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ABSTRACT  

In this paper, we take advantage from contrast characteristics of our magnetic resonance images improving the 
performance of Active Shape Models (ASM) applied on knee cartilage segmentation. We perform an image fusion-
based contrast enhancement method using time series MRI T2. Then, we apply ASM algorithm and we compare results 
with ASM without contrast enhancement. The results show that the ASM with contrast enhancement performs better and 
is consistent. We validate these results using Dice coefficient and Hausdorff distance.  

Keywords: Segmentation, Active Shape Models, Contrast Enhancement, Gaussian and Laplacian Pyramids, Image 
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1. INTRODUCTION  
Knee Osteoarthritis (OA) [1] is a disease caused by biomechanical stress that affects the articular cartilage and bones of 
the knee. This condition causes pain and malfunction. OA may be present in any of the medial femoral compartments, 
either the tibiofemoral or patelofemoral, according to the location of damaged cartilage. Diagnosis of Knee OA is done 
since the first clinical examination. Pain, morning stiffness and knee swelling in a patient older than 50 years are 
considered as consequences of OA. However, image analysis of the knee also has an important role since it can confirm 
the OA diagnosis, determines compartments involved and evaluates the disease stage. Moreover, it can confirm the 
responsibility of OA in the symptoms and provides information about disease evolution during treatment. Magnetic 
Resonance Imaging (MRI) [2] provides a non-invasive assessment for evaluating the presence and progression of the 
Knee OA [3]. Magnetic resonance can show the soft tissue structures and their boundaries with the bones, without 
significant distortion. Furthermore, MRI does not change the tissue’s dimension and there is not superposition between 
anatomical structures and, more important, it directly visualizes the knee cartilage and its defects [4]. 

Automatic or semiautomatic knee segmentation has been studied for more than 20 years and many approaches have been 
reported, for example: growing regions [5-7], Bezier splines [8], active contours [9, 10], Bayesian classifiers [11] and 
active shape models (ASM) [12, 13]. ASM [14] compute an average shape of the object to segment from a training set 
and a statistical model of minimal parameters that allow the shape to adjust to different objects within a certain range. 
ASM have been widely used in medical image analysis because there is sufficient knowledge about the shape of targeted 
anatomical objects obtained through diverse medical imaging modalities. 

The purpose of our work is to take advantage of the contrast characteristics of Resonance Magnetic Images (volume 
acquisitions in time series) in order to enhance the contrast in the images and therefore, improve the ASM segmentation 
performance in knee cartilage. We test the contrast enhancement method on real data; this is new because, in the original 
paper [15], only synthetic images are presented.  

2. METHODS AND MATERIALS 
In this section, the main characteristics of MRI, segmentation and contrast enhancement algorithms are described. 
Validation metrics of segmentation and contrast enhancement are also discussed. 
 

IX International Seminar on Medical Information Processing and Analysis, edited by 
Jorge Brieva, Boris Escalante-Ramírez, Proc. of SPIE Vol. 8922, 892213 · © 2013 

SPIE · CCC code: 0277-786X/13/$18 · doi: 10.1117/12.2035529

Proc. of SPIE Vol. 8922  892213-1



 

 

2.1 Medical Images  

The images were selected from 16 different volume sets on a 3T MRI system (Siemens Verio). In each set, there are 
11 knee volumes and, in each volume, there are 10 images. The images are in T2* in an echo-time series (Multi-
echo system). Every 7.54 [ms] a new knee volume is acquired by the sequence is called Carr-Purcell-Meiboom-Gill 
[20]. An important characteristic of this sequence is the gradual contrast decrease along the volume acquisition time 
(Figure 1). The images were acquired with a 384 x 384 matrix (0.414-mm in-plane resolution and 3.6-mm slice 
thickness).  

         

2.2 Active Shape Models 

The original algorithm of Active Shape Models (ASM) consists of a statistical shape model derived from a Point 
Distribution Model (PDM) obtained through a set of landmarks on the shape contours. The PDM is used for modeling 
the shape of an object and its variations. 

First, the shapes are aligned using Procrustes Analysis (PA), PA is performed by optimally translating, rotating and 
uniformly scaling the objects. In other words, both the space location and the size of the objects are freely adjusted. The 
aim is to obtain a similar location and size, by minimizing a shape difference measure called Procrustes distance 
between two shapes. 

The PDM is built applying Principal Component Analysis (PCA) to the aligned set (by PA) of shapes represented by 
landmarks. The original shapes ௜ܺ and their representation model ܾ௜(݅ = 1,… ,ܰ), ܰ is the number of variation modes 
(described below), are related by the mean shape തܺ	 and the eigenvectors ܲ: 																																																										ܾ௜ = 	்ܲ( ௜ܺ − തܺ),																															 ௜ܺ = 	 തܺ + ܾܲ௜																												                                 (1) 

 

We can reduce the representation dimensionality using only the eigenvectors of the major eigenvalues. In this case, 
equation (1) turns into an approximation, with an error depending on the magnitude of the excluded eigenvalues. 
Therefore, assuming the data is Gaussian distributed, each component of the vectors ܾ௜ is limited to guarantee only 
plausible shapes are represented: 

                                                 |ܾ௜௠| 	≤ 1																						,		௠ߣඥܣ ≤ ݅ ≤ ܰ,						1 ≤ ݉ ≤  (2)                                                  ,ܯ

 

where ܣ is regularization constant, usually between 1 and 3 (it depends on desired flexibility of model), ܯ is the number 
of used eigenvectors and ߣ௠ are the eigenvalues of the covariance matrix. 

The appearance model is built from a set of Gray Local Profiles (GLP) in the normal direction to the contour at each 
landmark. The GLPs are built from normalized first order derivatives and describe the local intensity variations at each 
landmark positions. The profile equation is: 																																																																																													࢟௦௜ = ࢙݀௜∑ |࢙݀௜௞|௡ೞିଶ଴ ,																																																																																					(3) 
 

where the profile is ࢙௜ = 	 ௜ଵݏ	௜଴ݏൣ  .௜(௡ೞିଵ)൧ and ݊௦ is the size of the profileݏ	…

The next step is to fit the model on interest region. An instance of the model is given by the adaptation of shape ࢄ௜ with 
respect to reference shape ࢄ௥: 																																																																																								ࢄ௜ = ,௜ݏ)ܯ	 ௥ሿࢄ௜)ሾߠ + ࢚௜,																															                                            (5) 

 

where ݏ)ܯ,  ഥ and theࢄ ௥ is  the combination ofࢄ ௜ is the translation and࢚ ,ݏ is a rotation matrix with angle θ and scale (ߠ
model parameters: 
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௥ࢄ																																																																																																		 = ഥࢄ + ܾܲ                                                                                (6) 

 

Combining last equation with (5), the adaptation results in the next equation: 																																																																																			ࢄ௜ = ,௜ݏ)ࡹ ഥࢄ௜)ሾߠ + ܾܲሿ +	࢚௜        (7) 

 

The position parameters are given by ݐ,  and the model parameters are represented by ܾ. The position parameters ߠ	݀݊ܽ	ݏ
represent pose modifications and model parameters represent shape modifications. 

The adaptation pretends mapping the model ࢄ to ࢄ +  The position parameters are adjusted and model parameters .ࢄࢊ
are modified from the deformed version of the shape. The term ࢄࢊ can be written as: 

ࢄ݀                                                                                 = ,௣௢௦ࢄ݀)  ௦௛௣)                                                                        (8)ࢄ݀

 

Where ࢄࢊ௣௢௦ = (૚ + ݀௦, ,ࣂ݀ ࢚݀) and  ݀ࢄ௦௛௣ =  .௕ࢊ்ܲ	

The influence of the position parameters on the shape ࢄ௜ is: 																																																																		ࢄ௔௟௜௚௡ = ௜(1ݏ)ܯ	 + ݀௦), ௜ߠ + ௥ሿࢄሾ(ࣂ݀ + ࢚௜ + ࢚݀                                                   (9) 

 

Where the terms 1 + ݀௦, ௜ߠ + ௜࢚	݀݊ܽ	ࣂ݀ + ࢚݀ are obtained minimizing the equation: 																																																					ܧ௝ = ൫ࢄ௜ ,௝ݏ൫ࡹ− ௝൧ࢄ௝൯ൣߠ −	࢚௜൯்ࢃ൫ࢄ௜ ,௝ݏ൫ࡹ− ௝൧ࢄ௝൯ൣߠ −	࢚௜൯,                                      (10) 

 

 where ࢃ is the identity matrix aimed at giving the same weight at each point. The influence of model parameters only 
modifies ࢄ௥ in the equation (9), hence ࢄ௥ → ௥ࢄ	 +  .௦௛௣ࢄ݀

The distance is ݀ࢄ௦௛௣ is: 																																				݀ࢄ௦௛௣ = 	்ܲ݀௕ = ௜(1ݏቀ൫ࡹ + ݀௦)൯ିଵ,−ߠ௜ − ݀ఏቁ ሾݏ)ࡹ௜, ௥ࢄ(௜ߠ + ࢄ݀ − ݀௧ሿ −  ௥                        (11)ࢄ

 

From the last equation, the new value of ܾ → 	ܾ + ܾ݀ is verified in equation (2). And, if the condition is valid, the next 
parameters are updated:  ݐ௫ + ௫ݐ݀ → ௬ݐ ௫ݐ + ௬ݐ݀ → ߠ																																																																																																		 ௬ݐ + ݀ఏ → 1)ݏ (12)                                                                                ߠ + ݀௦) → ࢈ ݏ + ࢈ࢊ →  ࢈	

The process is repeated by n iterations, either predefined or controlled by a stop criterion. 

2.3 Image Fusion-based Contrast Enhancement 

We enhance contrast using a method that exploits the image characteristics, i.e.: contrast and luminance in time series. 
The method is called Image fusion-based Contrast Enhancement [15], this method takes advantage of these two 
characteristics and, in a multiresolution scheme, fuses both image characteristics getting the contrast enhancement. The 
algorithm can be summarized in the next steps: 
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Step 1: Calculate the image quality measures for each of the input images: 

Contrast:  																																														ܥ௜,௝,௞ = 	 |ܫ∇| = 	ඥ(ݔ)ܫ, (ݕ − ݔ)ܫ + 1, ଶ((ݕ + ,ݔ)ܫ) (ݕ − ,ݔ)ܫ ݕ + 1))ଶ,                                 (13) 

given an input image ݔ)ܫ,  .are the row and column coordinates, respectively ݕ where x and (ݕ
 
Luminance: 																																																												݅ܮ,݆,݇ = ,ݔ)ܫ)ܮ	 ,௢݉	;(ݕ (ߪ = ݌ݔ݁	 ቀ− (ூ(௫,௬)ି௠బ)మଶఙమ ቁ,                                                    (14) 
 
where σ proposed by authors is 0.2 (giving more weight to pixels which value is closer to the mean) and ݉଴ is the mean 
intensity of the original image. 
 
Step 2: For each image obtain the scalar weight map (15) and the normalized scalar weight map using (16). 																																																																																											 ௜ܲ,௝,௞ =  ௜,௝,௞ఉ                                                                        (15)ܮ௜,௝,௞ఈܥ	

 																																																																																								 ௜ܲ,௝,௞ = 	 ൣ∑ ௜ܲ,௝,௞ଶே௞ଶୀଵ ൧ିଵ                                                                    (16) 

 

where ݇ = 1, 2, … , ܰ and ܰ is the number of input images. The weight of contrast and luminance of the metric ܲ uses a 
power function, where ߙ and ߚ are the corresponding weighting exponents (ߙ, 	ߚ > 0), that increase or decrease the 
influence of quality measures. 
 
Step 3: Decompose the input images using a Laplacian pyramid. 

Step 4: Obtain the fused pyramid as a weighted average of the original Laplacian decompositions for each level ݈, with 
the ݈-th level of Gaussian pyramid of the weight map (16) serving as the weights. The fused pyramid is: 																																																																															{ܨ}ܮ௜,௝௟ = 	∑ }ܩ ෡ܹ }௜,௝,௞௟ே௞ୀଵ ௜,௝,௞௟{ܫ}ܮ                                                               (17) 

 

Step 5: Reconstruct the image from the fused Laplacian pyramid. 

 

2.4 Validation 

Validation (quantitative evaluation) aims at measuring the algorithm performance. In our particular case, we wish to 
measure the accuracy of the segmentation algorithm and the fusion-based contrast enhancement performance. An output 
image has been enhanced over the input image if it enables a better perception of image details. A contrast enhancement 
is a difficult task because contrast quantification is hard. Thus, it is necessary to establish measures for defining good 
enhancement. We use Absolute Mean Brightness Error (AMBE) [16], Discrete Entropy (DE) [17], and Edge-Based 
Contrast Measure (EBCM) [18] as quantitative contrast measures, and Dice Coefficient and Hausdorff Distance for 
evaluating segmentation. 

2.4.1 Dice Coefficient 

The DICE coefficient is a similarity measurement between sets. In this case, it is used as a global measure of the existing 
differences between the calculated shape and the reference shape. The coefficient is given by: 																																																																																															ܧܥܫܦ = ଶ(஺∩஻)|஺|ା|஻|,                                                                              (18) 
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where ܣ is the area inside calculated shape and ܤ is the area inside reference shape. DICE coefficient values are between 
0 and 1; the closer the coefficient to 1, the more similar the shapes are. 

2.4.2 Hausdorff Distance 

The Hausdorff distance determines the similarity between two shapes [19]. The Hausdorff distance is defined as the 
maximum distance from a point set to the nearest point of other set points. If ܣ = {ܽଵ,… , ܽ௠	} and ܤ = {ܾଵ,… , ܾ௡	} are 
two point sets, the Hausdorff distance between ܣ and ܤ is: 																																																																													ܣ)ܪ, (ܤ = 	max	(ℎ(ܣ, ,(ܤ ℎ(ܤ,  (19)                                                            , ((ܣ

where  																																																																												ℎ(ܣ, (ܤ = ܽ‖௔∈஺݉݅݊௕∈஻ݔܽ݉	 − ܾ‖                                                             (20) 

 

Equation (20) is properly called the direct Hausdorff distance from the set ܣ to set ܤ, using the underlying norm ‖∙‖ on 
the point sets ܣ and ܤ, and 																																																																												ℎ(ܤ, (ܣ = ܾ‖௕∈஻݉݅݊௔∈஺ݔܽ݉	 − ܽ‖                                                             (21) 

is called inverse Hausdorff distance. The Hausdorff distance is not symmetric. Then, equation (19) considers both cases 
giving a more general definition. 

2.4.3 Absolute Mean Brightness Error 

AMBE is the absolute difference between the Mean Brightness (MB) values of an input image ܺ and an output image, 
for example: 																																																																													ܧܤܯܣ(ܺ, ܻ) = 	 (ܺ)ܤܯ| −  (22)                                                           .|(ܻ)ܤܯ

Where ܤܯ(ܺ)	and ܤܯ(ܻ) are the MB values of ܺ and Y, respectively. The lower AMBE value, the better brightness is 
preserved. 

2.4.4 Discrete Entropy 

The DE of an image measures its content, where a higher value indicates an image with richer details. The DE is defined 
as: 																																																																																		ܧܦ(ܺ) = ∑ (௜ݔ)݌ log൫݌(ݔ௜)൯∀௜                                                                 (23) 

 

Where ݌(ݔ௜) is the probability of the pixel intensity, and it is calculated from the normalized histogram. 

2.4.5 Edge-Based Contrast Measure 

The EBCM is based on the human perception mechanism; it is very sensitive to contours (or edges). The gray level in 
the object edges is calculated by computing the mean value of the pixel gray levels weighted by their edge values. The 
contrast ܿ(݅, ݆) for a pixel of image ܺ located at (݅, ݆) is thus defined as: 																																																																																											ܿ(݅, ݆) = 	 |௫(௜,௝)ି௘(௜,௝)||௫(௜,௝)ା௘(௜,௝)|.                                                                        (24) 

 

Where the mean edge gray level is: 																																																												݁(݅, ݆) = 	∑ ݃(݇, ,݇)ݔ(݈ ݈)(௞,௟)∈ࣨ(௜,௝) ∑ ݃(݇, ݈)(௞,௟)∈ࣨ(௜,௝)⁄                                             (25) 

 ࣨ(݅, ݆) is the set of all neighboring pixels of pixel (݅, ݆), and ݃(݇, ݈) is the edge value at pixel (݇, ݈). The magnitude of 
the image gradient is calculated using the Laplacian operator. The EBCM for image ܺ is thus computed as the average 
contrast value, for example: 
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(ܺ)ܯܥܤܧ																																																																														 = 	∑ ∑ ܿ(݅, ݆)ௐ௝ୀଵு௜ୀଵ ⁄ܹܪ                                                            (26) 

 

Where ܹܪ is the total number of pixels. Then, for an output image ܻ of an input image ܺ, the contrast is improved 
when ܯܥܤܧ(ܻ) ≥  .(ܺ)ܯܥܤܧ

3. RESULTS 
This section shows the results of contrast enhancement and the goal is to find the best fusion option on images. Results 
validation is based on contrast measures described on previous section. Later, taking the images with the best contrast, 
we test segmentation algorithm on femur cartilage. Medical images are in DICOM format. 
 
3.1 Contrast enhancement results 

As mentioned above, we have 11 images of the same slice in each of the 16 selected sets. We selected the slice of the 
fourth volume because it presents the best contrast between bone and cartilage perceptually and, with this image, we 
compare the contrast enhancement results. In Figure 1, slices from different volumes are showed and it is noticeable the 
contrast characteristics we want to use. 
  
 

  
                                                (a)                                                       (b)                                                    (c) 

Figure 1(a) First-volume slice (bright). Figure 1(b) Fourth-volume slice (good contrast). Figure 1(c) Sixth-volume slice (dark). 
 
 
The contrast enhancement algorithm is based on image fusion, and then we fuse the fourth volume slice with the rest of 
corresponding volumes slices (brighter and darker slices). But, in the results graphs, we only show fusion results with 
slices of the fifth, sixth, seventh, eighth and ninth volumes because they are more representative. Fused images are        
evaluated by the following measures: AMBE, DE, EBCM and results are shown in Figure 2. Table 1 shows average 
results of each fusion. 
 
3.2 Segmentation results 

We chose fusing fourth and sixth volume slices (justified on Discussion section). Then, we compare the results with 
ASM segmentation on slices of the fourth volume (Original) and the fused images. Since the ASM require prior training, 
we used the “leave-one-out” method to maximize data usage. The Dice coefficient and Hausdorff distance are the 
metrics used for validating segmentation results (Table 2). Moreover, the best and the worst segmentation result obtained 
on the enhancement contrast images are shown in Figure 3, Image 10 and Image 1 respectively. 
 
The average of Dice coefficients calculated on the original image is (SD) 0.7586 ± 0.1169 and,  on the fusion image is 
0.8155 ± 0.052, and the average of Hausdorff distance calculated on in the original image is 3.3803± 1.2336 and, on the 
fusion images is 2.9158 ± 0.6735. Each segmentation is achieved in 20 seconds approximately. 
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(a)                                                                                          (b) 

 
(c) 

Figure 2(a) AMBE Results. Figure 2(b) DE Results. Figure 2(c) EBCM Results. Results on the original image are shown in 
blue and the best fusion (4-6 fusion) results are in red. 

 
 

Table 1. Average results of AMBE, DE and EBCM for each fusion 
 

Image AMBE avg.  DE  avg. EBCM avg. 
Original - 6.2427 0.1956 
4-5 Fusion 600.4813 6.0476 0.2347 
4-6 Fusion 689.0589 6.0174 0.2626 
4-7 Fusion 731.8271 5.0883 0.2776 
4-8 Fusion 764.6651 5.9662 0.2851 
4-9 Fusion 785.4851 5.9491 0.2899 
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Table 2. For each image, Dice coefficients of ASM with original image and ASM with fusioned image and                 
Hausdorff distances of ASM with original image and ASM with fusioned image. 

 
Image Dice_Original Dice_Fusion Haus_Original Haus_Fus 
Image 1 0.6760 0.7077 2.4755 2.9222 
Image 2 0.7345 0.7814 3.5323 3.3891 
Image 3 0.8063 0.8207 2.7598 2.0835 
Image 4 0.7623 0.7797 3.1228 2.9954        
Image 5 0.8220 0.8908 3.1798 2.6852 
Image 6 0.7442 0.8468 2.2151 1.6756 
Image 7 0.4994 0.7778 4.9496 2.5941 
Image 8 0.7643 0.7639 2.9259 2.7121 
Image 9 0.4848 0.8452 6.7318 3.0975 
Image 10 0.8621 0.8983 3.1684 2.9625 
Image 11 0.8245 0.8241 2.9469 2.8717 
Image 12 0.7750 0.8256 5.2034 5.2466 
Image 13 0.8748 0.7915 2.0863 2.2911 
Image 14 0.8407 0.7724 3.4308 3.5774 
Image 15 0.8006 0.8367 2.7630 2.9529 
Image 16 0.8671 0.8863 2.5940 2.5955 

 
 

 
(a)                                                                                      (b) 

Figure 3(a) the best segmentation result is on Image 10 and Figure 3(b) the worst segmentation result is on Image 1 
 

4. DISCUSSION 
Based on the segmentation results, we note that contrast enhancement improves, in most cases, the segmentation results 
of knee cartilage. Furthermore, we proved ASM segmentation performs better with contrast enhancement images, since 
it depends mainly on gray levels and their distribution profiles. The average results of Dice coefficient and Hausdorff 
distance are improved with the contrast enhancement and their variance also decreases in comparison with segmentation 
on original images. However, in some patients with advanced Knee OA and, who have no cartilage left, is not substantial 
since there is little to segment. This is a serious problem for the ASM algorithm because there are not gray level 
variations, so the algorithm. Fortunately, ASM always provides plausible shapes and landmarks are correlated between 
themselves. Therefore, the failures are not so serious but.   
From a purely perceptual opinion, we chose the 4-6 fusion. However, using the results of AMBE, DE and ECBM, we 
conclude the following: The average ECBM of fused image is greater than the average ECBM of the original images 
and, although subsequent fusions shown better ECBM, the difference between 4-5 fusion and 4-6 fusion is high and the 
difference between 4-6 fusion and 4-7 fusion has a significant decay. Furthermore, the greater is the number of the 
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fusion image, the worse are the AMBE and Entropy results. If AMBE increases and Entropy decreases means quality 
image is affected. In the particular case of entropy, if it decreases, the image loses details and sharpness decays. For 
these reasons, we chose 4-6 fused images, because they have equilibrium on AMBE, DE and ECBM metrics. The 
contrast enhancement technique fits perfectly with the characteristics of our images. 
 

5. CONCLUSION AND FUTURE WORK 
In this paper, we have used known methods: ASM and Fusion-based Contrast Enhancement, but they had not been tested 
together before. 
The contrast enhancement method presents good results in [15] but, this work did not evaluate its test results on a real 
application or on real data. Our images are very well suited to test the proposed contrast enhancement method: they 
belong to the same data set but each one has a different contrast. This characteristic totally depends on the pulse 
sequence used during image acquisition. Commonly, knee cartilage is acquired in different sequences, mainly T1, but, 
using the former sequence, we pretend to find something additional to just the cartilage size or thickness. Additionally, 
we also carried out a relaxometry study.  
Relaxometry characterizes a tissue depending on the relaxation time T2, by fitting an exponential curve. This time is 
very important for diagnosis OA because an elevated T2 time suggests biomechanical changes on cartilage 
(deterioration) suggesting that the patient is likely to develop this disease [21]. 
The segmentation results show that contrast enhancement improves segmentation performance, proving our hypothesis. 
A better contrast implies a gradient increment, thus a better region differentiation. The knee cartilage segmentation is 
necessary because we want to estimate T2 time over this specific zone. Our results are good and useful, however, there 
are a lot of methods that improve ASM performance, and some of them use descriptors and transforms. We could 
compare results in order to select the best in a future work. 
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