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Abstract. Colorectal cancer is a major cause of mortality. As the disease pro-
gresses, adenomas and their surrounding tissue are modified. Therefore, a large
number of samples from the epithelial cell layer and stroma must be collected and
analyzed manually to estimate the potential evolution and stage of the disease.
In this study, we propose a novel method for automatic classification of tumor
epithelium and stroma in digitized tissue microarrays. To this end, we use dis-
crete Tchebichef moments (DTMs) to characterize tumors based on their textural
information. DTMs are able to capture image features in a non-redundant way
providing a unique description. A support vector machine was trained to classify
a dataset composed of 1376 tissue microarrays from 643 patients with colorec-
tal cancer. The proposal achieved 97.62% of sensitivity and 95% of specificity
showing the effectiveness of the methodology.
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1 Introduction

Colorectal cancer (CRC) is the third most common type of cancer worldwide with more
than 1.4 million cases registered in 2012 [4]. As population aging continues growing
more people are susceptible to CRC: around 70% of cancer mortality occurs among
adults over 65 years [7]. Furthermore, almost half of the population will develop at least
one benign intestinal tumor during its lifetime [10]. In most cases, CRC begins as a be-
nign polyp or adenoma, which is characterized by accumulation of cells at the epithelial
layer of the gastrointestinal track. A small fraction of polyps evolves through accumu-
lation of genetic alterations yielding carcinomas. Such a sequence is called adenoma-
carcinoma sequence (ACS) [17].

Cancer progression through lymphatic or blood vessels (metastasis) to the liver and
lungs is the principal cause of death and occurs in up to 25% of patients [2]. In con-
trast to ACS, colorectal metastasis is not strongly associated with alterations in any
genes but with the healthy cells that surround the tumors. Such cells, called stroma,
are usually composed of connective tissue. They are essential for the maintenance of
both normal epithelial tissue and their malignant counterpart. Oncogenic changes in



Fig. 1. Samples of colorectal cancer in digitized tissue microarrays (only red channel) from the
database used in [12]. First row shows pure tumor epithelium and second row shows tumor stroma
extracted from a paraffin block.

the epithelial tissue modify the stromal host compartment, which is responsible for es-
tablishing and enabling a supportive environment and eventually promotes growth and
metastasis. Hence, stroma plays a fundamental role in allowing development and pro-
gression of the disease [1], [2], [8].

Tissue microarrays (TMAs) are the gold standard for determining and monitoring
the prevalence of alterations associated with colorectal carcinogenesis [19]. This proce-
dure collects small histological sections from unique tissues or tumors and places them
in an array to form a single paraffin block, (see Fig. 1). Typical TMAs may contain up
to 1000 spots that are used for simultaneous interpretation. Hence, the large amount of
information is the main drawback of the manual assessment and the motivation of this
study. In addition, the identification of regions of interest depends on visual evaluation
of histology slide images by pathologists, which introduces a bias.

Texture analysis has been used in segmentation of epithelial tissue in digital his-
tology previously. For instance, Wang [20] proposed a Bayesian estimation method
for classification of tumoral cells in tissue microarrays of lung carcinoma. Tumor and
stroma from prostate tissue microarrays were classified in [9,11,3]. Foran et al. [6] de-
veloped a software platform to compare expression patterns in tissue microarrays using
texton-based descriptors and intensity histograms. To the best of our knowledge, auto-
mated analysis of CRC in tissue microarrays is relatively new. Linder et al. [12] used a
methodology based on local binary patterns (LBPs) [18] and contrast information called
(LBP/C) to classify tumor epithelium and stroma. Here, we use the same dataset and
propose a novel descriptor based on discrete Tchebichef polynomials.

Next, we present a detailed description of the methodology. A comparison between
our proposal and LBPs was also performed using k-NN and support vector machine
(SVM) as classifiers.

2 Material and methods

We propose a methodology composed of three stages. First, for each image, feature
extraction is performed on overlapped sliding windows using discrete Tchebichef poly-
nomials. Then, all the local Tchebichef vectors from a single image are grouped and
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Fig. 2. Set of scaled Tchebichef kernels. (a) 1-D discrete Tchebichef polynomials of order s from
0 to 5. (b) Ensemble of 2-D discrete Tchebichef polynomials. The magnitude of the moment of
order s is calculated by summing of the correlation indexes, p,q so that s = p+ q. Graphically,
the sum is carried out diagonally.

characterized by statistic moments in order to build a single vector of 234-bins length
that can be viewed as the texture signature. Finally, a SVM is trained using a subset of
656 samples, whereas the performance of the proposal is assessed on an independent
set of 720 tissue microarray samples.

2.1 Dataset

We used the dataset provided and described in detail in [12], which consists of 1376
samples of tissue microarray of tumor epithelium and stroma from 643 patients with
CRC annotated by expert pathologists, (see Fig. 1). The samples were divided into
two parts. The training subset is composed of 656 images: 400 samples representing
tumor epithelium and 256 representing tumor stroma. A separate subset, consists of
425 images of tumor epithelium and 295 images that represent tumor stroma, was used
as validation set. The dataset does not contain private information of patients.

Prior to extract Tchebichef feature vectors, the tissue samples were scaled by a 0.5
factor, the mean was subtracted, and only the red channel was used. Blue and green
channels were discarded because they do not have relevant information.

2.2 Discrete Tchebichef Moments

Generally speaking, moments are scalar quantities that characterize a function of inter-
est. They are computed as projections between the function f (x,y) and a polynomial
basis rpq(x,y) within the region Ω : Tpq =

∫∫
Ω

rpq(x,y) f (x,y)dxdy where p and q are
non-negative integers and s = p+q represents the order of the moment. Therefore, Tpq
measures the correlation between the function f (x,y) and the corresponding polynomial
rpq(x,y) [5].



Discrete Tchebichef moments (DTMs) were originally proposed by Mukundan et
al. [15] to overcome limitations of conventional orthogonal moments such as Zernike
and Legrendre. DTMs are based on a normalized version of discrete Tchebichef poly-
nomials scaled by a factor that depends on the size of the image N, (see Fig. 2(a)).

The scaled discrete Tchebichef polynomials, t̂p, can be generated using the follow-
ing recurrent relation:

t̂0 (x) =
1√
N
,

t̂1 (x) = (2x+1−N)

√
3

N (N2−1)
, and

t̂p (x) = K1xt̂p−1 (x)+K2t̂p−1 (x)+K3t̂p−2 (x)

(1)

with x = 0,1, . . . ,N−1.

K1 =
2
p

√
4p2−1
N2−p2 , K2 =

1−N
p

√
4p2−1
N2−p2 , and K3 =

p−1
p

√
2p+1
2p−3

√
N2−(p−1)2

N2−p2 are the co-
efficients that ensure stability in case of large order polynomials [14].

DTMs are computed by projecting a given image, I(x,y), onto the basis of t̂p. The
moment Tpq is calculated according the following formula:

Tpq =
N−1

∑
x=0

N−1

∑
y=0

t̂p(x)̂tq(y)I(x,y) (2)

Tpq quantifies the correlation between the image, I(x,y), and the kernel t̂p(x)̂tq(y), see
Fig. 2(b).

One way to understand this relationship is that the greatest the magnitude of Tpq,
the greatest the similarity between the given image and the polynomials t̂p that oscillate
at similar rates to the image. Hence, it is possible to build a feature vector, M(s), that
captures similarities along X- and Y-axes as follows:

M (s) = ∑
p+q=s

∣∣Tpq
∣∣ (3)

with s = 0,1, . . . ,2N−2.
M(s) provides a unique description in the expanded Tchebichef space by capturing

oscillating behavior of all textures that constitute the image.

2.3 Feature Extraction

Feature extraction with DTMs was introduced by Marcos et al. [13] on synthetic tex-
tures and used by Nava et al. [16] on emphysematous tissues. However, they compute
a single vector using the whole image, which implies calculating high-order moments.
According to [15], large Tchebichef vectors may introduce an error due to stability in
the oscillations. Here, we present a modification based on sliding windows by imple-
menting the following steps:

The scaled images are processed using a window of 40×40 pixels; the accuracy was
used as the performance measure to evaluate the optimal window’s size. The window
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Fig. 3. DTM signatures. (a) Average and (b) standard deviation vectors obtained from tumor
epithelium and stroma tissues.

is moved from the upper-left corner to the lower-right corner by 20 pixels per iteration,
this means an overlap of 50%.

The corresponding M(s) vectors are calculated on each window position. After this
process is conducted over all possible windows, we obtained a set of vectors Mi(s)
where i indicates the window position. Since the images in the dataset are not the same
size, then i varies among images. The feature vector is build as follows:
∀i ∈ the given image:

t̄ = [µ(Mi(1)), σ(Mi(1)), β (Mi(1)), . . . ,
µ(Mi(2N−2)), σ(Mi(2N−2)), β (Mi(2N−2))]

(4)

where µ and σ are the mean and the standard deviation respectively. The operator β is
the defined as: β (x) = σ(x)

κ(x)1/2 and κ is the kurtosis.

Eq. (4) represents a novel way to describe texture characteristics. Note that the mo-
ment of order s = 0 is not used because it represents the mean value of the image. Fur-
thermore, correlated coefficients between tumor epithelium and stroma are discarded
by applying the p-test. The test reflects statistically significant differences (p < 0.001)
between both groups, the features with a p-value greater than the threshold p are not
included. The average Tchebichef signatures for both classes are shown in Fig. 3.

2.4 Classifier

A SVM and a k-NN classifier were implemented to validate our proposal. The classifiers
were trained using a subset of 656 images and a different set with 720 images was
used in the validation stage. Both image datasets were processed in the same manner
described previously and the accuracy was the measure to assess the performance of the
proposal.
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Fig. 4. Final classification results. Epi. and Strom. stand for tumor epithelium and tumor stroma,
respectively. (a) DTMs with SVM. (b) DTMs with k-NN; and (c) LBPs with SVM.

3 Experimental results

Using a standard linear SVM classifier, our proposal labeled incorrectly 25 images out
of 725, that means an accuracy of 96.53%. 15 images were wrongly classified as ep-
ithelium, whereas 10 samples were labeled as tumor stroma. We also computed the
performance using k-NN with k = 11; the number of neighbors was not relevant in the
classification performance. The best results are shown as confusion matrices in Fig. 4.

For comparison purposes, the LBP descriptor described in [18] was implemented.
For each image, on every window position a feature vector was built by concatenating
LBP8,1 and LBP16,2 histograms. Then, all the LBP feature vectors from a single image
were grouped and characterized by the first two statistic moments: mean and standard
deviation. Furthermore, we include results reported in [12] where the same database
was used. Linder et al. propose a combined LBP/C descriptor to characterized the tumor
texture.

We computed the ROC curve for our proposal, (see Fig. 5). The area under the ROC
curve (AUC) is 0.9847, such a value is pretty similar to the AUC reported by Linder et

al. We also calculated the F1-Score = 2 ∗ Precision∗Sensitivity
Precision+Sensitivity and all the results are

summarized in Table 1.

4 Conclusions

We propose a novel method based on discrete Tchebichef Moments to classify tumor
epithelium and stroma in a large database of colorectal cancer collected from TMAs.

Table 1. Comparison and classification results. All the data are expressed in (%). Bold values
represent the best results.

Method | Precision | Sensitivity | Specificity | F1-Score

DTMs/SVM 96.47 97.62 95 96.94
DTMs/KNN 94.12 94.79 91.61 94.45
LBPs/SVM 90.35 89.1 85.81 89.72
LBPs/KNN 91.53 83.48 85.83 87.32
LBP/C [12] 95.53 99.02 93.87 97.19



Fig. 5. ROC curve for DTMs/SVM proposal. The achieved AUC is 0.9847.

We have shown that Tchebichef moments possess the ability to describe textures by
projecting the image of interest onto a polynomial basis where its sinusoidal-like be-
havior provides a suitable representation of all the textures that constitute the image.
The sliding window approach improves the descriptor stability by discarding high-order
moments and avoids the curse of dimensionality.

As in [12], our proposal achieved an accuracy rate above 96% (only 2 images below
the LBP/C descriptor). Our method classifies better the epithelium tissue than LBP/C.
Nevertheless, it is not possible to claim that there is a better performance because the
difference between accuracies is only 0.28%. DTMs performance is about 6% better
than LBPs, which indicates that our proposal captures texture variations in a better
way. Furthermore, our proposal does not use contrast information, therefore, it is not
necessary to quantize the images to get the local variance.
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