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Abstract—Chronic obstructive pulmonary disease is a non-
reversible disorder characterized primarily by a dominant em-
physema or bronchitis. Since early treatments can help to control
the symptoms, the quantification of emphysema has become an
important topic. Here, we introduce a novel procedure to quantify
emphysematous lesions using an ensemble of features based
on log-Gabor filters, mean difference technique, and intensity
values. This set captures both spatial and frequency variations
and provides a suitable description of lung tissue. Leave-patient-
out cross-validation was employed on the computed tomography
emphysema database to validate our proposal. The sensitivity and
specificity achieved were 91.22% and 95.48%, respectively. Such
results have demonstrated that the proposed methodology could
assist in quantification of emphysema.

Keywords—Emphysema, feature ensemble, log-Gabor filters,
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I. INTRODUCTION

According to the Global Initiative for Chronic Obstructive
Lung Disease, chronic obstructive pulmonary disease (COPD)
is a common, preventable, and treatable disease. COPD is
characterized by a persistent airflow limitation, which is caused
by a mixture of diseases of small airways and parenchymal
destruction. It is emerging as a worldwide health problem and
is expected to be responsible of 10% of the World’s mortality
by 2030 [1].

Emphysema is the most common manifestation of COPD.
The condition causes permanent abnormal enlargement of air
spaces by dilatation of the alveoli and destruction of their
walls [2]. Three subtypes of emphysema can be recognized:
panlobular (PL) that appears predominantly at the lower half
of the lungs; centrilobular (CL), which is the most common
type of emphysema, it begins in the bronchioli and spreads
peripherally; and paraseptal (PS) that is localized around the
pleura.

Computed tomography (CT) imaging is an important aid
in the accurate detection and diagnosis of emphysema because
it offers high-contrast and high-resolution details of lungs and
airways [3]. Detection of emphysema is performed by counting
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Figure 1. First row shows lung tissue ROIs from the computed tomography
emphysema database [6]. Second row shows red squares drawn and magnified
by a factor of 4. (a) NT; (b) CL; and (c) PS.

the number of voxels below a threshold. Typically, around -950
Hounsfield units [4]. However, this method fails to detect the
pathology at an early stage and does not allow to discriminate
pathological sub-phenotypes of emphysema [5]. Hence, a more
powerful quantitative analysis of emphysematous tissue is
a crucial key to determine the stage of COPD and enable
individualized treatments.

Several attempts to characterize emphysematous tissue
have been made but still new techniques are constantly tested
in order to improve results. In [6], Sørensen et al. described
emphysema using a combined model based on local binary
patterns (LBPs) [7] and intensity histograms on small patches.
Nava et al. [5] introduced an extended model based on complex
Gabor filters and LBPs. In [8], emphysema features were
computed using Markov random fields, whereas Azim et al. [9]
used a probabilistic model and the kernel Fisher method with
relative success. All the aforesaid methods used the computed
tomography emphysema database to validate their proposals.
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In addition to the abnormal low attenuation areas in lung
parenchyma, it is necessary to consider textural appearance
to refine the differential diagnosis. Emphysematous tissue
contains more edges and homogeneous attenuation areas than
normal tissue (NT) [6], CL produces small circular areas
of lung destruction [10], and PS causes a relatively reduced
attenuation at subpleural areas [11], (see Fig. 1).

The aim of this study is to propose a model that captures
both textural variations and intensity information. Hence, an
approach for emphysema characterization using log-Gabor
filters (LGFs) [12], mean difference technique (MDY) [13],
and intensity histograms is introduced.

Since micro structures may appear at different scales, it is
necessary a multi-scale analysis. LGFs provide a description of
spatial variations in specific orientations and frequency bands.
Furthermore, they also possess a strong correlation with the
human visual system that makes them suitable for detecting
salient edges. On the other hand, MDY is a powerful tool
used to describe the complexity of 1D signals and represents
a general approach for texture analysis. Here, it is used as
a measure of emphysema variations. Finally, the intensity
information was included as a histogram.

This proposal combines the three descriptors into a feature
ensemble and provides a robust description of emphysema by
taking advantage of a time-frequency representation and spatial
information.

II. COMPUTED TOMOGRAPHY EMPHYSEMA DATABASE

In order to validate the proposal, we used the database
provided in [6] that consists of 168 non-overlapping ROIs
of size 61 × 61 pixels, annotated in 25 subjects manually
and divided into three groups: healthy non-smokers, smokers
without COPD, and smokers with moderate or severe COPD.
These ROIs belong to three patterns: NT (59 ROIs from 8
subjects), PS (59 ROIs from 10 subjects), and CL (50 ROIs
from 7 subjects). The NT ROIs were extracted from healthy
non-smokers, whereas the CL and PS samples were extracted
from both smokers with and without COPD. Note that the
database excludes PL samples.

We followed recommendations in [6] and considered sam-
ples of size 31× 31 by removing pixels on all sides, so that, the
size fits the physical extent of emphysema within the secondary
lobule.

III. METHODOLOGY

Feature extraction is performed through LGF, MDY, and in-
tensity histograms. Then, principal component analysis (PCA)
is applied to reduce dimensionality and remove redundant
information. The proposal uses the most significant compo-
nents. The parameters are optimized based on the classification
accuracy. Finally, a random forest classifier is trained using
leave-patient-out cross-validation.

A. Log-Gabor filters

LGFs [12] are an improved version of the classic Gabor
filters. They are defined in the frequency domain as Gaussian
functions that are shifted from the origin. The natural logarithm
applied to the radial component minimizes the DC offset and
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Figure 2. Log-Gabor filter bank. The contours are shown at full-width at
half-amplitude. The scales σρ are separated by one octave.

distributes the frequency bands in a better way, namely, the
overlapping between bands is minimized, (see Fig. 2).

A 2D log-Gabor filter G(ρ,θ) in the frequency domain can
be expressed as:
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where ρ =
√

x2 + y2 and θ = tan−1(y/x) represent the polar
coordinates, u0 is the central frequency, θ0 is the orientation
angle, and σρ and σθ characterize the scale- and angular-
bandwidth respectively.

According to [14], we build a filter bank composed of 24
filters distributed over four scales: {2i−0.5

√
(2)|i = 1, . . . ,4}

and six orientations: { kπ

6 |k = 0, . . . ,5}. Even scales were
rotated by a constant factor consisting of the half a distance
between filter centers to better cover the Fourier plane, (see
Fig. 2).

Given an emphysematous ROI, r(x,y), its log-Gabor fil-
tered response is:

Ju0,θ0 (x,y) = F−1
{

F {r (x,y)}Gu0,θ0 (ρ,θ)
}

(2)

where F represents the Fourier transform.

To overcome the rotation variance drawback, for each scale,
i = 1, . . . , 4, we propose to keep the filtered response with the
maximum energy as follows:

Ki (x,y) = MAX
{

Ji,θ (x,y) ,∀θ
}

(3)

The first four central moments: mean, µ , standard devia-
tion, σ , skewness, γ , and contrast, C = σ/κ0.25 where κ is
kurtosis, are used to construct the log-Gabor feature vector,
LG.

LG =[µ(K1(x,y)), σ(K1(x,y)), γ(K1(x,y)),C(K1(x,y)), . . . ,
µ(K4(x,y)), σ(K4(x,y)), γ(K4(x,y)),C(K4(x,y))]

(4)
therefore, the LG vector is 16-dimensional.
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Figure 3. Schematic illustration of the Difference Y with respect to a single
point A given a scale S. The difference is determined by the points B and C.

B. Mean difference technique

Originally proposed by Andrle [13] to describe the com-
plexity of geomorphic lines; it has been further extended by
Huang and Esbensen [15].

The algorithm unfolds the image into a one-dimensional
signal. Since the simplest row-by-row unfolding does not allow
to trace structures and keep spatial relations, we performed this
operation using a spiral path. Such an unfolding method allows
to analyze textures in a similar manner to LBPs. Then, N points
are selected randomly along the unfolded image. Here, due to
the size of the images, we set N = 400. For each point, circles
of radius S are constructed and the intersections with the signal
are computed, see Fig. 3.

The MDY is calculated by averaging all individual differ-
ences that belong to a single scale. By repeating this operation
for all possible scales S= 1, . . . ,M/2 where M is the size of the
image, it is possible to build a feature vector that characterizes
the signal periodicity. The parameter S introduces the notion
of scale in the domain of the signal. The firsts scales may
concentrate noise information, whereas large scales may not
contain neighboring information. Hence, we only used scales
S = {3, . . . ,8}:

MDY (S) =
1
N

N

∑
i=1
|Ci−Bi|S (5)

where C and B are corresponding intersections with the signal.
The final vector is 6-dimensional.

Another complementary measure that can be extracted with
this technique is the mean angle although it was not used in
the present study.

C. Intensity histogram

According to [5], [6], [16], it is necessary to incorporate
intensity information because emphysema is manifested as low
attenuation regions and intensity histograms represent different
distributions for each type of emphysema. In our experiments,
we evaluated several histogram lengths: {8,16,32}. However,
the best results were achieved with 16-length histograms.

D. Feature ensemble

After computing the individual descriptors, a 38-length
ensemble is built by concatenating the three different feature
vectors one after another. This methodology is simple, yet
effective and similar to [17] where the authors combined first
and second order features using a fractal descriptor.

Theoretically, the more the features, the greater the ability
to discriminate images. However, not all the features are
important. Therefore, dimensionality reduction is performed
using PCA. This reduction represents a normalization stage to
prevent over-fitting. Here, we keep the first seven components
that have the largest variance. This parameter was optimized
based on the classification accuracy, namely, we tested and
classified all the components. After the seventh component,
the final classification rate declined around 5% and shows an
oscillatory behavior. Hence, the reduced ensemble allows to
characterize the emphysema information in a better way.

E. Classification

It is important that the method generalizes to unseen
patients, thus, we applied leave-patient-out cross-validation
and used random forest as a classifier.

Random forest classifier splits up the data in t trees. The
idea is to grow a large number of trees, and at each node, get
a different set of predictions and vote. We run the ensemble
into the forest and obtained a prediction per tree. All those
predictions are averaged together in order to get the predicted
probabilities p of each class across every different tree. In
general, the more trees the better the results. However, the
classification rate decreases as the number of trees increases.
According to [18], typical values of trees may vary from 16 to
128. We used t = 32, and we have found experimentally that
increasing it further does not noticeably improve the accuracy.

IV. EXPERIMENTAL RESULTS

The dataset used here has been previously reported in [6]
where the authors achieved an accuracy of 79.2% using LBPs,
61.3% with Gabor filters, and 95.2% with a combined model
based on LBPs and intensity histograms. The methods were
classified using k-NN. In [5], an average accuracy of 89.39%
using LBPs, Gabor filters, and k-NN was reported. Azim et
al. [9] used a kernel Fisher method and achieved an accuracy
of 86.97%, whereas in [19], the authors shown an accuracy of
69.33%.

Our proposal achieved an accuracy of 91.07%. This result
is shown in a confusion matrix in Fig. 4(a). We also included
a classification using k-NN with k = 1, see Fig. 4(b).

It is worth saying that the reason that the NT patches were
misclassified as PS is because most of the tissue in those NT
ROIs belongs to the pleura. Since PS is localized around the
pleura, the likelihood of being a diseased tissue is greater than
being a healthy tissue.

Finally, we carried out a comparison between our proposal
and all the single descriptors, the results are summarized in
Table I.

V. CONCLUSIONS

We proposed a new approach for quantifying emphysema
patterns based on an ensemble of features that allows to en-
code multi-scale textural characteristics and attenuation values.
We also introduce the MDY descriptor that captures textural
variations of emphysematous tissue. The classification results
obtained as confusion matrices demonstrated that the feature
ensemble can be used as a global descriptor. Based on the



Table I. COMPARISON AND CLASSIFICATION RESULTS OF EMPHYSEMATOUS TISSUE. SINCE THE STATISTICAL MEASURES ARE APPLICABLE TO A
BINARY CLASSIFICATION, THEN WE COMPUTED ONE-VERSUS-ALL, AS IN [5]. ALL THE DATA ARE EXPRESSED IN (%). BOLD VALUES REPRESENT THE BEST

RESULTS.

Method
Random Forest K-NN

Precision Sensitivity Specificity Precision Sensitivity Specificity

LGF 84.36 84.24 91.84 81.71 80.75 89.98
MDY 56.21 58.48 79.62 56.70 54.88 77.72
Histograms 66.65 66.89 83.74 65.77 65.20 82.73
Ensemble 91.27 91.22 95.48 80.51 80.64 90.12
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Figure 4. Confusion matrices of the proposed ensemble using (a) random for-
est and (b) k-NN classifiers. NT Normal tissue, CL Centrilobular emphysema,
and PS Paraseptal emphysema.

results, it is clear that emphysema must be characterized by
a combination of features because texture or intensity are not
enough to describe the disease, (see Table I). Furthermore, the
proposal has shown its ability to differentiate paraseptal from
centrilobular emphysema regardless the classifier.
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Kuhnigk, C. L. Vecchia, M. Zompatori, and U. Pastorino, “Increased
mean lung density: another independent predictor of lung cancer?”
European Journal of Radiology, vol. 82, no. 8, pp. 1325–1331, 2013.

[5] R. Nava, B. Escalante-Ramı́rez, G. Cristóbal, and R. S. J. Estépar,
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