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ABSTRACT

Emphysema is associated with the destruction of lung parenchyma, resulting in abnormal enlargement of
airspaces. Accurate quantification of emphysema is required for a better understanding of the disease as well
as for the assessment of drugs and treatments. In the present study, a novel method for emphysema charac-
terization from histological lung images is proposed. Elastase-induced mice were used to simulate the effect of
emphysema on the lungs. A database composed of 50 normal and 50 emphysematous lung patches of size 512
x 512 pixels was used in our experiments. The purpose is to automatically identify those patches containing
emphysematous tissue. The proposed approach is based on the use of granulometry analysis, which provides the
pattern spectrum describing the distribution of airspaces in the lung region under evaluation. The profile of the
spectrum was summarized by a set of statistical features. A logistic regression model was then used to estimate
the probability for a patch to be emphysematous from this feature set. An accuracy of 87% was achieved by our
method in the classification between normal and emphysematous samples. This result shows the utility of our
granulometry-based method to quantify the lesions due to emphysema.
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1. INTRODUCTION

Emphysema is defined as the abnormal permanent enlargement of the airspaces distal to the terminal bronchi-
oles, accompanied by destruction of their walls and without obvious fibrosis.1 Human emphysema was originally
described by Ruysch in Amsterdam by the end of the 17th century and in the 19th century by the French
physician Laennec, who noted marked variations in the size of the air vesicles.2 Usually, emphysema manifests
as a component of chronic obstructive pulmonary disease (COPD) in smokers. However, emphysematous lung
destruction has also been reported in other non-smoking-related disorders such as HIV infection or hypersensitiv-
ity pneumonitis.2 The clinical syndrome of COPD includes airflow obstruction, small airway inflammation and
lung parenchyma (alveolar) destruction. In addition, extrapulmonary manifestations such as muscle wasting,
osteoporosis and anemia are related to this disease.2 Mortality and morbidity from COPD is an increasingly
serious global health problem. It is worth noting that COPD ranked sixth among the causes of death globally
in 1990 and it is expected to be the third most common cause of death in 2020.3 Therefore, in order to prevent
other health complications, accurate characterization of emphysema is required for the development of efficient
treatment options.
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A method for quantifying emphysema is required to evaluate the stage of the disease as well as to assess
the benefit derived from experimental treatments. Animal models such as elastase-induced emphysema mice
have been previously used for the assessment of therapeutic approaches based on histological ex vivo analysis
of the lungs. In this context, suitable metrics for the evaluation of the degree of emphysematous lesions from
histological samples are required. Several descriptors have been previously defined for this purpose. The mean
linear intercept Lm is the simplest technique for emphysema quantification.4 It is given by the mean length of
air segments. To compute Lm, a finite set containing samples of these segments is extracted from the image. For
this purpose, a grid is placed on the patch depicting the lung tissue. The intercept between the grid lines and
the alveolar tissue walls are detected. An air segment is then identified as the portion of the grid line between
two consecutive intercepts. The variable Lm has been the metric of reference for emphysema analysis during the
last decades. However, Parameswaran et al.5 showed that it presents two main drawbacks. First, Lm depends
on the shape of the airspaces. Hence, even in the case similarly sized airspaces are found in different lung tissue
images, the value of Lm may vary from one to another because of their shape. In addition, Lm has shown to be
unable to detect emphysematous regions characterized by a heterogeneous distribution of the airspaces. Regions
with a single large airspace surrounded by smaller ones will result in a small value of Lm, which could be wrongly
interpreted as the absence of emphysema. To overcome these limitations, Parameswaran et al.5 developed a set
of descriptors derived from a diameter variable (d), which is obtained by approximating the original airspace by
a circle of equal area. The radius of this circle determines the value of the equivalent diameter of the airspace.
As a result, the dependence on the shape of the airspace is avoided. The moments of the variable d are proposed
as a measure of the degree of emphysema. Recently, its second moment (D2) has shown to be a useful measure
to evaluate the utility of microcomputed tomography (micro-CT) for the quantification of lung damage.6

In our study, we propose a novel method for emphysema characterization using granulometry analysis. Gran-
ulometry is based on the use of area morphology operators.7 Unlike standard morphology, area operators do not
impose any shape restriction determined by a specific structuring element. Instead, any connected component
with an area smaller than that used as threshold will be identified. Therefore, the boundaries of an object in
the image are not distorted, resulting in better classification.8 A pattern spectrum is obtained by computing
the difference between successive opening versions of the original image.9 Subsequently, a set of descriptors or
features is extracted from this spectrum in order to perform image classification.8,10 Previously, image analysis
using granulometry has been successfully applied to different scenarios such as industrial production11 or medical
diagnosis.12

Granulometry suitably adapts to emphysema characterization since it allows exact quantification of the area
of airspaces in the lung image. Hence, accurate statistical modeling of the airspace size can be obtained. In our
research, we used a multivariate pattern analysis approach to determine the degree of emphysema in a given
tissue sample. It is based on the characterization of the pattern spectrum derived from granulometry analysis.
From the segmented version of the lung image, in which alveolar tissue and air are distinguished, granulometry
provides the probability density function of the variable s representing the size of the airspace. The first four
standard moments of this variable are used as the features. They describe the statistical behavior of the airspace
area. Subsequently, the feature vector is fed into a logistic regression model trained with emphysematous and
control tissue samples.13,14 The output of this model can be interpreted as the probability for a lung tissue image
to be emphysematous. The purpose of this research work is to provide a novel metric for emphysema assessment.
As the equivalent diameter method proposed by Parameswaran et al.,5 our approach does not depend on the
shape of the airspaces. In addition, it aims to serve as a preliminary stage to automatically obtain a probability
map of emphysema affectation.

The paper is organized as follows. In the second section, a description of the image acquisition process and
the dataset used in this study is provided. The third section includes a description of the proposed method
for emphysema characterization. The experimental results obtained by this method are provided in the fourth
section of the paper. In the fifth section, the properties of the method are discussed, resulting in the main
conclusions of the study.
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2. IMAGE DATASET

2.1 Animal preparation

All experimental protocols involving animal manipulation were approved by the University of Navarra Experi-
mentation Ethics Committee. To simulate the parenchyma damaged caused by emphysema, treated mice were
intratracheally instilled with 6 units per 30 g of porcine pancreatic enastase (PPE, EC134GI, EPC, MI, USA),
as described in a previously published protocol.15 Control animals were instilled with a saline solution.

2.2 Image acquisition

Lung lobe sections were obtained using an automated Axioplan 2ie Zeiss microscope (Carl Zeiss, Jena, Germany).
Each slide was initially acquired with a Plan-Neofluar objective (numerical aperture NA = 0.035, magnification
1.25x, pixel resolution 3.546 µm/pixel). The automatic threshold method proposed by Otsu16 was then applied
to detect all tissue areas. The size of the objects was measured and only objects with a reasonable size to
represent entire sections of lung lobes were considered for further processing. For each object, a bounding box
was created and the coordinates of its four vertices were sent to the microscope. Then, an automatic routine
scanned those areas with a Plan-Neofluar objective (NA = 0.3, 10x, 0.725 µm/pixel). Some overlap was allowed
between image fields to facilitate the creation of large mosaics. The Stitcher ImageJ plugin17 was used for it.
The resulting mosaics were stored in a server for quantitative analysis. Four lung lobe sections were assessed
in the present study. These were identified as emphysematous or normal cases according to the criterion of an
expert. A total of 50 normal and 50 emphysematous patches of size 512 x 512 pixels were manually extracted
from these sections. Figure 1 shows one of the lung sections and two patches extracted from it.

3. METHODS

The methodology proposed in our study is composed of three stages. In the first one, the original patch containing
a region of the lung is segmented in order to differentiate between alveolar tissue and airspaces. The second
stage involves the characterization of this patch. For this purpose, feature extraction is performed through
granulometry analysis. In the third stage, the feature vector is used to assess the probability that the original
lung patch corresponds to an emphysematous region. A description of these stages is provided in the following
subsections.

3.1 Image segmentation

Initially, a gray-level version of the original patch is obtained by retaining its green channel as color does not
contain useful information for the problem.4–6 The lung patch is then segmented in order to identify airspaces
in the image. Segmentation was performed by following the conventional combination of binarization together
with erosion and dilation operations.18 Original images depict alveolar tissue surrounding airspaces, which are
the focus of our analysis. Image thresholding using the Otsu’s method16 was applied to obtain a binary version
of the image. Its pixels denote tissue (black) or air (white) elements. To remove artifacts, erosion and dilation
operators were applied. As a result, a more accurate definition of the frontiers (tissue) between airspaces is
obtained. Figure 2 depicts the results from each step of the segmentation process: original gray-level image,
binarization, erosion and dilation.

3.2 Feature extraction

Once segmentation is completed, airspaces are identified in the lung patch. The subsequent stage involves the
characterization of these airspaces using granulometry analysis. For accurate emphysema quantification, the
purpose is to model the probability density function of the variable s representing the size of an airspace in the
image. The pattern spectrum provided by granulometry represents an estimation of this function. Granulometries
are obtained by the repeated application of multiscale non-linear filters, which are implemented by means of a
morphological operator. In our study, morphological opening at scale s will be used to filter the binary segmented
image. This operation is expressed as follows:

Is = X ◦Bs (1)
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Figure 1. Example of a mosaic depicting a section of the lung and two patches of size 512 x 512 pixels. Top patch:
parenchyma tissue without signs of damage; bottom patch: parenchyma tissue severely damaged that reproduces
parenchyma destruction occurring in the lungs of patients.

Figure 2. Segmentation of lung patches using binarization, erosion and dilation operators.
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where X is the input binary image, Bs denotes the scale operator and Is is the resulting image. The scale
operator Bs will reject connected components with an area smaller than s pixels regardless its shape.8 In the
context of our problem, airspaces (white) of area less than s pixels will be set as tissue samples (black).

As the scale operator Bs is increased, Is+1 = X ◦ Bs+1 is a subimage of Is. The decreasing function h(s)
quantifies the total number of pixels remaining after each successive opening. It is worth noting that there exists
K (0 ≤ K ≤ N2) such that for any s ≥ K the function achieves h(s) = 0, where the binary image X is supposed
to have dimensions N x N pixels. The scale variable s represents the area of the airspaces and can be considered
as a random variable. Hence, its cumulative density function F (s) can be obtained as:

F (s) = 1− h(s)
h(1)

(2)

where h(1) denotes the total area of air in the original binary image. The value of F (s), as expressed by
equation (2), denotes the probability of finding an airspace with area equal or less than s in the image. Therefore,
the probability density function of this variable is computed by means of the discrete derivative of F (s), which
is defined by the following expression:

f(s) = F (s)− F (s− 1) = −h(s)− h(s− 1)
h(1)

1 ≤ s ≤ N2 (3)

The function f(s) represents the pattern spectrum derived from granulometry analysis of the binary image
X.10 Its value estimates the probability for an airspace of area s to be found in X.

We propose using the first four standard moments to characterize the statistical behavior of s. Therefore,
mean (µs), variance (σ2

s), skewness (γs) and kurtosis (δs) were computed from f(s). They estimate the central
tendency, the degree of dispersion, the asymmetry and the peakedness of this function, respectively.13 An exact
definition of these features is given by the following equations:

µs =
∑

i

sif(si) (4)

σ2
s =

∑
i

(si − µs)2f(si) (5)

γs =
∑

i(si − µs)3f(si)
σ3

s

(6)

δs =
∑

i(si − µs)4f(si)
σ4

s

(7)

Therefore, the feature vector z = (µs, σ
2
s , γs, δs) composed of these four statistical moments was used to

describe the information contained in each of the patches.

3.3 Probability estimation and classification

A logistic regression (LR) classifier was used to estimate the probability for a lung patch to be an emphysematous
region from its corresponding feature vector z. LR linearly relates z with a response variable (t) via a link function.
The variable t indicates the categorical decision about the input tissue sample. Thus, it represents two possible
categories or classes: t = 1 (emphysema) or t = 0 (normal). The probability density function of t is then modeled
by a binomial (Bernoulli) distribution given by:

p(t|π) = πt(1− π)1−t (8)

Proc. of SPIE Vol. 8922  892211-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/26/2013 Terms of Use: http://spiedl.org/terms



where π, the expected value of the variable t, provides the probability of being an emphysematous region
(t = 1).13,14

The aim of LR is to express π as a function of the feature vector z. For this purpose, it is assumed that the
value of π depends on the linear combination of the input features, i.e., π = π(l) with l = w0 +

∑4
i=1 wizi and

the vector w = (w0, w1, ..., w4) representing the set of model adaptive parameters or weights. This functional
dependence is modelled by LR using the logistic function:13

π(l) =
el

1 + el
(9)

Classification algorithms based on LR are usually applied to two-class problems as that proposed in the present
study. The Bayes’ decision rule14 can be applied since posterior probabilities for both categories are directly
obtained. The posterior probability for the emphysema group p(t = 1|z) is given by π. Thus, the posterior
probability for the normal tissue category is computed as p(t = 0|z) = 1−p(t = 1|z). Therefore, according to the
Bayes’ rule, an image (identified by the vector z) is assigned to the group for which its corresponding posterior
probability is higher. In other words, since π denotes the probability for a lung patch to be emphysematous, it
will be considered as emphysema if p(t = 1|z) ≥ 0.5 and normal otherwise.

The weight vector w of the LR model is adjusted (training) from a finite set of sample images from both
categories: emphysema and normal. The iterated re-weighted least squares (IRLS) algorithm is used to find the
parameters of the LR classifier.19 It ensures a rapid optimization process according to the maximum likelihood
principle.

4. RESULTS

To analyze the utility of the proposed approach in emphysema characterization, the utility of each extracted
feature was initially assessed in order to determine its discriminant capability. Subsequently, the most informative
features were used to estimate the probability of emphysema using LR analysis.

4.1 Analysis of the extracted features

Initially, we analyzed the information obtained from granulometry analysis of the lung tissue patches. For this
purpose, Figure 3 shows an example of four pattern spectra corresponding to four different patches (two of them
are emphysematous while the other two are normal tissue samples). The area value is normalized by the size of
the window (512 x 512 pixels) used in the analysis. As it can be observed, higher probability is associated with
larger airspaces in the case of patches containing emphysematous tissue. In contrast, the probability density
function of normal patches tends to be concentrated in small values.

The differences found in the profile of the probability density functions from both tissue types were captured
through the first four standard moments. In order to evaluate the discrimination ability of these features, we
analyzed the statistical properties of each of them. The non-parametric Kruskal-Wallis test was performed
to evaluate the occurrence of significant differences between the distribution of each feature in normal and
emphysema groups.13 Table 1 summarizes the p-value for each of the four features proposed in our study. The
results reflect that features (µs), (σ2

s) and (γs) provided statistically significant differences (p-value < 0.001)
between both groups. However, (δs) provided a substantially higher p-value, showing that this feature does not
provide useful information to discriminate between emphysematous and normal patches. We then discarded this
feature for posterior multivariate analysis using LR.

4.2 Probability estimation and classification results

The three features identified as discriminant were used to estimate the probability of emphysema for a lung patch
by means of LR analysis. As described before, the output of the LR model represents the probability that a patch
corresponds to an emphysematous area of the lung, which is denoted by p(t = 1|z). Thus, this probability value
can be used to classify the patch as emphysematous, p(t = 1|z) ≥ 0.5, or normal, p(t = 1|z) < 0.5. Accuracy
Acc was adopted as the performance measure to evaluate the utility of LR classifiers.14 It is defined as the
probability of correct response and is estimated as the percentage of samples correctly classified:
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Figure 3. Pattern spectra derived from four patches of the lung parenchyma: two normal and two emphysematous regions.

Table 1. Results from Kruskal-Wallis test for each of the extracted features.

Feature set p-value

Mean (µs) 4.10e−13(< 0.001)

Variance (σ2
s) 4.45e−9(< 0.001)

Skewness (γs) 6.47e−13(< 0.001)

Kurtosis (δs) 0.06 (> 0.001)

Acc =
Tp + Tn

Tp + Fn + Tn + Fp
(10)

where Tp (true positives) is the number of emphysematous patches correctly classified, Tn (true negatives)
is the number of normal patches correctly classified, Fn (false negatives) is the number of misclassified emphy-
sematous patches and Fp (false positives) is the number of misclassified normal patches. In addition, Acc can
be expressed in terms of sensitivity (Se) and specificity (Sp). They indicate the number of emphysematous and
normal patches correctly classified, respectively. These statistics are respectively estimated as:

Se =
Tp

Tp + Fn
(11)

and

Sp =
Tn

Tn + Fp
(12)

Additionally, receiver operating characteristic (ROC) analysis was performed.20 Unlike Acc, Se and Sp, ROC
analysis suppresses the requirement for a threshold by appraising the performance of a classifier over its whole
range of possible values. A plot of Se versus 1 − Sp is made over the evaluated thresholds to obtain the ROC
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curve. The area under the ROC curve (AUC ) provides a quantitative index for classification performance. This
index varies from 0.5 (no apparent accuracy) to 1.0 (perfect accuracy) as the ROC curve moves towards the left
and top boundaries of the graph. AUC represents the probability of correct classification for a randomly chosen
pairs of samples.

Four different LR-based algorithms were implemented to model the probability associated with emphysema.
Three of them had a single input variable by separately using each of the discriminant features. The fourth LR-
model corresponds to a multivariate approach based on the combination of the three selected features as inputs.
Leave-one-out cross-validation was adopted to estimate the performance of these algorithms. Table 2 shows the
classification results achieved in the emphysema detection problem. To compare the diagnostic capability of the
four models, Figure 4 depicts the ROC curves provided by them. As can be observed, the multivariate LR model
provided the highest performance with a diagnostic accuracy of 87% and an AUC of 0.95. This approach takes
into account the information provided by the three selected features to estimate the probability of emphysema.
As a result, it substantially improved the individual performance of each feature. It is worth noting that, when
features are processed individually, the mean µs reached the highest accuracy with a correct classification rate of
80% and an AUC of 0.91. The results indicate that the proposed methodology is capable of accurately identifying
emphysema regions.

Table 2. Classification results achieved by the implemented logistic regression models for probability of emphysema. Se:
sensitivity; Sp: specificity; Acc: accuracy; AUC: area under the ROC curve.

Feature set Se (%) Sp (%) Acc (%) AUC

Mean (µs) 70 90 80 0.91

Variance (σ2
s) 60 86 73 0.81

Skewness (γs) 76 82 79 0.91

All selected (µs - σ2
s - γs ) 84 90 87 0.95

5. DISCUSSION AND CONCLUSIONS

A novel method for automatic characterization of emphysema from histological lung analysis has been proposed.
The statistical distribution of the airspaces in a lung patch was approximated by means of granulometry analysis.
The first four standard moments were proposed to capture the properties of this distribution. From these features,
a LR model was implemented to assess the probability for the patch to be emphysematous.

Granulometry has shown to be a useful tool to characterize lung tissue regarding emphysema. In our study, a
correct classification rate of 87% and an AUC of 0.95 were achieved on a database composed of 512 x 512 patches
from both normal and emphysematous regions of the lung. However, the main attribute of the proposed method is
the ability to quantify the probability of a given patch being affected by parenchyma damage. There is an inherent
subjectivity on visual evaluation of this disease.21 Thus, for a given lung patch, the diagnosis may differ between
experts. Binary classification between normal and emphysematous categories does not accurately characterize
the patch under evaluation. Instead, methods for automatic quantification of emphysema are expected to provide
the probability that such a patch is emphysematous. Our approach has been designed following this idea. A
LR-model was used to assign the probability of a given patch being emphysematous using a simple feature vector
derived from granulometry analysis. Interestingly, the proposed method could be used to build a probability
map for the whole slide to identify those regions at higher risk of emphysema.

This probabilistic approach represents a step forward with respect to previous methods for emphysema
quantification such as the mean linear intercept (Lm)4 or the equivalent airspace diameter (d).5 The latter
has been recently pointed out as the most feasible quantitative measure of emphysema.6 As described by
Parameswaran et al.,5 the value of the moments derived from d is not influenced by the distribution of airspace
sizes. Hence, it is possible to identify emphysematous lung areas with a heterogeneous distribution of the
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Figure 4. ROC curves provided by each of the logistic regression models implemented in this paper

airspaces (i.e., numerous small airspaces surrounding one large airspace). It is worth noting that this property
is also achieved by the pattern spectrum computed by means of granulometry analysis, reflecting the robustness
of our method for emphysema characterization. Furthermore, the proposed approach is not influenced by the
shape of the airspaces. This behavior is due to the use of morphological area operators, which are not subject to
the definition of a structuring element with a specific shape.8,10 Instead, only the area of connected components
is taken into account when morphological opening and closing operations are performed on the original image.

A critical design issue of our method is given by the choice of the window size that defines the lung patch
to be analyzed. In our experiments, lung patches of size 512 x 512 pixels were processed. It is worth noting
that the selection of the patch size involves a trade-off between the spatial resolution and the quality of the
pattern spectrum derived from granulometry analysis. The latter is an approximation to the probability density
function of the random variable s that represents the size of the airspaces contained in the image. A more
accurate approximation will be obtained when the number of airspaces considered for its computation is higher.
To achieve this, larger lung patches must be evaluated. However, increased window sizes result in lower spatial
resolution as a larger region of the lung is analyzed. Therefore, further analysis about the influence of the patch
size on the proposed characterization method is required.

The main limitation of our research is given by the fact that the presented method does not enable fully auto-
matic analysis of the whole section of the lung tissue. A previous segmentation stage would be needed to achieve
this condition. This initial segmentation must distinguish the limits of the lungs from the external zones as well as
from the cuts of the lung tissue with blood vessels and bronchioles. Our method for emphysema characterization
assumes that lung patches to be processed were previously segmented according to these requirements, i.e., they
do not contain any spurious. For this purpose, the dataset evaluated in our experiments was composed of lung
patches manually selected from the whole section of lung tissue. Therefore, future research work must address
the development of this previous segmentation stage. In addition, the comparison of the proposed approach with
the state-of-the-art methods such as the mean linear intercept (Lm) or the equivalent airspace diameter (d) must
be considered in further analysis. On the other hand, a study on the number of samples evaluated is required to
validate the presented method as a standard metric.

In summary, the proposed method enables emphysema characterization from ex vivo histological analysis of
the lung. An elastase-induced mouse model of emphysema has been used for the experiments. Our approach
is based on granulometry analysis of the lung tissue, which enables exact quantification of the area of airspace
enlargements and is not affected by the variability of the airspace size. As an improvement over other previous
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metrics, our method estimates the probability for a lung region to be emphysematous. Therefore, it could be used
to obtain the probability associated with emphysema for a given region of the lung. The resulting probability
map would provide an accurate characterization of its severity, indicating which areas of the lung are the most
affected. This result could be of great interest to assess the effect of drugs and treatments for emphysema.
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