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aPosgrado en Ingenieŕıa Eléctrica, Universidad Nacional Autónoma de México, Mexico City,
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ABSTRACT

Segmentation of knee cartilage has been useful for opportune diagnosis and treatment of osteoarthritis (OA).
This paper presents a semiautomatic segmentation technique based on Active Shape Models (ASM) combined
with Local Binary Patterns (LBP) and its approaches to describe the surrounding texture of femoral cartilage.
The proposed technique is tested on a 16-image database of different patients and it is validated through Leave-
One-Out method. We compare different segmentation techniques: ASM-LBP, ASM-medianLBP, and ASM
proposed by Cootes. The ASM-LBP approaches are tested with different ratios to decide which of them describes
the cartilage texture better. The results show that ASM-medianLBP has better performance than ASM-LBP
and ASM. Furthermore, we add a routine which improves the robustness versus two principal problems: over-
segmentation and initialization.
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1. INTRODUCTION

Knee Osteoarthritis (OA)1 is one of the most frequent diseases around the world which causes pain, malfunction
and disability. OA is caused by biomechanical stress that affects knee articular cartilages and bones. OA may
be present in any of the medial femoral compartments, either the tibiofemoral or patellofemoral, according to
the location of damaged cartilage. Pain, morning stiffness and knee swelling in a patient older than 50 years are
considered OA consequences. Moreover, image analysis of the knee has an important role since it confirms the OA
diagnosis, determines which compartments have been affected and determines the disease stage. Image analysis
can also confirm the responsibility of OA on the symptoms and provides information about disease evolution
during treatment. In this case, Magnetic Resonance Imaging (MRI) can show the soft tissue structures and their
boundaries with the bones, without significant distortion. Furthermore, MRI does not change the dimension of
tissues and there is not superposition between anatomical structures and, most important, it directly visualizes
the knee cartilage and its defects.

Taking advantage of MRI characteristics, we can extract regions of interest (segmentation) from these images,
in our case, knee cartilage. Automatic or semiautomatic knee cartilage segmentation has been studied for more
than 20 years and many approaches have been reported, for example: growing regions,2 active contours,3 Bayesian
classifiers4 and active shape models.5 The Active Shape Models (ASM)6 compute an average shape of the
region of interest from a training set and a statistical model of minimal parameters that allow the shape to adjust
to different objects within a certain range. ASM have been widely used in medical image analysis because there
is sufficient knowledge about the shape of anatomical structures, which are obtained through diverse medical
imaging modes.

The ASM use an appearance model based on local gray profiles to describe the region around the structure of
interest. These profiles have shown not so great robustness in practice, to overcome this issue, some authors have
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improved the appearance model adding different image processing techniques, i.e.: multiresolution,7 non-linear
classifiers and gradients,8 probabilistic estimation,9 locally order-less images,10 and rotation invariant locally
order-less images.11 This paper proposes to use the texture descriptor called Local Binary Patterns (LBP)
to obtain a new appearance model for ASM.12 The LBP describe the region around the landmarks and shape
adjustment is calculated by a similarity measure (ASM uses Mahalanobis distance) between histograms. The
ASM with LBP have shown better results than original ASM.

This paper is organized as follows: Section 2 is devoted to describe the ASM algorithm, LBP approaches,
ASM with LBP algorithm and segmentation validation. Later, in Section 3, image database and presegmentation
routine are described and we show our results with the improvements obtained. Finally, the conclusions are drawn
in Section 4.

2. METHODS

2.1 Active Shape Models

The Active Shape Model (ASM) is a combined technique of Point Distribution Model (PDM) and iterative
template deformation and it was originally described by Cootes et al.6

• Training phase. A training set of medical images with annotated shapes or regions of interest (by an
expert) is necessary for this phase, they are marked with the same number of points, called landmarks.
The shapes are aligned between themselves using pose transformations (scale, rotation and translation)
and the mean shape X̄ is calculated from the aligned set of shapes.

The PDM is built applying Principal Component Analysis (PCA) to the aligned set. The original shapes
Xi and their representation model bi(i = 1, ..., N), N is the number of variation modes, are related by the
mean shape X̄ and the eigenvectors P :

Xi = X̄ + Pbi. (1)

The representation dimensionality is reduced using only the eigenvectors of the major eigenvalues. In this
case, equation 1 turns into an approximation, with an error depending on the magnitude of the excluded
eigenvalues.

• Pose Adjustment. PDM can be used for generating new shapes similar to those in the training set by
modifying b, within certain limits.

Assuming that a shape model is described as the sum of the mean shape obtained from the training set and
the weighted sum of the principal components, with the possibility of being translated, rotated, and scaled,
then, the expression of the initial estimation x1 of a shape as a scaled, rotated and translated version of
reference shape x2 is:

x1 = M(s1, θ1)[x2] + t1, (2)

where M(s, θ) =

(
(s) cos(θ) −(s) sin(θ)
(s) sin(θ) (s) cos(θ)

)
and t1 = (tx1, ty1 ... tx1, ty1)T .

The shape x2 is expressed as x1 = x̄ + dx2, where dx2 = Pb2. Hence, the initial estimation is x1 =
M(s1, θ1)[x̄+ dx2] + t1. Fitting the initial estimation to image data is necessary. A new location x1 + dx1
is obtained by examining the surrounding region of each landmark of x1.

Afterwards, the pose parameters (scaling, rotation and translation) are adjusted, as well as the shape
parameters (the weights of the principal components) to move our current estimate x1 as close as possible
to x1 + dx1, considering that the form is acceptable. So, the additional scaling 1 + ds, rotation dθ and
translation (dtx, dty) is required to move x1 as close as possible to x1 + dx1:

M(s1(1 + ds), θ1 + dθ)[x2] + (t1 + dt) −→ x1 + dx1. (3)

There are remaining adjustments which can only be satisfied by deforming the shape x2.
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• Appearance Model. The appearance model is described by gray level statistics around each landmark
and gives us adjustment information to fit the model. To find such adjustments, we search along a line
passing through the landmark and perpendicular to the boundary formed by the landmark and its neigh-
bors.

The search profile is obtained from gray level values along the profile and compute its derivative and
normalization. The normalized derivative search profile is:

ysi =
dsi∑ts−1

k=1 |dsik|
, (4)

where gray level profile is si = [si1 si2 ... si(ts)], and i refers to i-th landmark.

The landmark moves to the position where the most similar sub-profile to mean normalized derivative
profile is found. That similarity is calculated with the following square error function, called Mahalanobis
Distance:

f(pp) = (pp − p̄)TC−1
p (pp − p̄), (5)

where C−1
p is the inverse covariance matrix of the mean normalized derivative gray profile p̄ and pp is the

sub-profile. The suggested position of dXi is where f(pp) is minimum.

The total suggested displacement obtained from the appearance model is:

dX = (dX0, dY0, ... dXn−1, dYn−1)T . (6)

• Shape Adjustment. Knowing 1 + ds, dθ and dt, we find the shape adjustment through dx:

dx = M((si(1 + ds))−1,−(θi + dθ))[M(si, θi)[xl] + dX − dt]− xl. (7)

Equation (7) estimates the adjustments for xl. Afterwards, we calculate db by the equation:

db = PT dx. (8)

But, sometimes, these adjustments are not consistent with the shape model, then, the update b → b + db
is verified with:

−A
√
λk ≤ bk ≤ A

√
λk, (9)

where A is constant (Cootes et al.6 proposed A = 3).

Finally, if the condition is valid, shape and pose parameters are updated as follows:

tx + dtx → tx

ty + dty → ty

tθ + dtθ → θ (10)

s(1 + ds)→ s

b+ db→ b

The process is repeated for a number of iterations.
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2.2 Local Binary Patterns

The original Local Binary Pattern (LBP) descriptor13 was proposed by Ojala et al. based on the idea is that
textural properties within homogeneous regions can be translated into patterns, these patterns represent local
features. The original LBP uses a 3 × 3 mask to describe the neighborhood around a central pixel. The gray
intensity values of neighboring pixels are compared with the central pixel; those values lesser than the central
pixel value are labeled with “0”, otherwise, they are labeled with “1”. The labels are multiplied by a weighting
function according with their positions to form a chain (pattern). Later, the sum of those eight values replaces
the value of the central pixel. As we can see, this method is based on differences of intensities and produces 28

possible values.

Further generalizations use a circular neighborhood instead of a fixed region. The sampling coordinates are
calculated using the expression:

xp = x+R cos(2πp/P ) (11)

yp = y −R sin(2πp/P ), (12)

where gp = I(xp, yp) is the central pixel intensity of the uniformly spaced circular region with P sample
points and ratio R around the central pixel. With this implementation, we could change the spatial resolution
and the number of sampling points easily. The LBP expression is:

LBPP,R(xc, yc) =

P−1∑
p=0

s(gp − gc)2P . (13)

where s(z) is defined as:

s(z) =

{
1, z ≥ 0,
0, z < 0.

(14)

The median LBP14 was proposed by Zabih and it is less sensitive to noise. The median LBP replaces the
central pixel with the media of itself and the P neighbors. The expression of median LBP is:

LBPmedP,R (xc, yc) =

P−1∑
p=0

s(gp − ḡ), (15)

where ḡ represents the median of the P neighbors and the central pixel. This modification is still invariant to
rotation but less sensitive to noise. It is also invariant to monotonic illumination changes.

2.3 Active Shape Models with Local Binary Patterns

The segmentation algorithm is based on Divided-Square-based LBP-ASM reported by Keomany et al.12 The
authors used a LBP8,2 operator.

On the training phase, the LBP histogram (appearance model) is extracted from each landmark by concate-
nating the four sub-regions LBP histograms (Figure 1). Afterwards, a mean LBP histogram is calculated from
the LBP histograms from each landmark. The LBP histogram substitutes the local gray profiles of the original
ASM, however, the statistical model (mean shape, eigenvalues and eigenvectors) remains the same as it was
calculated by PCA.

On the segmentation phase, the shape adjustment is obtained as follows:

1. Normal-oriented points are obtained from each landmark and they are used as square sub-regions centers.

2. LBP histogram are calculated at each point previously acquired.
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Figure 1. Local appearance model from sub-regions histogram.

3. Calculated LBP histograms are compared with the mean LBP histogram for each landmark with Chi square
statistic. Chi square substitutes the Mahalanobis distance (equation 5) on the original ASM scheme and
it is defined as:

χ2(H, H̄) =
∑
i

(Hi − H̄i)
2

(Hi + H̄i)
, (16)

where i refers to the i-th landmark, Hi is the LBP histogram from a normal point (step 2) and H̄ is the
mean LBP histogram. The smaller the Chi square is, more similar the histograms are.

4. The new landmark position (dX) is found where the similarity is the greatest. Pose and shape parameters
are adjusted (dx) as in the original ASM.

Finally, ASM with LBP offer interesting properties: pixel level information from LBP descriptor, spatial
information from sub-regions histograms and global information from concatenated LBP histograms.

2.4 Validation

We validate the accuracy of our segmentation algorithm with two different measures: DICE coefficient and
Hausdorff distance.

2.4.1 DICE Coefficient

The DICE coefficient is a similarity measurement between sets. In this case, it is used as a global measure of
the existing differences between the calculated shape and the reference shape. The coefficient is given by:

DICE =
2(A ∩B)

|A|+ |B|
, (17)

where A is the area inside the calculated shape and B is the area inside the reference shape. DICE coefficient
values are between 0 and 1; the closer the coefficient to 1, the more similar the shapes are.

2.4.2 Hausdorff Distance

The Hausdorff distance determines the similarity between two shapes.15 The Hausdorff distance is defined as the
maximum distance from a point set to the nearest point of another point-set. The Hausdorff distance between
A and B point-sets is:

H(A,B) = max(h(A,B), h(B,A)), (18)

where:

h(A,B) = max(a ∈ A)min(b ∈ B)‖a− b‖. (19)
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Figure 2. Points for presegmentation routine.

The equation 19 is called the direct Hausdorff distance from the set A to set B, using the underlying norm
‖ · ‖ on the point sets A and B, and

h(B,A) = max(b ∈ B)min(a ∈ A)‖b− a‖ (20)

is called inverse Hausdorff distance. The Hausdorff distance is not symmetric. Then, equation 18 considers
both cases giving a more general definition.

3. RESULTS

3.1 Medical Image Dataset

The images were selected from 16 different volume sets on a 3T MRI system (Siemens Verio). The images are
in T2 in an echo-time series (Multi-echo system). The image parameters are: TR = 960 ms, TE = 7.54 ms, and
flip angle = 60. The images were acquired with a 384 × 384 × 10 matrix (0.414-mm in-plane resolution and
3.6-mm slice thickness).

3.2 Presegmentation Routine

We propose the following presegmentation routine to improve segmentation results:

• Mark two important points: the left and right inside corners of knee cartilage (Figure 2).

• Obtain the distance between these points (distA) and the distance between their equivalent points on the
mean shape X̄, calculated in the training phase (distB). A proportional measure is obtained from these
distances and it is defined as:

s =
distA
distB

. (21)

The value s is a scale parameter that multiplies the mean shape X̄ before the adjustment of pose and shape
parameters:

X̄new =

[
0.9s 0

0 0.9s

]
X̄, (22)

where X̄new is the updated mean shape. Based on experimentation, we propose the constant 0.9.
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Figure 3. The mean shape and the sample points of aligned training shapes.

3.3 Experimental Results

Since the ASM require prior training, we used the “leave-one-out” method to maximize data usage. The DICE
coefficient and Hausdorff distance are metrics used for validating the segmentation results. The shapes are 42-
point contours. The original ASM, the mean and sub profiles length is 7 pixels and the test profile length is 17
pixels (11 comparisons are done for each landmark). For ASM-LBP, the test profile length is 9 pixels and the
square sub-regions size is 5×5 pixels. Figure 3 shows the mean shape and the sample points of aligned training
shapes.

The two relevant image points of Section 3.2 are used as fixed points on equation (6) in every iteration.
This consideration provides faster convergence, better adjustment, and avoids over-segmentation which tends to
patellae cartilage.

The proposal was evaluated on 16 knee cartilage images using the Original ASM, ASM-LBP and ASM-
medianLBP with square subregions described on Section 2.3. Both ASM-LBP algorithms were tested with the
same sample points (P = 8) and five different ratios (R): 1, 2, 3, 5 and 10. The best results of DICE coefficient
are shown on Table 1 and the best results of Hausdorff distance are shown in Table 2. The best results for each
image are in bold font.

The best results are not consistent and they do not lead us to decide which one is better. For that reason, we
evaluated the algorithms using various initialization points for each image. Table 3 shows both mean DICE and
mean Hausdorff distance results, with standard deviation, for each image, and, at the bottom of each validation
metric, it shows the mean results for each segmentation algorithm. The best results are in bold font.

This last evaluation shows that ASM-LBP has better results than Original ASM. For the DICE coefficient,
ASM-LBP and ASM-medianLBP, with ratio 1 and 2, have better mean results than the others. For the Hausdorff
distance, ASM-medianLBP, with ratio 1 and 2, have the better mean results. More precisely, ASMLBPmed8,2 has

the best mean DICE result, but, ASMLBPmed8,1 has the best mean Hausdorff distance result.

Apparently, there is no difference between choosing any of them, but, we use ANOVA (Analysis of Variance)
to decide which one is better: ASMLBPmed8,1 or ASMLBPmed8,2 . More precisely, ANOVA indicates if a significant
difference already exists between choosing one of them or we could expect a similar result choosing any of them.
The ANOVA of DICE coefficient shows no significant difference between them (Prob > F = 0.2047). But,
ANOVA of Hausdorff distance shows there a significant difference between them (Prob > F = 7.0240e−12).
Considering normal-distributed data, the mean and standard deviation of Hausdorff distance of ASMLBPmed8,1

are 3.0709 ± 1.0552, and of ASMLBPmed8,2 are 3.2007 ± 1.4841, moreover, the number of outliers (samples out of

the mean and standard deviation) are: 680 for ASMLBPmed8,1 and 816 for ASMLBPmed8,2 . Therefore, LBPmed8,1

is the best texture descriptor for the ASM-LBP algorithm due to its lower mean Hausdorff distance, variance
and number of outliers. The best results for images 2, 5 ,6, 10, 13 and 14 are shown in Figure 4.

4. CONCLUSIONS

In this paper, we proposed a segmentation algorithm based on ASM that uses the texture descriptor LBP to
obtain a better knee cartilage segmentation, and, we compared it with the original ASM. For ASM-LBP, we
use two different LBP approaches: Original LBP and median LBP. Moreover, we tested LBP approaches with
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ASIA LBP metl8,1 im 2

ASIA LBP metl8,1 im 10

ASIA LBP metl8,1 im 5

ASIA LBP metl8,1 im 13

ASIA LBP metl8,1 im 6

ASM LBP metl8,1 im 14

ASM OAgnal ASM LBP

a) b)

Figure 4. The best segmentation results with ASMLBPmed
8,1 .

Figure 5. a) Oversegmentation problem of ASM, b) Oversegmentation robustness of ASM-LBP
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different ratios (R = 1, 2, 3, 5 and 10) with the same sample points (P = 8) in order to determine the best
knee cartilage descriptor. We also tested with different initialization points in order to avoid the problem of
user’s initialization. Based on mean results and their variance, we conclude that ASMLBPmed8,1 has the best

segmentation results, second, and close to it, ASMLBPmed8,2 , and lastly, the other ASM-LBP algorithms which
also show better results than the original ASM.

The ASM-LBP also provides better segmentation robustness than ASM due to the properties mentioned
in Section 2.3. Figure 5.a shows the over-segmentation problem of tibial cartilage using ASM and 5.b shows
ASM-LBP improved robustness to that problem. Moreover, in Section 3.3, we discussed the robustness to the
over-segmentation of patellae cartilage due to the presegmentation routine in Section 3.2.

Further research will be devoted to test the algorithm with different data, and to design relaxometry studies
taking advantage of magnetic resonance and image acquisition.
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Img ASM ASMLBP8,1 ASMLBP8,2 ASMLBP8,3 ASMLBP8,5 ASMLBP8,10 ASMLBPmed8,1 ASMLBPmed8,2 ASMLBPmed8,3 ASMLBPmed8,5 ASMLBPmed8,10

1 0.8293 0.8413 0.8421 0.8435 0.8355 0.8300 0.8414 0.8500 0.8498 0.8350 0.8436

2 0.8379 0.8928 0.9079 0.9111 0.8838 0.8885 0.9009 0.9019 0.9061 0.8921 0.9059

3 0.9020 0.8617 0.8660 0.8761 0.8526 0.8501 0.8626 0.8688 0.8682 0.8672 0.8497

4 0.8549 0.8493 0.8494 0.8391 0.8361 0.8502 0.8478 0.8532 0.8538 0.8536 0.8538

5 0.8764 0.8885 0.8946 0.8849 0.8752 0.8685 0.8828 0.8993 0.8889 0.8859 0.8860

6 0.8579 0.8802 0.8824 0.8857 0.8552 0.8581 0.8849 0.8847 0.8832 0.8612 0.8597

7 0.8648 0.8473 0.8433 0.8523 0.8216 0.8293 0.8374 0.8405 0.8450 0.8249 0.8313

8 0.8293 0.8478 0.8477 0.8487 0.8390 0.8400 0.8472 0.8517 0.8488 0.8363 0.8375

9 0.8826 0.8382 0.8535 0.8554 0.8508 0.8503 0.8488 0.8534 0.8581 0.8728 0.8495

10 0.9276 0.8848 0.9021 0.9014 0.8920 0.8818 0.8809 0.8935 0.9032 0.8893 0.8565

11 0.8794 0.8650 0.8727 0.8825 0.8792 0.8723 0.8603 0.8782 0.8783 0.8690 0.8270

12 0.8667 0.8590 0.8636 0.8611 0.8411 0.8449 0.8564 0.8605 0.8644 0.8544 0.8453

13 0.8903 0.9190 0.9116 0.9148 0.9197 0.9024 0.9076 0.9127 0.9207 0.9063 0.8807

14 0.8806 0.8886 0.8902 0.8823 0.8793 0.8815 0.8911 0.8854 0.8759 0.8887 0.8745

15 0.8968 0.9003 0.9088 0.9125 0.9018 0.9131 0.8886 0.8927 0.9082 0.9111 0.8988

16 0.9151 0.8590 0.8628 0.8817 0.8832 0.8696 0.8570 0.8607 0.8859 0.8785 0.8527

Table 1. The best DICE results for each image of dataset.

Img ASM ASMLBP8,1 ASMLBP8,2 ASMLBP8,3 ASMLBP8,5 ASMLBP8,10 ASMLBPmed8,1 ASMLBPmed8,2 ASMLBPmed8,3 ASMLBPmed8,5 ASMLBPmed8,10

1 2.0164 1.9746 1.8705 1.9711 1.9936 2.0865 1.9275 1.9416 2.0362 2.0707 2.1645

2 2.3684 2.2222 2.1613 2.3390 2.4099 2.3916 2.2292 2.2922 2.3048 2.4087 2.3009

3 1.8009 2.1835 1.9452 1.9620 2.3897 2.2123 2.1355 2.0566 1.8951 2.2512 2.1638

4 2.4534 2.3661 2.4131 2.4145 2.4544 2.3541 2.2664 2.4136 2.4018 2.3737 2.3514

5 2.1965 2.3220 2.3317 2.3225 2.2687 2.4260 2.3609 2.4488 2.3665 2.4340 2.3583

6 1.4607 2.5404 2.5752 2.5430 2.6093 2.6697 2.6037 2.5662 2.6028 2.5103 2.5561

7 1.7901 1.8219 2.0803 2.4639 2.6183 2.4138 1.9709 2.1367 2.4486 2.5263 2.3698

8 2.0053 1.8315 1.4281 1.3734 2.1961 1.6666 1.8292 1.6558 1.4430 1.3962 1.6946

9 2.4600 2.2204 2.1548 2.1164 1.9683 2.2515 2.1351 2.1097 2.0788 2.0003 2.1541

10 1.4230 2.6784 2.5740 2.7179 2.7233 2.8999 2.5368 2.4450 2.5409 2.6718 2.5464

11 1.4828 3.1931 3.3516 3.2309 3.3602 3.3781 2.5465 3.2842 2.9062 2.8430 3.0074

12 3.3186 2.0757 2.2169 2.3221 2.3832 2.3246 2.1284 2.2478 2.2794 2.0877 2.2670

13 1.2402 1.1832 1.4420 1.3341 1.3901 1.4042 1.2575 1.3867 1.2372 1.3068 1.4234

14 2.4919 2.1028 2.2080 2.1396 2.4083 2.2297 2.1918 2.1759 2.1764 2.2305 2.2945

15 2.3197 2.0666 2.0634 2.2051 2.1725 2.2342 2.1762 2.2615 2.1291 2.3012 2.0094

16 1.6485 1.8485 1.8769 1.9737 2.2863 2.2442 1.8579 1.8746 1.8647 1.8638 2.0431

Table 2. The best HAUSDORFF DISTANCE results for each image of dataset.
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