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ABSTRACT

In recent years, the use of Magnetic Resonance Imaging (MRI) to detect different brain structures such as
midbrain, white matter, gray matter, corpus callosum, and cerebellum has increased. This fact together with
the evidence that midbrain is associated with Parkinson’s disease has led researchers to consider midbrain
segmentation as an important issue. Nowadays, Active Shape Models (ASM) are widely used in literature for
organ segmentation where the shape is an important discriminant feature. Nevertheless, this approach is based
on the assumption that objects of interest are usually located on strong edges. Such a limitation may lead to a
final shape far from the actual shape model. This paper proposes a novel method based on the combined use
of ASM and Local Binary Patterns for segmenting midbrain. Furthermore, we analyzed several LBP methods
and evaluated their performance. The joint-model considers both global and local statistics to improve final
adjustments. The results showed that our proposal performs substantially better than the ASM algorithm and
provides better segmentation measurements.

Keywords: Active Shape Models, Dice’s coefficient, Hausdorff distance, Local Binary Patterns, Midbrain seg-
mentation

1. INTRODUCTION

Midbrain or mesencephalon is an approximately 2×2×1 cm sized region near the center of the brain that serves
as a relay center for visual, auditory, and motor system information. It controls many important functions such
as pupil diameter, eye movement, and hearing. Two structures can be identified in the interior of the midbrain:
the red nucleus, which is involved in motor coordination and the substantia nigra, a dark area related to learning
process and motor control.1 The substantia nigra contains high levels of melanin and dopamine-containing
neurons, which are severely affected by the degenerative process of Parkinson’s disease (PD).2

In 2010, Sakal et al.3 proposed a technique based on echoscopy for supporting the clinical diagnosis of PD;
they have claimed that the initial assessment of the neurological condition of a patient should be performed by
estimating the area of the substantia nigra. A recent non-invasive tool for analyzing midbrain is MRI, which
offers the possibility of a deeper study of this organ by obtaining a series of images with the capability to segment
and build a volume or a 3D representation. However, visualization of inner structures, which helps diagnosis
of PD, can not be achieved so easily. Chen et al.4 addressed this issue and proposed affine registration of two
modalities of MRI: T1 and SWI.
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Precisely, because of the fact that PD is associated with destruction of neurons in the midbrain, its seg-
mentation has become an important issue in neurological applications. Currently, midbrain segmentation is a
manual process where experts delineate the contours of the organ from MRI images. State-of-the-art approaches
to segment midbrain automatically are mainly based on active models applied on ultrasound and sonographic
modalities.5,6 These studies use different variants of Active Contour Models (ACM) and Active Appearance
Models (AAM) and even make use of the toolbox SPHARM.7 However, automatic segmentation of the midbrain
and substantia nigra area still poses a challenge. One important drawback is the lack of databases available for
this type of research.

Midbrain normally has a typical shape which can be obtained by statistical methods. Nevertheless, noise
and lack of contrast are two frequently problems that hamper the final segmentation. To overcome this issue,
this paper proposes an automatic method for segmenting midbrain based on the combined use of Active Shape
Models (ASM) and Local Binary Patterns (LBP). The joint-model considers both global and local statistics
to improve the final shape. We use LBPs to detect midbrain boundaries correctly; LBPs add to ASMs the
robustness needed to detect non-salient boundaries in the presence of noise that some other methods lack.8 The
result was a statistical model able to improve structure resolution because of the LBPs.

This paper is organized as follows: the first part is devoted to describe the ASM and LBPs techniques. In
Section 2 the dataset is described, then in Section 3 we present our approach. Later, in Section 4 we show our
results with the improvements obtained. Finally the conclusions are drawn in Section 5.

1.1 Active shape models

Active Shape Models9 are part of the statistical deformable models; they can detect specific shape boundaries
such as midbrain. Cootes et al. argue that a shape model can deform to some extent within a certain variability.
Therefore, ASMs are able to deform their shape so that they resemble the real organ. Other studies8,10,11 have
applied ASMs to different anatomical organs, such as heart and pediatric cerebellum.

ASMs need a training set of aligned shapes of an object using pose transformations (rotation, translation,
and scaling). The shapes can be modeled as follows:

X̂ = X̄ + Pb (1)

where X̄ = 1
s

∑s−1
i=0 xi is the mean shape, P is the matrix of the t first principal components, b is a vector of

weights and X̂ is the estimated shape. The previous equation is know as Point Distribution Model (PDM).

It is possible to generate new shapes by modifying b within certain limits to obtain similar shapes of the
object to be recognized.12 The algorithm consists basically of two steps: build a statistical model from initial
shapes and compute a gray level profile model to obtain specific characteristics of boundary points; and ASMs
search, where it recognizes a similar model shape.

• Step (1) is done by obtaining a statistical shape and a gray-level profile model. We use manual annotations
for each volume to be involved in the training phase, delineating contour lines of the midbrain shape for
each image. An alignment is applied to each shape involving translation, rotation, and size transformations.
The aligned positions of each landmark in each image slice are grouped into a vector, as follows;

Si = (x0, y0, . . . , xn−1, yn−1)
T

(2)

After this step, we use single value decomposition13 to find all the parameters that assemble the Point
Distribution Model (PDM) of the data. The number of training datasets is often (very) small in comparison
to the number of landmarks and can lead to a singular correlation matrix and over-fitting of the training
data. To reduce such effects it is necessary to crop the number of eigenvalues keeping between 90%
and 99.5% of the variance in the training data. This is done by removing the lowest eigenvalues and
corresponding eigenvectors computed for the PCA analysis.

The gray-level profile model is also part of the training statistical model construction. Since shapes are
described by points enclosing a contour, gray-level profiles normal to each landmark point are calculated.
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First and second moments are obtained by calculating the mean and covariance matrix from the training
set. Either the gray profile or its normalized derivative can be employed. Using derivatives of the gray
profile may be advantageous because it avoids the problem of contrast invariance in the images but, at the
same time they are more sensitive to noise.8

• Step (2) is the ASM search within the PDM obtained on the previous phase. The mean shape is deformed
to recognize a new shape. First, we position the mean object shape close to the object in the image
manually. Each point of the mean form is compared against the point in the correspondent profile and the
landmark points are moved iteratively towards those that obtain the lowest distance, using for example,
the Mahalanobis distance. Using these points, we modify the initial shape using Eq. (1).

The new contour coordinates, X̂, are an estimate of the original contour, X̄. Here, b is constrained to the
range ±m

√
λi with m between 2 and 3. This restriction limits shapes within 2 or 3 standard deviations of

the distribution of shapes in the training data.

Finally, all boundary points move into the direction of the least distance. When new positions for the
landmarks are found, an aligning process must be computed to adjust the shape. Pose parameters are used
to calculate final deformations to move the current estimate to a new position. The process is iterative
and it continues until reaching a specific number of iterations or threshold.

1.2 Local binary patterns

• The original Local Binary Pattern (LBP) descriptor14 was proposed by Ojala et al. It is based on
the idea that textural properties within homogeneous regions can be mapped into patterns that represent
micro-features. This proposal uses a fixed rectangular 3×3 mask, which represents a neighborhood around
a central pixel. The values within the rectangular mask are compared with their central pixel; those ones
lesser than the central value are labeled with “0” otherwise they are labeled with “1”. The labeled pixels
are multiplied by a weighting function according with their positions to form a pattern chain. Afterwards,
the sum of the eight pixels replaces the value of the central pixel. This method describes differences of
intensities and produces 28 possible labels. In addition, it has very low computational and space complexity.
Ojala et al. have claimed that this type of threshold operations provide a robust way for describing local
texture patterns.

Further generalizations use a circular neighborhood instead of a fixed rectangular region. The sampling
coordinates of the neighbors are calculated using the expression: (xc + R cos[ 2πpP ], yc − R sin[ 2πpP ]). If a
coordinate does not fall on an integer position then the intensity values are bi-linearly interpolated. Such
implementations allow us choosing the spatial resolution (R) and the number of sampling points (P ) as
follows:

LBPP,R (gc) =

P−1∑
p=0

s (gp − gc) 2
p (3)

where P is the number of sampling points, R represents the radius of the neighborhood, gc, is the central
pixel at (xc, yc), and {gp|p = 0, . . . , P − 1} are the values of the neighbors whereas the comparison function,
s (x), is defined as:

s (x) =

{
1 if x ≥ 0
0 if x < 0

(4)

• Uniform Local Binary Patterns (LBPuni
P,R).

15 Over 90% of LBP texture patterns can be described
with few spatial transitions, which are the changes (0/1) in a pattern chain. Ojala et al. introduced a

measure of uniformity, U(LBPP,R(gc)) = |s(gp−1 − gc) − s(g0 − gc)| +
∑P−1

p=1 |s(gp − gc)− s(gp−1 − gc)|,
which corresponds to the number of spatial transitions. So that, LBPuni

P,R can be obtained as:

LBPuni
P,R (gc) =

⎧⎪⎨
⎪⎩

P−1∑
p=0

s (gp − gc) if U (LBPP,R (gc)) ≤ 2

P + 1 otherwise

(5)
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then, the pixel-wise information is encoded as a histogram, Hi, so that it can be interpreted as a fingerprint
or a signature of the analyzed object.

• Yan Ma16 proposed the Number LBP (LBPnum
P,R ) as an extension of the Eq. (5) by dividing the non-

uniform patterns into groups based on the number of “1” or “0” bits as follows:

LBPnum
P,R (gc) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P−1∑
p=0

s (gp − gc) if U (LBPP,R (gc)) ≤ 2

Num1 {LBPP,R (gc)} if
U (LBPP,R) > 2 and
Num1 {LBPP,R (gc)} ≥ Num0 {LBPP,R (gc)}

Num0 {LBPP,R (gc)} if
U (LBPP,R) > 2 and
Num1 {LBPP,R (gc)} < Num0 {LBPP,R (gc)}

(6)

where Num1 {•} is the number of “1” and Num0 {•} is the number of “0” in the non-uniform pattern.

• The presence of noise can seriously impair the performance of the LBP operator. Zabih’s proposal17

replaces the central pixel with the median of itself and the P neighbors. This implementation is called
median LBP.

LBPmed
P,R (gc) =

P−1∑
p=0

s (gp − g̃) (7)

where g̃ represents the median of the P neighbors and the central pixel. This modification is still invariant
to rotation but less sensitive to noise. It is also invariant to monotonic illumination changes.

Keomany and Marcel18 proposed a method that combines ASM and LBP using what is known as Extended
LBP and Square-based LBP. They concluded to have better results with the ASM/LBP approach than with the
ASM algorithm alone.

2. MATERIALS

In our experiments we used a dataset labeled by an experienced image neurologist. This dataset was selected
randomly by Dr. Garćıa at Hospital Interlomas (Mexico) using CT scans. It consists of cranial annotated
midbrain studies from 10 normal subjects. The T2 images were obtained on a 3 Tesla scanner, (TR = 3200 ms,
TE = 409ms, flip angle = 120), obtaining volumes of 512 × 448 × 176 pixels with a resolution of 0.44921 ×
0.44921 × 0.9 mm.

The volume images were preprocessed with a normalization of gray intensities and our area of interest is
approximately 70 × 70 pixels per image. The algorithms were run on a Intel Xeon Quad Core workstation with
2.40Ghz and 6GB of RAM memory.

3. PROPOSED METHOD

Our proposal aims to evaluate different combinations of ASM/LBP algorithms, and at the same time improve
midbrain segmentation. We also tested the simple ASM algorithm in order to have a comparison base for our
improvements. We used cranial magnetic resonance images containing the midbrain volume. One of the main
problems we found was the lack of sufficient data in order to train the ASM according to the estimates mentioned
by Cootes. At the moment, we have 10 segmented volumes and opted for the method of Leave One Out. The
computed ASM/LBP algorithm differs from Keomany in the way that they first obtained their LBP’s image and
then apply the ASM Algorithm.

In our proposal, for the training phase, the LBP operator evaluates each landmark point on a window of
5×5 pixels. This is accomplished instead of the gray profiles of the traditional method. An LBP analysis is
computed for each pixel of the window. The result is a characteristic histogram of the surrounded region of the
landmarks. This fact implies that instead of evaluating over one central pixel, the LBP evaluates over a whole
region. Hence, more information of the area is saved in the training phase and used for recognition.
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(a) (b)

Figure 1. Two different ways to combine LBPs with ASMs. (a) LBP’s histogram for each profile landmark of the contour;
and (b) Quadratic LBP’s histogram for each contour landmark.

In the ASM search we evaluated the LBP’s normal profiles of the contour, see Fig. 1(a), and used it to
obtain the correct boundary adjustment.

A second approach, is to take into account a bigger divided quadratic region, where the central pixel is
the landmark point and its surrounding area is divided into 4 windows of size 5×5 pixels and an LBP was
computed for each window. Resulting histogram of each quadratic zone is concatenated to produce a single one,
see Fig. 1(b).

Both methods take into account the original ASM’s profile-based search but instead of getting a distance of
the gray values or combination of derivative gray values, the histograms are compared against the one of the
PDM training model. Chi distance is used to compute similarities between the new test object histogram, H
and the training histogram, H̄. The smallest distance is where the point boundary moves. The smaller the
distance, the more similar is the test region where the boundary is located, and it leads to a better segmentation
as follows:

X2
(
H, H̄

)
=

∑
i

(
Hi − H̄i

)2(
Hi + H̄i

) (8)

The simplest algorithm starts by obtaining the profile of the landmark point and then calculates its LBP for
each profile point. The point with the smallest Chi distance is to where the contour moves.

In addition, we also evaluated the behavior of three LBP techniques: the uniform LBP, Eq. (5), the number
LBP, Eq. (6), and the median LBP, Eq. (7) with the ASM to compare their performance with the simple LBP
defined in the Eq. (3). The LBP methods performs a 360 degrees calculus of each pixel inside the evaluated area.
This means that all the pixels supply component values to the resulting histogram, independently if it is profile
or divided quadratic region. The result is a more thorough histogram of the gray values existent within the area.

4. EXPERIMENTAL RESULTS

The proposal was evaluated on 10 slices of the midbrain volume using both the ASM/LBP profile and ASM/LBP
quadratic schemes explained in the previous section. Once the volume is segmented, we can compare the results
against the expert segmented data. We used the Dice index, Eq. (9), and Hausdorff distance, Eq. (10), as our
comparison measure, and obtained a value for each ASM/LBP scheme and for the ASM algorithm, as well as
for each slice of the volume. The Dice index, dD, uses the intersected area between the expert and recognized
contours divided by the sum of both areas. The result is a normalized value between 0 and 1 that indicates how
similar are both contours. The closest the value is to 1 the more similar the shapes are. The equation is defined
as follows:

dD =
2× (‖A ∩B‖)
(‖A‖+ ‖B‖) (9)
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Table 1. Dice index and Hausdorff distance for the classic ASM. Dice value is between 0 and 1, values close to 1 indicate
more similar contours. On the contrary, Hausdorff minimal values indicate more alike boundaries in a range from 0 to
100. Bold values are the best values.

ASM

slice Dice Haussdorf

1 0.6619 18.3033

2 0.8441 13.0832

3 0.6652 18.4192

4 0.8342 9.5777

5 0.8984 9.7526

6 0.4632 25.6629

7 0.5044 19.6673

8 0.4604 34.0986

9 0.7563 14.6582

10 0.8833 8.0058

μ (σ) 0.6971 (±0.1730) 17.1229(±8.0789)

The Hausdorff distance, dH , measures how close a point from a first set is from another point of the second
set in a metric space –in our case between two sets of points, P and Q (or boundaries). It is defined as follows:

dH (P,Q) = max {d (P,Q) , d (Q,P )} (10)

where d (P,Q) = min {‖pmax − q‖ |pmax ∈ max {‖p− q‖} , q ⊂ Q, p ⊂ P}; intuitively, d (P,Q) finds the p point
from the set P that is the farthest from any point in Q and measures the distance from p to its closest neighbor
in Q.

Table 1 shows both Dice index and Hausdorff metric for the ASM algorithm. Note that the slice 8 provided
the largest error.

Table 2 and Table 3 summarize the results of Dice index and Hausdorff metric obtained for the profile
ASM/LBP scheme, respectively; whereas Table 4 and Table 5 summarize the results of Dice index and Hausdorff
metric obtained for the quadratic ASM/LBP scheme, respectively.

Fig.2 to Fig.4 show as a representative set, the resulted segmentation for slice 4 on each of the proposed
methods.

One remark from this research is that while the ASM sometimes fails due to the lack of enough training set
and parameters variance, the ASM/LBP improves its result with more certainty and less iterations. This is due
to the deeper analysis of the surrounding texture of the boundary and the way we move the final points to the
desired boundary.

In both cases, profile and quadratic schemes, the join model provides a better adjustment starting from the
initial iterations. And it does not need as many initial training data and/or diminishes the number of iterations
compared to the traditional ASM.

5. CONCLUSIONS

In this paper we proposed a novel algorithm based on ASMs that incorporates the use of LBPs in order to obtain
a better segmentation of midbrain volumes. We used four different LBP approaches: original LBP, uniform LBP,
numeric LBP, and median LBP. We compared their performance using midbrain’s Magnetic Resonance images.
We obtained the best results using first the quadratic LBP algorithm, second the profile LBP, and lastly the
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Table 2. Dice index for the profile ASM/LBP scheme using the original LBP, uniform LBP, number LBP, and median
LBP. Dice value is between 0 and 1, values close to 1 indicate more similar contours. Bold values are the best per slice

slice ASM/LBP ASM/LBPuni
P,R ASM/LBPnum

P,R ASM/LBPmed
P,R

1 0.9500 0.9468 0.9359 0.9535

2 0.9376 0.9474 0.9434 0.9066

3 0.9494 0.9441 0.9199 0.9452

4 0.9661 0.9497 0.9456 0.9618

5 0.9469 0.9353 0.9363 0.8658

6 0.9605 0.8851 0.8856 0.9560

7 0.9391 0.9357 0.9305 0.7320

8 0.9162 0.5949 0.7149 0.8921

9 0.9183 0.8918 0.6572 0.9478

10 0.9294 0.8878 0.8953 0.9391

μ (σ) 0.9414(±0.0166) 0.8919(±0.1076) 0.8765(±0.1032) 0.9100(±0.0700)

Table 3. Hausdorff distance for the profile ASM/LBP using the original LBP, uniform LBP, number LBP, and median
LBP. Hausdorff minimal values indicate more similar boundaries in a range from 0 to 100. Bold values are the best per
slice.

slice ASM/LBP ASM/LBPuni
P,R ASM/LBPnum

P,R ASM/LBPmed
P,R

1 4.1192 4.1700 5.2757 3.8092

2 5.9364 4.8623 5.1902 8.8964

3 4.8918 5.0158 4.7317 6.0091

4 3.6711 3.5921 4.1921 3.9940

5 6.2651 6.6675 5.7891 9.8802

6 3.0250 9.7428 9.2893 3.5945

7 4.9680 5.0747 4.6684 19.2409

8 6.7452 19.5279 22.1255 6.5264

9 7.5991 7.4235 25.5559 5.4839

10 5.7470 6.6885 9.6796 4.1478

μ (σ) 5.2968(±1.4303) 7.2765(±4.6658) 9.6498(±7.7566) 7.1582(±4.7602)
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Table 4. Dice index for the quadratic ASM/LBP scheme using the original LBP, uniform LBP, number LBP, and median
LBP. Dice value is between 0 and 1, values close to 1 indicate more similar contours. Bold values are the best per slice

slice ASM/LBP ASM/LBPuni
P,R ASM/LBPnum

P,R ASM/LBPmed
P,R

1 0.9561 0.9583 0.9517 0.9567

2 0.9518 0.9475 0.9513 0.9527

3 0.9479 0.9476 0.9294 0.9318

4 0.9642 0.9583 0.9636 0.9628

7 0.9382 0.9393 0.8729 0.9382

6 0.9605 0.9619 0.9499 0.9615

7 0.9445 0.9407 0.7624 0.9458

8 0.9212 0.9188 0.9201 0.9199

9 0.9405 0.9278 0.9352 0.9399

10 0.9563 0.9539 0.9515 0.9562

μ (σ) 0.9481(±0.0127) 0.9454(±0.0140) 0.9188(±0.0607) 0.9465(±0.0140)

Table 5. Hausdorff distance for the quadratic ASM/LBP scheme using the original LBP, uniform LBP, number LBP, and
median LBP. Hausdorff minimal values indicate more similar boundaries in a range from 0 to 100. Bold values are the
best per slice.

slice ASM/LBP ASM/LBPuni
P,R ASM/LBPnum

P,R ASM/LBPmed
P,R

1 3.6333 3.5421 3.9367 3.6419

2 4.4091 4.8927 4.5428 4.4132

3 4.8565 4.8846 6.9014 6.6213

4 4.2445 3.6494 4.3348 4.3230

7 7.2998 7.2816 10.5637 7.3323

6 3.0449 2.9318 3.7003 2.9285

7 5.5052 4.9878 19.3020 5.4087

8 5.9460 5.8914 5.9556 5.9516

9 5.9939 5.8320 5.2831 5.9601

10 4.4261 4.3020 4.9274 4.5939

μ (σ) 4.9359(±1.2626) 4.8195(±1.2956) 6.9448(±4.7815) 5.1174(±1.3755)
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(a) (b)

Figure 2. Cranial MR images; the first row shows axial original view and second row shows binary midbrain segmentation;
binary images were augmented 2X for a better visualization. (a) expert annotated boundary; and (b) classic ASM
recognized boundary; the red contour in binary image indicates the expert boundary.

(a) (b) (c) (d)

Figure 3. Profile ASM/LBP scheme midbrain segmentation; binary images were augmented 2X for a better visualiza-
tion. The red contour indicates the expert boundary. (a) ASM/LBP; (b) ASM/LBPuni; (c) ASM/LBPnum; and (d)
ASM/LBPmed
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(a) (b) (c) (d)

Figure 4. Quadratic ASM/LBP scheme midbrain segmentation; binary images were augmented 2X for a better visualiza-
tion. The red contour indicates the expert boundary. (a) ASM/LBP; (b) ASM/LBPuni; (c) ASM/LBPnum; and (d)
ASM/LBPmed

classic ASM method. We also can notice that in the case of the profile ASM/LBP scheme the semiautomatic
process for the initial position is very important and can vary the results, which did not happen in the quadratic
ASM/LBP scheme. For the ASM, this fact causes not to converge correctly. Even though we did not have
enough data to test the algorithm, the quadratic ASM/LBP shows a major performance compared to the other
methods. This is due to the fact that a bigger area that characterizes the midbrain contour is analyzed.

Further research will be devoted to test the algorithm with different data, such as midbrain’s volumes with
deformations or degenerative problems that affect the final shape.
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