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ABSTRACT

The left ventricle (LV) segmentation plays an important role in a subsequent process for the functional analysis
of the LV. Typical segmentation of the endocardium wall in the ventricle excludes papillary muscles which leads
to an incorrect measure of the ejected volume in the LV. In this paper we present a new variational strategy
using a 2D level set framework that includes a local term for enhancing the low contrast structures and a 2D
shape model. The shape model in the level set method is propagated to all image sequences corresponding to the
cardiac cycles through the optical flow approach using the Hermite transform. To evaluate our strategy we use
the Dice index and the Hausdorff distance to compare the segmentation results with the manual segmentation
carried out by the physician.
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1. INTRODUCTION

Due to the fact that segmentation in medical images is still a challenging problem, numerous algorithms have
been proposed. Such algorithms aim to solve this important stage for the subsequent higher-level analysis. For
instance, characterization of an organ in an image. Segmentation methods can be divided in a general manner
into two categories: those requiring strong prior knowledge and those requiring weak or no prior knowledge. The
first one are more robust but require a learning phase which depends on the quality of the samples, making them
less general. On the other hand, the second ones are in most cases less robust but they can be adapted to a
more general scenarios.

Deformable models and their implementation by level sets proposed by Osher and Paragios1 have been
widely used in medical image segmentation.2 Deformable models rely on the idea that a curve from a given
image, subject to some constraints, can evolve in order to detect objects. According to the image features
used to handle the curve evolution, they can be categorized as edge based,3 region based4,5 and model shape
based.?, 6, 7 An extension of the method for vector-value images was proposed by Chan et al.8 and applied
to color images. Additionally, Paraggios et al.9 applied it to supervised texture segmentation problems. The
vector value extension allows to introduce different kinds of features at the same time without requiring any prior
knowledge. For example, Brox et al.10 introduced simultaneously texture features, gray level and optic flow for
the segmentation process. Vector value extensions aplied to left ventricular segmentation are presented in.?

Heart left ventricle has a circular aspect from the short axis view. Also right and left ventricular motions can
be visualized from the short axis view and it is the basis for volumetric measurements used in global ventricular
function evaluation. Typical segmentation of the endocardium wall in the left ventricle excludes papillary muscles
which leads to an incorrect measure of the ejected volume. If the final segmentation includes most part of such
muscles, we could get a more precise measure of the total blood volume.
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We used the level set approach based on the Chan Vese model4 , with prior information, for LV segmentation
in CT images, in order to propose a new strategy that combines a global region term and a local edge term to
refine the segmentation of the endocardium wall. Aditionally, we update the shape model by means of the optic
flow computed by means of the Hermite transform.

2. METHODS

2.1 Overview of approach

Let a sequence of M CT 2D images of left ventricle given by {L1, ..., Li, ..., LM} (corresponding to the cardiac
cycles) the proposed level set segmentation method is divided into three steps: first, a segmentation of the image
L1 is carried out using a manual shape model defined by the user ( Equation 5 is updated ), second, the shape
model is propagated from the Li frame to the Li+1 frame by means of an optical flow strategy(Section2.3).
Third, the level set Equation 5 is used. The shape model helps to handle the curve evolution in the level set
equation and thus prevents the detection of other structures. This procedure is carried out on the M 2D images.

2.2 Segmentation using Level Sets

A level set formulation method based on Chan and Vese model is used to segment the Left Ventricle in each 2D
frame of the image sequence. Let φ : Ω −→ R be a level set formulation on the domain Ω. An energy functional
is defined as:

ε (φ) = εG (φ) + εL (φ) + εS (φ) (1)

εG (φ) is a global term adopted from the Chan Vese model:

εG (φ) = µ

∫
Ω

δ (φ) |5φ| dx+ λ1

∫
Ω

|Li − c1|2H(φ)dx+ λ2

∫
Ω

|Li − c2|2H(−φ)dx (2)

where µ,λ1,λ2 are weighting factors, c1 and c2 are the averages intensities of the areas inside and outside of
the active contour respectively. The Dirac delta function δ and the Heaviside function H are aproximated by
expressions used by Chan et al.8 We add a local term in a narrowband level set function defined by φN inside
and outside the active contour. This term is defined by:

εL (φN ) = λ3

∫
φN

|LEi −m1|2H(φN )dx+ λ4

∫
φN

|LEi −m2|2H(−φN )dx (3)

LEi
is a enhanced version of the image Li, m1 and m2 are the average intensities of the areas defined on the

narrow band φN . The enhanced version is computed for each pixel on a local window. In addition, we add a
shape model φS (φS is the shape model recovered from the Li−1 frame by means of the optical flow strategy)
constraint given by:

εS (φ) = γ

∫
Ω

(φ− φS)
2
δ (φ) (4)

Then, keeping c1, c2, m1 and m2, derivating ε (φ) with respect to the fonction φ such that G (φ) = ∂ε(φ)
∂φ , a

solution of G(φ) can be obtained asymptotically in t by resolving ∂φ
∂t = G (φ) :

∂φ

∂t
=δ (φ)

(
5φ
|5φ|

− λ1(Li − c1)2 + λ2(Li − c2)2

)
(x,y)∈Ω

+
(
β
(
−λ3(LEi −m1)2 + λ4(LEi −m2)2

))
(x,y)∈φN

+

+ 2γ (φ− φS) δ (φ) (5)
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2.3 Optical Flow

The optical flow (OF ) is a way to determinate the apparent velocities that can be associated with a variation of
brightness patterns in a sequence of images. Usually it can be represented in CT images by a vector field induced
by the motion due to the change in position of different cardiac structures, which encodes the displacement of
each pixel in the image.

Different methods have been proposed to recovery the motion in a sequence of images where the differential
methods are the techniques with better performance. Differential methods are based on the work of Horn and
Schunck11 and Lucas and Kanade12 both of 1981, which incorporated certain constraints in order to handle the
Ill–posed problem of Optical Flow Constraint equation, where the data only calculated the normal component
of motion:

uLx + vLy + Lt = 0 (6)

where L(x, y, t) be a image sequence, (x, y) represents the location within a rectangular image domain t denotes
time and L ∗ := ∂L

∂ ∗ .

In Moya-Albor et al.13 we proposed a functional that included local image constraints using the Hermite
transform. Our proposal is based on the polynomial decomposition of each of the images using the steered
Hermite transform as a representation of the local characteristics of images from an perceptual approach within
a multiresolution scheme.

Our contribution includes local restrictions using the steered Hermite transform as a representation of the
local image characteristics from an perceptual approach. In14 the effect of different local restrictions on the data
term (intensity, gradient, Hessian, Laplacian) is described, but in our approach the steered Hermite coefficients
allow including polynomial decomposition of the image and take these parameters as constraints that include
intensity and higher order derivatives, which are useful to analyze the image in a similar way as is done by the
HVS. The use of Gaussian derivatives allows incorporating image structure information from neighboring pixels
that is robust to noise.12,15 This feature is incorporated in a global differential functional that allows obtaining
dense flow fields.11,16

The Hermite transform17,18 is a special case of polynomial transform and it can be considered as an image
description model. This is obtained by performing a convolution of the image L(x, y) with the filter functions
Dm,n−m(x, y):

Lm,n−m(x0, y0) =

∫ ∞
−∞

∫ ∞
−∞

L(x, y)Dm,n−m(x0 − x, y0 − y)dxdy (7)

n = 0, 1, . . . ,∞
m = 0, 1, · · · , n

where Dm,n−m(x, y) are the Hermite filter functions, Lm,n−m(x, y) are the Hermite coefficients, and m and
(n−m) denote the analysis order in x and y direction respectively.

The local information for each analysis window in the convolution is expanded in terms of a family of
orthogonal polynomials, with respect to the window function, Gm,n−m(x, y) of m degree in x and (n−m) in y.

Thus, from a perceptual standpoint and according to the scale-space theory, our option would be a Gaussian
window, where adjacent Gaussian windows separated by twice the standard deviation σ are a good model of
overlapping receptive fields found in physiological experiments.19,20

Using the Gaussian window:

v2(x, y) =

(
1

σ
√
π

exp

(
−
(
x2 + y2

)
2σ2

))2

(8)

the associate Hermite polynomials are:

Gm,n−m(x, y) =
1√

2nm!(n−m)!
Hm

(x
σ

)
Hn−m

( y
σ

)
(9)
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Figure 1. The Hermite filters Dm,n−m(x, y) for N = 3 (n = 0, 1, . . . , N and m = 0, 1, · · · , n).

[
D0,0 D1,0 D2,0 D3,0

D0,1 D1,1 D2,1

D0,2 D1,2

D0,3

]

where Hn

(
x
σ

)
represents the generalized Hermite polynomials with respect to the Gaussian function (with

variance σ2) given by Rodrigues’ formula:

Hn

(x
σ

)
= (−1)n exp

(
−x

2

σ2

)
dn

dxn
exp

(
−x

2

σ2

)
(10)

The Hermite filters Dm,n−m(x, y) (Fig. 1) are determined by:

Dm,n−m(x, y) = Gm,n−m(−x,−y)v2(−x,−y) (11)

A steered version of Hermite transform is obtained by a projection of the Hermite coefficients in terms of the
orientation selectivity θ, the Hermite filters at each position in the image are adapted to local content:21

lm,n−m,θ(x0, y0) =

n∑
k=0

Lk,n−k(x0, y0)gk,n−k(θ) (12)

where gm,n−m(θ) =

√( n
m

)(
cosm (θ)

)(
sinn−m (θ)

)
are the cartesian angular functions of order n that expresses

the directional selectivity of the filter and lm,n−m,θ(x0, y0) are the steered Hermite coefficients.

Our global energy functional penalizes deviations from the constancy in the polynomial decomposition of
degree N (n = 1, 2, · · · , N) of images including the coefficient of order 0 (L0 = L0,0) as a Constant Intensity
Constraint and Steered Hermite Coefficient Constraint (ln,θ) within an non–linear multiresolution approach:

E(u, v) =

∫
Ω

Ψ

(∣∣∣L0(x+ u, y + v)− L0(x, y)
∣∣∣2 + γ

( N∑
n=1

∣∣∣ln,θ(x+ u, y + v)− ln,θ(x, y)
∣∣∣2))dxdy

+α

∫
Ω

Ψ
(
|∇u|2 + |∇v|2

)
dxdy (13)

where Ψ(s2) =
√

(s2 + ε2) is the modified `1 ∗–norm which is robust in the presence of flow discontinuities.22 u
and v are the displacement of a pixel at position (x, y) within the sequence of images at a time t to a time (t+ 1)
in the directions x and y respectively.
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Table 1. Dice index and Hausdorff distance for Gray Level segmentation, Optical Flow segmentation and Shape Model
segmentation

Time
Segmentation

Gray level Optical flow Shape Model
(%) Dice Hausdorff Dice Hausdorff Dice Hausdorff

10 0.8980 40.6296 0.9619 12.6661 0.9504 13.4141
20 0.8794 43.2273 0.9358 11.1122 0.9474 14.5000
30 0.8018 46.9682 0.9546 9.1285 0.9577 10.5000
40 0.7585 45.1296 0.9070 13.8559 0.9474 8.1394
50 0.7733 45.6098 0.8986 20.178 0.9440 13.8293
60 0.7586 46.1635 0.8739 19.3499 0.9173 13.0863
70 0.8850 37.8054 0.9564 7.4523 0.9626 6.5000
80 0.8633 36.5508 0.9565 7.5428 0.9544 8.3265

3. RESULTS

For the experiments, we used cardiac computed tomography studies from two patients. Such studies were
performed on a CT Siemens dual source scanner with 128 channels. Each study contains 10 volumes that
correspond to the time percentage of the cardiac cycle.

We present the obtained segmentation results for one patient in all the percentages of cardiac cycles in Fig.
2 and the accuarcy results of the methods in Table 1. In Fig. 2 column 1 shows the reference segmentation
performed by the physician, column 2 shows the segmentation using the Chan Vese model, column 3 shows the
updating shape using optical flow and column 4 shows the shape model level set approach.

To evaluate the segmentation performance we use the Dice index and the Hausdorff distance. This metrics
are widely used in the litterature to measure accuracy of the segmentation.7 The Dice metric dD is a measure
of contour overlap between the reference and the segmentation results. The Dice value ranges between 0 and 1.
Values close to 1 indicate more similar contours. Moreover, the Hausdorff distance, dH , measures how close a
point from a reference set is from another point of the segmentation set in a metric space. Hausdorff minimal
values indicate more alike boundaries in a range from 0 to 100.

In these results (Table 1) we notice notice that, first the deformation produced by the optical flow to the shape
model evolve acording to the reference segmentation performed by the physician, second, that by introducing
the shape model in the level set equation the segmentation results are inproved significantly in comparison to
the classical method without shape model. We observe that in the cardiac time percentage cycles corresponding
to major myocardial contraction (40 % to 70%), both, the Dice index and the Hausdorff distance correspond to
better results in the shape model segmentation method comparing to the optical flow deformation and in the
other cardiac time percentage cycles the metrics values are comparables.

4. CONCLUSIONS

In this work, we present a new strategy for extracting the LV from cardiac CT images with leak prior knowl-
edge. We use a local term in the Chan Vese model for enhancing the low contrast structures as the edges of
the papillary muscles and a shape model that is propagated in the image sequence by means of a robust optical
flow strategy using the Hermite transform. In this work, we used the temporal information to handle the shape
model to introduce in the Level Set equation. With this strategy, we will compute easily the deformation of the
contour. We have obtained preliminary results on a cardiac CT sequence.This algorithm will be tested in more
patients for an accurate validation.
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(a) Reference 20% (b) Gray-LS 20% (c) OF 20% (d) Shape-Model 20%

(e) Reference 30% (f) Gray-LS 30% (g) OF 30% (h) Shape-Model 30%

(i) Reference 40% (j) Gray-LS 40% (k) OF 40% (l) Shape-Model 40%

(m) Reference 50% (n) Gray-LS 50% (o) OF 50% (p) Shape-Model 50%

(q) Reference 70% (r) Gray-LS 70% (s) OF 70% (t) Shape-Model 70%

Figure 2. column 1 we show physician reference, columne 2 Chan Vese model segmentation, column 3 updated model by
optical flow, column 4 whole strategy
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