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ABSTRACT

This article describes a perceptual approach to calculate the optical flow estimation of the left ventricle in a
short axis view of the heart in computer tomography images. The method is based on the the Hermite transform
which is an image representation model that incorporates some of the more important properties of the first
stages of the human visual system.

Our optical flow estimation approach incorporates a differential method that uses the steered Hermite coef-
ficients as local constraints and uses the implicit multiresolution scheme of the Hermite transform to compute
large displacements. It also involves several of the constraints seen in the current differential methods which
allows obtaining an accurate optical flow.

We use the anatomic short axis view of the heart to calculate the optical flow estimation instead of the
original computer tomography images of the axial plane. This view allows visualizing the left ventricle like a
circular structure, which is more suitable for visualization of the left ventricle motion.

Keywords: Optical flow, differential method, steered Hermite transform, heart’s short axis view, perceptual
approach, heart’s motion

1. INTRODUCTION

Congestive heart failure has increased worldwide due to both left ventricular and right ventricular failure. In the
United States, about 5 million patients suffer from this problem and about 500,000 patients develop this condition
each year. Previously it was due to the left ventricle (LV) pumping blood inefficiently (systolic ventricular failure).
More recently, there has been emphasis on diastolic ventricular failure, where the systolic function appears to be
normal, but diastolic ventricular function is impaired, being the cause of 50% of congestive heart failure in these
patients. In order to develop better treatments for congestive heart failure, it is necessary to first understand
the basic physiology and movement of both normal and abnormal ventricular relaxation and contraction.1

Understanding the movement of certain structures such as left ventricle and myocardial wall is fundamental
for better medical diagnosis. This article describes a method to estimate the left ventricle’s motion in computed
tomography (CT) images. The left ventricle is the principal part of analysis for cardiac images due to the fact
that it presents the most vital function of the heart.

In order to analyze the image sequence we perform a decomposition of the images into visual patterns that are
relevant to the human vision system (HVS), such as directional edges, textures, etc. The Hermite transform2,3

mimics some of the more important properties of early vision such as local processing and the Gaussian derivative
models of receptive fields.2–4 A rotated version of the Hermite transform provides a very efficient representation
of oriented patterns which enables an adaptation to local orientation content at each window position over the
image, indicating the direction of one–dimensional pattern.
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Since the heart is constantly in motion a temporal analysis is required, in this regard we use a differential
approach to optical flow estimation using the Hermite transform,5 which involves several of the constraints seen
in the current differential methods, which allows obtaining an accurate optical flow like local image constraints,
flow piecewise smooth, robust optimization functions and a multiresolution strategy.

In this work, the tomographic studies were analyzed using the short axis view of the heart, which is one of
the three standard planes of the heart, this is due to the fact that the heart is oriented obliquely in the chest
and the original CT images of the axial plane are suboptimal to visualize cardiac anatomy and pathology.

This paper is structured as follows. In Section 2 we present the theory and the mathematical foundations of
the Hermite transform. The optical flow estimation method used is shown in Section 3, which includes elements
that allow obtaining a robust optical flow in a perceptual framework. The results obtained in CT images are
reported in Section 4 and conclusions are given in Section 5.

2. THE HERMITE TRANSFORM

The Hermite transform2,3 is a special case of polynomial transform, it can be considered as an image description
model. In order to calculate the Hermite transform, the original image L(x, y) (where (x, y) are the coordinates
of the pixels) is located at various positions multiplying L(x, y) by the window function v2(x − x0, y − y0) at
positions (x0, y0) that conform the sampling lattice S:

Lv(x− x0, y − y0) = L(x, y)v2(x− x0, y − y0) (1)

By replicating the window function over the sampling lattice, we can define a weight function different from
zero for all (x, y):

V (x, y) =
∑

(x0,y0)∈S

v2(x− x0, y − y0) (2)

Therefore the original image is represented within the window by:

L(x, y) =
1

V (x, y)

∑
(x0,y0)∈S

L(x, y)v2(x− x0, y − y0) (3)

The local information for each analysis window Lv(x−x0, y−y0) is expanded in terms of a family of orthogonal
polynomials Gm,n−m(x, y) where (n−m) and m denote the analysis order in x and y direction respectively.

Lm,n−m(x0, y0) =

∫ ∞

−∞

∫ ∞

−∞

[
L(x, y)v2(x− x0, y − y0)

]
Gm,n−m(x− x0, y − y0)dxdy (4)

The polynomials Gm,n−m(x, y) used to approximate the information within the window are determined by
the analysis window and satisfy the orthogonality condition:∫ ∞

−∞

∫ ∞

−∞
v2(x, y)Gm,n−m(x, y)Gl,k−l(x, y)dxdy = Cnkδnkδml (5)

for n, k = 0, . . . ,∞, m = 0, . . . , n and l = 0, . . . , k; where δnk denotes the Kronecker function (δnk = 1 for
n = k and δnk = 0 for n ̸= k) and Cnk is a normalization factor.

The polynomials Gm,n−m(x, y) are orthogonal with respect to the window function. From a perceptual
point of view, adjacent Gaussian windows separated by twice the standard deviation σ are a good model of the
overlapping receptive fields found in physiological experiments6 and according to the scale–space theory,7 our
option would be a Gaussian window:

v(x, y) =
1

σ
√
π
exp

(
−
(
x2 + y2

)
2σ2

)
(6)
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Figure 1. Analysis and synthesis process of the Hermite transform.

where the normalization factor defines a unitary energy for v2(x, y).

With a Gaussian window function, the associated orthogonal polynomials are the Hermite polynomials:8

Gm,n−m(x, y) =
1√

2nm!(n−m)!
Hm

(x
σ

)
Hn−m

( y
σ

)
(7)

where Hn

(
x
σ

)
represents the generalized Hermite polynomials with respect to the Gaussian function (with

variance σ2) given by Rodrigues’ formula:

Hn

(x
σ

)
= (−1)n exp

(
−x2

σ2

)
dn

dxn exp

(
−x2

σ2

)
(8)

Thus, from Eq. (4) the Hermite coefficients Lm,n−m(x, y) are calculated by a convolution of the original
image L(x, y) with the filter function Dm,n−m(x, y), followed by a subsampling (T ) at position (x0, y0) of the
sampling lattice S (analysis process Fig. 1):

Lm,n−m(x0, y0) =

∫ ∞

−∞

∫ ∞

−∞
L(x, y)Dm,n−m(x− x0, y − y0)dxdy (9)

where Dm,n−m(x, y) = Gm,n−m(−x,−y)v2(−x,−y) and n = 0, 1, . . . ,∞, m = 0, 1, · · · , n.
The filter functions Dm,n−m(x, y) = Dm(x)Dn−m(y) are separable because the Gaussian window is rotation-

ally symmetric. The Hermite filters can be computed by:

Dn(x) =
(−1)n√
2nn!

1

σ
√
π
Hn

(x
σ

)
exp

(
−x2

σ2

)
(10)

Fig. 2 (left) shows the Hermite filters Dm,n−m(x, y) for N = 3 (n = 0, 1, . . . , N and m = 0, 1, · · · , n).
The analysis functions of the Hermite transform are similar to Gaussian derivatives, which, as argued before,

are good models of some of the important retinal and cortical cells of the HSV,4,9–12 where the retina responds
to changes of light and not directly to light, this indicates that the eye works like a spatial differentiator of the
scene ∗. The Gaussian derivatives model filter operations in human vision with the same accuracy as the Gabor
filters, with the advantage that they accomplish this task with fewer parameters.2,4, 12 The free parameters
are the maximum derivative order N , the subsampling factor T and the scale σ which must be related to the
spatial scale of the image structures to be analyzed. Small windows are better to detect fine details and large
windows allow analyzing low resolution objects. The Hermite transform has a multiresolution extension that
allows analyzing objects at different scales.13,14

∗The ganglion cells are known to be spot detectors that have receptive fields that look like [−1 2 1] or [1 −2 1]
so that they sense the local second derivative. The ganglion cells are involved in color vision, they compare signals from
many different cones.
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Figure 2. The Hermite filters Dm,n−m(x, y) for N = 3 (left) and their Fourier transform spectrum (right) for N = 3
(n = 0, 1, . . . , N and m = 0, 1, · · · , n).[

D0,0 D1,0 D2,0 D3,0

D0,1 D1,1 D2,1

D0,2 D1,2

D0,3

]
(x, y)

[
d0,0 d1,0 d2,0 d3,0

d0,1 d1,1 d2,1

d0,2 d1,2

d0,3

]
(ωx, ωy)

In order to recover the original image, an interpolation of the transform coefficients with the synthesis filters

Pm,n−m(x, y) =
Gm,n−m(x,y)v2(x,y)

V (x,y) for n = 0, . . . ,∞ and m = 0, . . . , n is performed followed by an oversampling

and adding all the elements (synthesis process Fig. 1):

L̂(x, y) =
∞∑

n=0

n∑
m=0

∑
(x0,y0)∈S

Lm,n−m(x0, y0)Pm,n−m(x− x0, y − y0) (11)

Fig. 3 (left) shows the cartesian decomposition of the Hermite transform for N = 3 (n = 0, 1, 2, 3) for the
slice 52 of the CT sequence at 20% of the cardiac cycle.

2.1 Steered Hermite transform

Oriented filters are a class of filters that are rotated copies of each filter, constructed as a linear combination of a
set of basis filters.15 The orientation feature of the Hermite filters explains why they are products of polynomials
with a radially symmetric window function (Gaussian function). The N + 1 Hermite filters of order n form a
steerable basis for each individual filter of order n. Because of this characteristic, Hermite filters at each position
in the image are adapted to local content.16 The resulting filters can be interpreted as directional derivatives of
a Gaussian function. In this way, a more general expression of the Lm,n−m cartesian Hermite coefficients can be
written in terms of the orientation selectivity:

lm,n−m,θ(x0, y0) =

n∑
k=0

(
Lk,n−k(x0, y0)

)(
gk,n−k(θ)

)
(12)

where lm,n−m,θ(x0, y0) are the steered Hermite coefficients and gm,n−m(θ) are the cartesian angular functions of
order n that expresses the directional selectivity of the filter:

gm,n−m(θ) =

√( n

m

)(
cosm (θ)

)(
sinn−m (θ)

)
(13)

Proc. of SPIE Vol. 8922  892206-4



l

.

Figure 3. Cartesian (left) and steered (right) Hermite coefficients for N = 2 (n = 0, 1, . . . , N and m = 0, 1, · · · , n) of slice
52 of the CT sequence at 20% of the cardiac cycle.[
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Filters of increasing order n analyze successively higher radial frequencies (Fig. 2 (left)) and filters of the
same order n and different (directional) index m distinguish between different orientations in the image.2 Note
that the radial frequency selectivity dn(ω) is the same for all N + 1 filters of the order n and that these filters
differ only in their orientation selectivity.

In order to obtain the steered Hermite coefficients, the Hermite coefficients are rotated toward the estimated
local orientation, according to a criterion of maximum oriented energy at each window position. For local 1D
patterns, the steered Hermite transform provides a very efficient representation. This representation consists of
a parameter θ that indicates the orientation of the pattern and a small number of coefficients that represent the
profile of the pattern perpendicular to its orientation. For patterns that are locally 1D, steering over θ results
in a compaction of energy into the coefficients l0,n,θ(x, y) = ln,θ(x, y), while all other coefficients are set to zero.
This means that a steered Hermite transform offers a way to describe 1D patterns explicitly on the basis of their
orientation and profile.16

In Fig. 3 (right) we steer the cartesian Hermite coefficients according to maximum energy direction, the angle
θ was estimated using the phase of the gradient, which is a good indicator of the direction of the edges, for this
we use the coefficients L01 and L10 which are a good approach to optimal edge detectors in the horizontal and
vertical directions respectively. It is noticeable that the energy is concentrated in only three coefficients, which
represent the orientation of the different structures of the image.

3. OPTICAL FLOW ESTIMATION

Optical flow estimation is still one of the key problems in computer vision. Estimation of the displacement field
between two images, applies in those situations requiring the correspondence between the pixels of an image to
another.

The optical flow (OF) can be defined as 2D distribution of apparent velocities that can be associated with a
variation of brightness patterns in a sequence of images. It can be represented by a vector field induced by the
motion of objects (or sensor), which encodes the displacement of each pixel in the image.
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Let L(x, y, t) be a image sequence, where (x, y) represents the location within a rectangular image domain
Ω, and t ∈ [0, τ ] denotes time. Let u and v be the displacement of a pixel at position (x, y) within the sequence
of images at a time t to a time (t+ 1) in the directions x and y respectively.

The Optical Flow Constraint proposed by Horn and Schunck17 in 1981 assumes that the intensities of the
pixels of the objects remain constant (Constant Intensity Constraint) and is valid when the displacements are
relatively small (linear):

uLx + vLy + Lt = 0 (14)

where L ∗ := ∂L
∂ ∗ .

As the intensity does not always remain constant from one image to another an independent intensity change
measure is required. In Nagel H.–H. (1983)18 and Nagel H.–H. and Enkelmann (1986)19 a Constant Gradient
Constraint is proposed:

∇L(x+ u, y + v, t+ 1)−∇L(x, y, t) = 0 (15)

Eq. (14) is not sufficient to determine the two unknown functions u and v uniquely (aperture problem). In
order to recover a unique flow field, an additional constraint is therefore required. Horn and Schunck17 assumes
that the apparent speed of the intensity pattern in the image varies smoothly, that is, neighboring points of the
objects have similar velocities (Uniform Smoothness Constraint):∫

Ω

(
|∇u|2 + |∇v|2

)
dxdy = 0 (16)

In general, regularization–based optic flow methods20 assume that the optical flow field should be smooth (or
at least piecewise smooth). In Horn and Schunck17 the basic idea is to recover the optical flow as a minimizer of
the energy functional:

E(u, v) =

∫
Ω

(
(uLx + vLy + Lt)

2
+ α

(
|∇u|2 + |∇v|2

))
dxdy (17)

The first term in Eq. (17) is a data term requiring that the Optical Flow Constraint equation be fulfilled,
while the second term penalizes deviations from (piecewise) smoothness. The positive smoothness weight α is
the regularization parameter.

The Uniform Smoothness Constraint used in Horn and Schunck17 in Eq. (17) causes an over–smoothing at
borders of objects, creating blurry optic flow fields, smoothing in a completely homogeneous way.

In order to reduce smoothing at motion boundaries, one may consider using a flow–driven regularizer:20

E(u, v) =

∫
Ω

(
(uLx + vLy + Lt)

2
+ αΨ

(
|∇u|2 + |∇v|2

))
dxdy (18)

where Ψ
(
s2
)
is a differentiable and increasing smooth function that is convex in s.

The Eq. (14) is valid when the displacements are relatively small. In order to handle large displacements
multiresolution strategies are used.21 In this regard Papenberg et al. (2006)22 proposes a functional that
combines Constant Intensity Constraint, Constant Gradient Constraint, Spatio–temporal Smoothness Constraint
and a multiscale (warping) non–linear approach:

E(u, v) =

∫
f
Ψ
(
|L(x+ u, y + v)− L(x, y)|2 + γ|∇L(x+ u, y + v)−∇L(x, y)|2

)
dxdy

+α

∫
f
Ψ
(
|∇3u|2 + |∇3v|2

)
dxdy (19)
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where Ψ
(
s2
)
yields the total variation regularizer, ∇3u := (ux, uy, ut)

⊤
, f = Ω× [0, τ ] and γ is a weight between

the Constant Intensity Constraint and the Constant Gradient Constraint.

In Moya–Albor et al. (2013)5 we proposed a functional that included local image constraints using the
Hermite transform, our proposal is based on the polynomial decomposition of each of the images using the
steered Hermite transform as a representation of the local characteristics of images from an perceptual approach
within a multiresolution scheme.

There have been previous approaches to motion estimation based on the Hermite transform. Liu et al.
(1997)23 proposed a method that includes a spatio–temporal filtering using the Hermite transform and generalized
motion models, such as the affine model, into a single spatial scale. Silván–Cárdenas and Escalante–Ramı́rez
(2000)24 defined a directional energy in terms of the 1D Hermite transform coefficients of local projections
allowing detection of 1D or 2D spatio–temporal patterns within the 3D stack of images. In Escalante–Ramı́rez
et al. (2004),25 a spatio–temporal energy based method to estimate motion in an image sequences was presented
defining a directional energy in terms of the Radon projections of the Hermite transform.

In Martinez, F. et al. (2011)26 motion patterns in CT images were characterized using a Local Jet Feature
approach, which consists of obtaining an homogenous partition of the frequential spectrum by analyzing the
image at different scales, which are then characterized by a map of partial derivatives of different orders. The
resulting local jet representation is grouped by similarity and the motion is estimated by searching a particular
pixel with the closer Local Jet Feature euclidean distance.

Unlike the above methods of optical flow estimation using the Hermite transform23–25 and Local Jet Feature
in CT cardiac images,26 the present proposal poses a differential approach to estimation using a bio–inspired
image representation model that includes some of the more important properties of the first stages of the human
visual system. It has been shown that differential methods offer better optical flow estimations.27,28 On the other
hand the Hermite transform represents a multiresolution decomposition tool that mimics the behavior of retinal
ganglion cell receptive fields that can be described using the difference of two Gaussian functions at different
scales.29 The proposed analysis filters form a basis allowing to recover the original image as an interpolation of
the transform coefficients with the synthesis filters that are correlated with the analysis filters.

Our global energy functional penalizes deviations from the constancy in the polynomial decomposition of
degree N (n = 1, 2, · · · , N) of images including a Constant Intensity Constraint and Steered Hermite Coefficient
Constraint within an non–linear multiresolution approach:

E(u, v) =

∫
Ω

Ψ

(∣∣∣L0(x+ u, y + v)− L0(x, y)
∣∣∣2 + γ

( N∑
n=1

∣∣∣ln,θ(x+ u, y + v)− ln,θ(x, y)
∣∣∣2))dxdy

+α

∫
Ω

Ψ
(
|∇u|2 + |∇v|2

)
dxdy (20)

where Ψ(s2) =
√
(s2 + ϵ2) is the modified ℓ1 ∗–norm presented in21,30 which is robust in the presence of flow

discontinuities.

The proposed functional, includes the coefficient of order 0 (L0 = L0,0) that contains a smoothed version of
the original image and the steered Hermite coefficients (ln,θ) up to order N where a global change of intensity
of the images on two consecutive times violates the Constant Intensity Constraint, which also allows dealing
with various phenomena, such as translational and rotational motions. Using the steered Hermite coefficients we
obtain rotation invariance.31 This allows defining local image constraints considering constancy in the polynomial
decomposition of images and identifying perceptually relevant visual patterns that represent the most important
characteristics of the image.

For the numerical implementation (see Moya–Albor et al.5) we defined a fixed–point outer iterative scheme
to find a solution for (u, v) of the corresponding Euler–Lagrange equations that satisfy the minimization of Eq.
(20). The non–linear terms of the form f(x + uk+1, x + vk+1) − f(x, y) where k represents the outer iteration
index are expanded with a 1st order Taylor series. Finally, in order to remove the remaining nonlinearity in the
optimization function Ψ we applied a second fixed–point iteration l (inner iteration) for obtaining the increments
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Sequence Angular error ( ◦) Papenberg et al.22 Angular error ( ◦) Moya-Albor et al.5

Dimetrodon 3.03 2.70
Hydrangea 6.94 6.88
Rubberwhale 6.61 7.69

Table 1. Angular errors.

(a) (b)

(c) (d) (e)

Figure 4. Optical flow of the sequence Dimetrodon. (a) Frame 10 of the sequence. (b) Reference color wheel. (c) Ground
truth. (d) Optical flow Papenberg et al. approach.22 (e) Optical flow using the steered Hermite coefficients.

duk and dvk for the outer iteration (k), where uk+1 = uk + duk,l+1 and vk+1 = vk + dvk,l+1 are the solution for
the linear system.

In our approach we use a multiscale strategy21 allowing that linearization of the corresponding Euler–Lagrange
equations be valid. Here a Gaussian pyramid of the image is generated using a downsampling factor η ∈ (0, 1).
The coarse images are obtained scaling L(x, y, t) and L(x+u, y+v, t+1) by a factor ηi for i = M−1,M−2, · · · , 0,
where M represents the number of decomposition levels.

In order to validate our method we compared our implementation with the 2D algorithm of Papenberg et
al.22 using some sequences of benchmarks of Baker et al. (2007).32 As a performance measure we calculated the
angular error (AE ):32

AE = arccos
(−→
U0 ·

−→
U1

)
(21)

where
−→
U0 = (u0, v0) and

−→
U1 = (u1, v1) are two flow normalized vectors and {·} represents the dot product.

We obtained the average error from Dimetrodon, Hydrangea and Rubberwhale sequences for both approaches.
Table 1 shows the angular error for the approach of Papenberg et al.22 and through the steered Hermite
transform.

In Fig. 4(a) we show the optical flow for the frame 10 of the Dimetrodon sequence using the approach of
Papenberg et al.22 (Fig. 4(d)) and the steered Hermite approach (Fig. 4(e)). In order to compare the results in
Fig. 4(c) we show the ground truth of the displacements. To avoid an overlap between the vectors in the dense
optical flow resulting we show the velocity field using a color code (Fig. 4(b)) that encodes the direction (hue)
and magnitude (saturation) of the displacement.
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Parameter name Symbol Value

Hermite Polynomial degree N 3
Downsampling factor η 0.95

Regularization parameter α 50
Local constraint weight γ 90

Parameter name Symbol Value

Decomposition levels M 40
Outer iteration number k 15
Inner iteration number l 50

Table 2. Optical flow parameters using steered Hermite transform approach.

For the optical flow estimation using the steered Hermite transform, we used the parameters of Table 2.
These values were obtained by performing several experiments to get the best result in the Dimetrodon sequence.
Our approach, was implemented in MATLAB R⃝ language in a non–optimized code on a workstation PC (Intel
Xeon R⃝ with 1.8 GHz CPU and 4 GB of RAM), takes about 600 sec to process the optical flow between two
consecutive images. For the implementation of Papenberg et al.22 we used the binaries (calling C++ functions
from MATLAB R⃝) of the author’s website.33 Because different languages used is not possible to compare the
computational cost of both methods.

4. OPTICAL FLOW ESTIMATION IN CARDIAC CT IMAGES

The heart has been extensively evaluated radiologically, but mostly in standard two–dimensional images (e.g.,
X–rays and angiograms of the chest). Standard radiographs of the chest (anterior and posterior) may reveal
the silhouette of the heart, as well as the great arteries and pulmonary vasculature, but cannot show small
structures and easily determine overlapping structures. CT images can be enhanced and manipulated in various
ways. Generally an ionized contrast agent is injected intravenously during scanning, allowing smaller structures
become visible. Moreover, the data can be reconstructed on the computer to provide images through different
planes of the body or three–dimensional images.34

The human body can be viewed in three standard anatomic planes, which are oriented perpendicular to
each other: sagittal, coronal, and transverse. These planes are aligned with the thoracic midline structures, the
aorta and esophagus. In contrast, the heart is oriented obliquely in the chest and therefore imaging in standard
anatomic planes is suboptimal to visualize cardiac anatomy and pathology. The heart’s three standard planes
are its vertical and horizontal long axis and its so–called short axis. These cardiac axes are tilted against the
standard anatomic planes.35

The axial plane (Fig. 5(a)) is the first image plane in CT and usually gives a good overview of cardiac and
coronary anatomy. The long vertical axis (Fig. 5(b)) or two–chamber view is easily produced from the axial
plane, this corresponds to a vertical plane through the cardiac apex and the center plane of the mitral valve
into the left atrium. This view is adequate to delineate the configuration of the left ventricle and to evaluate
contraction of the anterior and lower segment of ventricular left myocardium.35

The short axis view is oriented perpendicular to the vertical long axis and is parallel with the mitral valve
plane and the cardiac base (Fig. 5(c)). The short axis therefore has a double–oblique angulation to account
for the dorsoventral and medioleftlateral tilt of the heart. It can be used to display the right coronary artery
down to the cardiac crux, the posterolateral branches of the distal right coronary artery, and the left circumflex
coronary artery in its course in the left atrioventricular groove. The left ventricle has a circular aspect on short
axis view. Right and left ventricular motion can also be visualized with the short axis view and it is the basis
for volumetric measurements used in global ventricular function evaluation.35

In this work we use the short axis view which was obtained by applying two spatial transformations using
the Amira R⃝ software. The parameters of each transformation were obtained by visualizing the data volume and
rotating the axial and the coronal axis.

The strongest cardiac movement is found during contraction of the atria and ventricles, i.e., during systole,
approximately between 0% and 30% of cardiac cycle. Figs. 6(a) and 6(b) show slice 63 of the short axis view at
0% and 10% of the cardiac cycle (systole) respectively. The resulting optical flow of left ventricle applying the
steered Hermite transform approach is shown in Fig. 6(c). In order to isolate the optical flow of the left ventricle
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Figure 5. The heart’s standard planes of CT sequence at 0% of the cardiac cycle.

(a) Slice 63 at 0% (b) Slice 63 at 10% (c) OF 0–10% of LV

Figure 6. Optical flow estimation of the short axis view between 0–10% of the cardiac cycle.

we applied a basic segmentation scheme using Otsu’s binarization, morphological operators and a region growing
algorithm.

The movement of relaxation during diastole can be seen between 40% to 60% of the cardiac cycle, Fig. 7(c)
show the optical flow of left ventricle between 50% and 60% of cardiac cycle of slice 63 of the short axis view
(Figs. 7(a) and 7(b)) using the approach of the steered Hermite transform.

5. CONCLUSIONS

In this work, we have implemented motion estimation of the left ventricle of the short axis view using a bio–
inspired approach using the steered Hermite transform model which performs a decomposition of the images into
visual patterns that are relevant to the human vision system and mimics some of the more important properties

(a) Slice 63 at 50% (b) Slice 63 at 60% (c) OF zoom 50–60% of LV

Figure 7. Optical flow estimation of the short axis view between 50–60% of the cardiac cycle.
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of early vision such as the behavior of retinal ganglion cell receptive fields. The energy functional used includes
a differential approach which incorporates local restrictions and a multiresolution strategy into a non–linear
framework.

We used the short axis view of the heart that allows analyzing and visualizing cardiac anatomy and pathology
in an optimal plane due to the heart’s oblique orientation in the chest. The optical flow allows visualizing the
left ventricle in the systole and diastole stage of the cardiac cycle. We calculated the displacements at 0% and
10% of the cardiac cycle where the strongest cardiac movement is present during contraction of the atria and
ventricles, i.e., in systole. Also we show the optical flow estimation at 50% and 60% of the cardiac cycle during
the movement of relaxation of the heart (diastole). This allows a better visualization of the contraction and
relaxation motions of the left ventricle which in turn, may help medical diagnosis.

From a visual examination we notice that our algorithm shows clearer and more defined flows of the con-
traction and relaxation motions of the left ventricle, being the study of movement of this structure of major
importance to physicians.

The segmentation and optical flow estimation of the left ventricle presented in this work constitute a first
approximation to understanding the complex heart dynamics. We expect that the accurate optical flow will allow
defining an automated motion–based segmentation of the left ventricle walls and obtaining precise quantitative
measures of the heart’s dynamics by taking advantage of the temporal information.
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