite coefficients. The Dice index and Hausdorff distance show that there is a closer
correspondence in the segmented watermark images when using a perceptive mask, even when the size of the
mark increases. In all cases the left ventricle was detected correctly.
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