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Abstract-This research presents a novel way of represent
ing human motion and recognizing human activities from the 
skeleton output computed from RGB-D data from vision-based 
motion capture systems. The method uses a representation of the 
skeleton which is invariant to rotation and translation, based on 
Orthogonal Direction Change Chain Codes, as observations for a 
single Discrete Connected Hidden Markov Model formed by a set 
of multiple Hidden Markov Models for simple activities, which 
are merged using a grammar-based structure. The purpose of 
this research is to provide a service robot with the capability 
of human activity awareness, which can be used for action 
planning with implicit and indirect Human-Robot Interaction. I 
2 Keywords-Hidden Markov Models, Activity Recognition, Motion 
Recognition, Human-Machine Interaction, Pattern Recognition, 
Machine Learning, Viterbi Path 

I. INTRODUCT ION 

In daily life, human beings perform activities to accomplish 
diverse tasks at different times throughout the day. These 
activities are by one or several simpler activities which are 
performed at different times, and these simple activities have 
a chronological relationship to each other. 

For human activity recognition, there are two techniques 
for recognizing activities from movement: Template Matching 
and State-Space [1]. In the Template Matching techniques, 
the image sequence is converted in a static shape pattern 
and is compared against a set of reference patterns; it is 
computationally inexpensive, but it is more sensitive to the 
variance of the movement duration. On the other hand, the 
State-Space techniques define a model where each static 
posture is a state and the states describing several poses are 
connected by probabilities of transition, and any motion is 
considered as a graph tour through various states of static 
poses. 

A. Space-State Human Activity Recognition 

Space-State models have been used widely to predict, 
estimate, and detect time series over a long period of time. 
One representative model is the Hidden Markov Model [2], 
which is a probabilistic technique to study discrete time series, 
which is recently being used for recognizing human motion. 
There are two approaches for recognizing human motion and 
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activities using Hidden Markov Models, the first approach, 
and the most used, is the Maximum Likelihood Probability, 
where the likelihood probabilities of the elements of a set of 
isolated Hidden Markov Models are computed from a sequence 
of observations, and the motion or activity is selected from the 
Model with the highest likelihood [2]. The other approach is 
Viterbi Path Labelling, which is based on the computation of 
the Viterbi Path on a single Hidden Markov Model where a 
single state or a subset of linked states represent a motion or 
activity, the sequence of states in the Viterbi path indicates 
which motion or activity is being performed in a period of 
time, according to a sequence of observations. 

B. Human Activity Recognition Based on Maximum Likeli
hood Probability 

Several architectures and types of HMMs have been used 
for activity recognition from Maximum Likelihood Probability, 
such as Conditional HMMs, Ergodic HMMs, Linear HMMs, 
and Maximum Entropy Markov Models. Conditional HMMs 
have been used for human activity recognition and human
object interaction using the skeleton computed from the depth 
data and the image data of a Microsoft Kinect sensor [3]. 
Ergodic HMMs have been used for recognition of actions 
which can be used for interaction with video games from a 
Spherical Histogram for the joints of the skeleton computed 
from the depth data of a Microsoft Kinect sensor [4]. Linear 
HMMs have been used for recognition of leg motion and hand 
gestures from labeled body parts from depth data acquired 
with a PrimeSense camera [5]; recognition of actions which 
can be used for interaction with video games from a Bag of 
3-D Points from the depth data of a Microsoft Kinect sensor 
[6]; classification of golf swings from the skeleton computed 
from the depth map of Microsoft Kinect sensor [7]; Maximum 
Entropy Markov Models detection of human activity both in a 
structured fashion, as well as in an unstructured fashion, using 
geometrical and location information from Skeleton Joints, and 
Histograms of Oriented Gradients from image and depth data 
of a Microsoft Kinect sensor [8], [9]. 

C. Human Activity Recognition Based on Viterbi Path La
belling 

Activity recognition with Viterbi Path Labelling has been 
applied with several architectures and types of HMMs, such 
as Coupled HMMs, Ergodic HMMs, and Connected Linear 



HMMs. Coupled HMMs have been used for health monitor
ing from interactions of respiration and brain activity [10]. 
Ergodic HMMs have been used for recognition of actions 
on video sequences from Residual Motion Vectors in images 
sequences [11]; recognition of gestures of the upper body from 
Pictorial Structures on segmented images [12]; detection of 
fence climbing on surveillance video using the Star Skeleton 
of a segmented image blob [13]; modelling of individual and 
group interactions from the combination of multiple audio 
and video sources [14]. Connected Linear HMMs have been 
used for transcription of motion from a set of Distributed 
Body Sensors [15]; recognition of human activity from the 
location of the hands and the head captured with a Stereo 
Camera [16]; gait detection and discrimination between walk 
and jogging activities by analysing the output of a set of 
body-worn Inertial Motion Units [17]; recognition of human 
behaviour from image and skeleton from depth data, captured 
with a Microsoft Kinect sensor [18]. 

D. Data Sets 

The acquisition of skeleton data from depth images is 
the most recent approach for marker-less motion capture, it 
is becoming widespread among the human activity research 
community because depth sensors, as the Microsoft Kinect 
sensor, have become more affordable and widely available. As 
the skeleton captured by these depth sensors has a different 
format than the most widely used motion capture databases, 
such as CMU-MMAC [19], CMU Motion Capture Database 
[20], HDM05 [21], KUG Data Base [22] and TUM Kitchen 
Data Set [23]; the human activity research community has 
been creating datasets based on depth sensor data (Table I), 
using the work of James Shotton [24] on real time human 
pose recognition, and depth sensors based on PrimeSense 
technology, such as the Microsoft Kinect sensor. 

II. PROPOSED ApPROACH 

In this research, the MSR Daily Activity 3D dataset is used 
for training and testing the activity recognition system. In the 
training stage, the code book of key frames is built from the 
Orthogonal Direction Change Chain Codes of the clustered 
skeletons of each activity, and the Discrete Connected Hidden 
Markov Model is built from the Linear Hidden Markov Models 
which have the largest likelihood probability for each activity. 
In the testing stage, a sequence of observations symbols is 
computed from a sequence of Orthogonal Direction Change 
Chain Codes, using techniques of fuzzy string search on the 
codebook of key frames; this sequence of observation symbols 

Dataset Depth Color Skeleton 

CAD-60 [8] • • • 
G3D [25] • • • 

Ki nee! +S R 400 [26] • • 
URIS [27] • • 

MSR Action 3D [6] • • • 
MSRDailyActivity3D [28] • • • 

MSRC-12 [29] • • • 
RGBD-HuDaAcl [30] • • • 

UCF Kinecl [31] • • 

TABLE I: Data Sets Based on PrimeSense technology Depth 
Data 

is used as input to the Discrete Connected Hidden Markov 
Model to compute the most likely sequence of hidden states, 
which indicates activities which are being performed during 
the motion capture. 

A. Orthogonal Direction Change Chain Code 

The digitization stage is based on the Orthogonal Direction 
Change Chain Code [32], which digitizes three-dimensional 
curves into a set of codes which represent orthogonal direction 
changes between three constant length segments of a three
dimensional curve (u, v, w) (Equation 1), which are aligned 
to the corners of a three-dimensional grid with constant-sized 
cells. 

As the orthogonal direction changes are relative, these 
Chain Codes have some interesting properties: invariance to 
translation, invariance to rotation, invariance to mirroring and 
invariance to starting point. The invariance to rotation and 
translation allow to represent a large set of curves generated by 
absolute direction changes, such as orthogonal 3-D Freeman 
codes, using only one Chain Code [33]. 

There are five different orthogonal direction changes for 
representing any three-dimensional curve (Figure 1), as ex
plained in the work of Bribiesca [32]: 

• The Chain Element "0" represents a direction change 
which goes straight through the contiguous straight-line 
segments following the direction of the last segment. 

• The Chain Element" 1" represents a direction change to 
the right. 

• The Chain Element "2" represents a direction change 
upward (stair-case fashion). 

• The Chain Element "3" represents a direction change to 
the left. 

• The Chain Element "4" represents a direction change 
which is going back. 

0, ifw = v; 
1, ifw=uxv; 

chain element( u, v, w) = 2, if w = u; 

3, if w = -(u x v); 
4, ifw =-u 

JrfjJ 
Fig. 1: Orthogonal Direction Change Chain Elements 

(1) 

1) Digitization of a Three-Dimensional Curve: In order 
to convert a set of three-dimensional lines into a set of line 
segments of constant length, the first step consists in aligning 
the vertices, if E ]R3 and if E ]R3, to the corners of the three
dimensional grid, by rounding the values of if and if, according 
to the smallest distance on each axis between the vertex and the 
neighbour values on the grid, gi and gj, obtaining the vertices 
it and ql (Equation 2). 



·f � < � < g,x+g}x < � . t gix _ Vx --2 - gjx' 
otherwise 

• _ -+ giy+gjy -+ . tf giy � Vy < --2- < gjy' 
otherwise 

ifgc < iJ < g,%+g}z < g� . . tz - z 2 Jz' 
otherwise 

(2a) 

(2b) 

(2c) 

(2d) 

(2e) 

When the distance between two vertices on the three
dimensional grid is longer than the size of the cell, addi
tional vertices on each axis are added to the line from the 
components of the Manhattan distance of iI and ql, where 

d(iI, ql) = Iii x - q'x l + lily - q'v l + Iii z - q'z l [34], to 
compute a set of constant-length line segments between two 
vertices. 

Finally, the Chain Codes are computed by taking three 
consecutive line segments, starting from the first line segment, 
and applying the rules of orthogonal direction changes to 
compute the corresponding chain element (Figure 2). 

23 233 

Fig. 2: Example of Chain Code Sequence 

B. Digitization of Three-dimensional joint data 

The three-dimensional joint data is captured by a three
dimensional vision system, such as the Microsoft Kinect, 
which acquires the joint data by analysing the depth map 
captured by the sensor. The skeleton data is digitized to Chain 
Codes (Figure 3) for generating a set of key frames which 
represent the motion of the arms. 

There are a couple of factors which have significant impact 
in the digitization of the skeleton data to Chain Codes: the 
noise of the sensor and the angle of orientation of the body. The 
former affects the length of each limb, resulting in Chain Codes 
of variable length; while the latter affects the proportion of 
orthogonal segments along a Chain Code, which has negative 
effects in the algorithms which match Chain Codes. 

1) Length of the Parts of the Body: The length of the body 
parts of the skeleton which are captured by the Microsoft 
Kinect sensor experiment variation in their measures either 
by noise on the sensor of the camera, loose clothing on the 
subject who is being recorded or limitations on the precision 
of the algorithm which computes the location of each joint in 
the skeleton, in order to keep a fast capture rate. When this 
noisy data is converted to a set of Chain Codes, the length 

. 
'\ / i '\ �- " 1 

I. I 
(a) Depth Map 

Skeleton 
(b) Digitized Skeleton 
(42mm Segments) 

Fig. 3: Digitization of a Depth Map Skeleton 

each element of the set varies according to the length of the 
corresponding body part. 

In order to correct those vanatlOns, from the original 
skeleton is built a skeleton made of unitary vectors and is 
scaled by a reference length which in this case is equal 
to 170 mm, the length of the head and neck joints of the 
skeleton which is captured by the Microsoft Kinect sensor and 
processed by OpenNI. 

2) Orientation of the Body: An issue with the matching of 
Chain Codes from skeletons captured by three-dimensional vi
sion sensors is the orientation angle of the torso of the subject: 
the visual analysis of skeletons made of orthogonal direction 
vectors shows that the same pose has varying proportions of 
orthogonal direction vectors, according to the orientation angle 
of the subject to the camera, which changes the apparent pose 
of each limb [35]. 

In order to avoid that issue, the orientation of the skeleton is 
normalized by applying two rotations to the skeleton, the first 
rotation is computed using the normal vector N of the triangle 
formed by the joints of the torso PI, the left shoulder P2 and 
the right shoulder P3 which is aligned to the axis i of the 
camera by computini the rotation matr�x R which transforms 
the normal vector N into the vector Z, using the Rodrigues 
rotation formula (Equation 16) [36]. The whole skeleton S is 
rotated by the matrix R to get a skeleton, Sz, which is aligned 
to the the axis i of the camera (Equation 17). 

Once the normal vector of the body has been aligned 
towards the line of vision of the camera, the second rotation is 
computed using the tp vec!or of �he body, w

�
hich is computed 

from the up vector U = TL + TR, where TL = PI + P2 and 
T� = PI + P3, and PI, P2, P3 are the joints of the torso, the 
left shoulder and the right shoulder; the up vector tJ is aligned 
to the vertical axis of the world Y, by computing the rotation 
matrix R which transforms the up vector tJ into the vector Y, 
using the Rodrigues rotation formula (Equation 30). The whole 
skeleton Sz is rotated by the matrix R to get a skeleton, SZy, 
which is aligned to the vertical axis of the world (Equation 
31).This skeleton SZy is digitized to get a set of Chain Codes 
which describe each limb and analyse motion using this data. 



J = (X,y,z) 

S = {j1,j2,j3'" j13,j14,j15} 

PI = Sjg 
P2 = S13 
P3 = Sj6 
T� =P2 -PI 
TR = P3 -PI 
T� =T� xT� 
Z=(O,O,l) 
e = cos

-1 (T�. z) 
ZxT� f = ----=0------='----

IIZxT�11 

1= [6 � �l 
0 0 1  [ 0 -r-; r-; 1 

N(f) = r-;� 0 -r-; 
-ry r-; 0 

R = 1 + sine * N(f) + (1 - cos e) * N(f)2 

Sz = S * R 

Sz = (j1,12,j3'" j13,j14,j15) 

PI = SZig 
P2 = SZi3 
P3 = SZi6 
T� = P2 -PI 
T� =P3 -PI 
T"7; = T� +T� 
Y = (0, 1, 0) 

e = cos
-1 (T"7;. Y) 

Y x T"7; f = ----=,----____=_-
Ilf x T"7;11 

1= [6 � �l 
0 0 1  

[ 0 -r-; r-; 1 
N(f) = r-;� 0 -r-; 

-ry r-; 0 

R = 1 + sine * N(f) + (1 - cos e) * N(f)2 

SZY = Sz * R 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

To eliminate the ambiguity which is posed by the properties of 
invariance of the Orthogonal Direction Change Chain Codes, 
before the computation of the Chain Codes from the set 
of constant length segments, three orthogonal segments are 
appended at each end (Table II). These orthogonal segments 
indicate the position of each limb at the ends (hands or feet), 
relative to the joint at the middle of the joint sequence (neck 
or hip). 

Chain Codes I x y I z I Chain Codes I x y I z I 
211 + - - 433 + + -
213 + - + 431 + + + 
233 - - - 41 I - + -
231 - - + 413 - + + 

TABLE II: Relative Position Chain Codes 

These Chain Codes work on the premise that the orthogonal 
segments which are used to generate the digitized curve from 
the Orthogonal Direction Change Chain Codes have the values 
of {(O, -1, 0), (0, 0, -I)}, for the left end, and the values of 
{(O, 1,0), (0,0, I)} , for the right end. 

A benefit of these additional Chain Codes is that if the 
set of reference Chain Codes is organized in a prefix tree, the 
lookup of Chain Codes is directed to the branches which have 
the same prefix, resulting in a reduction of the lookup time. 

C. Motion Analysis 

The skeleton by itself is useful for analysing motion, since 
each limb has 3 degrees of freedom, which accounts for a 
large number of combinations of motions and angles which 
can be used to extract relevant information about how a limb 
is moving. 

1) Splitting the skeleton: To make easier the analysis of 
the motion and as the subjects of interest can be the arms or 
legs, the skeleton is split into upper limbs and lower sections, 
according to the Table III. The purpose of those joint sequences 
is for computing a Chain Code which covers both sides of each 
section in a consecutive manner. 

Joint Sequence 

Upper Section Left Hand, Left Elbow, Left Shoulder, Right Shoulder, 
Right Elbow, Right Hand 

Lower Section Left FOOl, Left Knee, Left Hip, RighI Hip, RighI Knee, 
RighI Foot 

TABLE III: Joints of upper and lower sections 

2) Fast Levenshtein Distance: One way of measuring the 
similarity between two strings of characters is by computing 
the amount of single character edits which are required to 
change a string into the other. This measure, also known as 
editing distance, can be computed by the Levenshtein function 
[37], which calculates the editing distance between two strings 
by counting the minimum number of insertions, deletions and 
substitutions between characters using dynamic programming 
techniques. Similar strings have a short Levenshtein distance 
between them, while the dissimilar strings have a long Leven
shtein distance. 

The Levenshtein function can be used to compute the 
editing distance between strings of any length, however the 
cost to compute it has order O(mn), where m, n are the 
lengths of the strings. And when the closest match of a string 
is searched in a set of strings, this cost is multiplied by the 
number of elements a in the set of strings, resulting in a total 
computing cost of O(mno). 

One approach to reduce the computing cost of string is by 
arranging the strings in prefix order, allowing the Levenshtein 
distance table to be reused for similar strings as well as limiting 



the growth of the distance table by appending or removing 
rows at the bottom. A data structure which is very useful for 
such purpose is the trie or prefix tree [38], which is a n-ary 
tree where the position on the tree defines the associated key, 
all the descendent nodes share a prefix, and the leaves store 
the values. 

The search of a string on the trie starts by initializing a 
global minimum cost, which is used as criteria to keep going 
deeper on the trie. The next step consists in computing the 
Levenshtein distance between the current character on the 
string and all the nodes on the next depth level, the global 
minimum cost is updated to the minimum Levenshtein distance 
computed previously. The updated global minimum cost is 
used as flag to keep searching on the internal nodes whose 
minimum costs are lesser than the global minimum cost. The 
search is repeated until there are no minimum Levenshtein 
distances which are smaller than the global minimum cost [39], 
[40]. 

D. Learning Model 

The purpose of this work is to analyse human behaviour 
by recognizing the activities which are performed by a person. 
Human activity has the properties of being both complex and 
dynamic, since a person can be performing any action, which 
can be a pose or a motion, and suddenly change to another 
action. 

1) Hidden Markov Models: The learning model for activity 
analysis is based on Hidden Markov Models, which are statis
tical Markov Models in which the signal or process to model 
is assumed to be a Markov Process with unobserved states 
[2]. In this research, the hidden variable is an activity which is 
being performed in a period of time, and the observed variable 
is a symbol from the code book of key frames. The sequence 
of key frame symbols of each limb (observations) is used as 
input, either as a training sample or to figure out which activity 
is performed from a set of observations. The Hidden Markov 
Model for a simple activity is trained using Viterbi Learning 
[41] on a set of sequences of observations of variable length, 
which represent repetitions of the same activity. The purpose of 
the training is to recognize different motions and poses which 
can be performed with the arms. 

2) Connected Hidden Markov Model: The learning model 
proposed for this work is a large Hidden Markov Model which 
is formed by connecting of several small Hidden Markov 
Models [42], which can recognize a single activity (Figure 4), 
to a common initial state Bm and a common final state Em. 
The common initial state Bm has equal emission probabilities 
for each symbol and equal transition probabilities to any of the 
initial states of the motion and pose recognition models, and 
the common final state Em has a transition which returns to 
the common initial state Bm to restart the recognition process 
(Figure 5). This configuration allows to detect transitions 
between activities by returning to the common initial state Bm 
after a change in the sequence of observations which has low 
probability to be emitted in a certain set of states. 

Fig. 4: Hidden Markov Model for Single Activity Recognition 

Fig. 5: Connected Hidden Markov Model for Continuous 
Activity Recognition 

The first step for building the Connected Hidden Markov 
Model is to train every individual HMM for activity recogni
tion with Viterbi Learning, using several combinations of states 
and a training set of motion sequences, which are performed 
by a group of persons. The Viterbi Learning algorithm is 
selected for training the Hidden Markov Models because the 
topology of each individual Hidden Markov Model is already 
defined and the computing of the transition probabilities is 
performed deterministically over the topology of the model, 
which ensures that all the connected states are not isolated. 

The selection of the best HMM starts by computing the 
Likelihood Probability of a set of sequences of observations 
of every activity in the testing set, using a set of HMMs which 
recognize the same activity, and whose amount of states ranges 
from 3 to 16 states. At the end of this testing stage, the HMMs 
which have the Likelihood Probability for a target activity are 
selected for building the Connected Hidden Markov Model. 

Once all the best individual Hidden Markov Models are 
selected, the construction of the Connected HMM starts by 
removing the transitions to the states Band E of each indi
vidual activity recognition model, the next step is to connect 
the common initial state Bm to the first state of each individual 
Hidden Markov Model, and the last step is to connect the final 
state of each individual motion/pose recognition model to the 
common final state Em. 

The activity of a limb is labelled by computing the opti

mal sequence of states ,Q, using the Viterbi algorithm on a 

sequence of observations, 6, which is obtained by classifying 
the Chain Codes of digitized skeleton joints against the code 
book of key frames. The sequence of states goes from the state 
Bm, through all the states which belong to a certain activity, 
and the state Em to return to the beginning of the Connected 
HMM, where depending on the changes on the sequence of 

observations 6, the sequence of states Q can go through the 
states which described the former motion or can go through 
the states of other activity. 

S1 S2 S3



III .  TESTS 

The purpose of the tests is to prove that simple activities 
can be recognized using three dimensional joint data, digitized 
as Three-Dimensional Chain Codes, as input for a set of 
Hidden Markov Models which recognize motion as a sequence 
of discrete key frames. 

A. Input Data 

The tests were performed using the Microsoft Research 
Daily Activity 3D Data set (MSRDaily) [28], which was 
captured by using a Microsoft Kinect device. The data set is 
composed by 16 activities, a) drink; b) eat; c) read book; d) call 
cellphone; e) write on a paper; 1) use laptop; g) use vacuum 
cleaner; h) cheer up; i) remain still; j) toss paper; k) play game; 
I) lay down on sofa; m) walk; n) play guitar; 0) stand up; and 
p) sit down which are performed by 10 persons, who execute 
each activity twice, once in standing position, and once in 
sitting position. There is a sofa in the scene. Three channels 
are recorded: depth maps (.bin), skeleton joint positions (.txt), 
and RGB video (.avi). There are 16 * 10 * 2 = 320 files for 
each channel. The whole set is formed by 320 * 3 = 960 files. 
For the purpose of this work, only the skeleton joint positions 
were used as input for the activity recognition system. 

The training of the Hidden Markov Models for each activity 
in the MSRDaily data set was done by selecting the activities 
of the first 6 subjects, and a validation test was performed with 
this training set; the last 4 subjects were used as input for tests 
with unknown data. All the skeletons were normalized and 
oriented to the axes Y and Z, using the algorithms specified 
at Section II-B2. 

For this work, a discrete Hidden Markov Model is used 
to recognize activities, therefore, a code book of symbols is 
needed as input for the model. The symbols are generated 
from a reference set of skeletons, which is computed by 
applying Linde-Buzo-Gray Vector Quantization [43] to the set 
of normalized skeletons. From this set of skeletons, a code 
book is generated for the key frames of the motion of the 
arms. 

A control group of Hidden Markov Models for the ac
tivities of the arms is computed with Viterbi Training, using 
observations based on the average Euclidean distance between 
the joints of each skeleton of the training set and the joints of 
a code book of skeletons. 

The activity recognition using Chain Codes is performed 
on skeletons which are digitized at a set of decreasing three
dimensional grid resolutions (17mm, 42mm, 68mm). For each 
resolution, the key frames are generated by digitizing the 
reference set of skeletons. For each activity, a Hidden Markov 
Model is computed with Viterbi Learning, using the with the 
observations based on the similarity measures between the 
Chain Codes of the training set and the Chain Codes of the 
code book of key frames. 

For both groups, each activity is trained on a set of Hidden 
Markov Models with increasing amount of states, ranging from 
3 to 16 states, which have the topology specified in the Section 
II-D2. 

The first test is the Single Model Test, whose purpose 
is to find the amount of states where each Hidden Markov 

Model has the highest likelihood probability, to select the 
model which is more capable of recognizing an activity by 
using the testing set as input. From the results of this test, 
the Hidden Markov Models which have the highest likelihood 
probability are used to build the Connected Hidden Markov 
Models for Activity Labelling. 

The second test is applied to the Connected Hidden Markov 
to find out if it is able to label a set of testing data, which 
is formed by a set of 10 routines, formed by activities of 
the MSRDaily data set, that are performed by each person 
of the testing set (Tables IV, V). The test is performed by 
computing the Viterbi Path of each input routine, the path is 
segmented using the lengths of each activity. Within each sub
path, the states which are consecutive or related are counted, 
and that count is divided by the length of the sub path to get 
a percentage of the amount of observations which are labelled 
correctly by a subset of the Hidden Markov Model, which 
ranges from [0.0· . ·1.0]. 

Test I Test 2 Test 3 

activity example activity example activity example 

remain still 2 remain still 2 remain still 2 

walk I sit down 2 walk 2 

remain still 2 eat I lay down on sofa I 
sit down 2 remain still 1 sit down 2 

remain still I call cellphone I 
stand lip I 

call cellphone 2 

Test 4 Test 5 

activity example activity example 

remain still 2 remain still 2 

toss paper 2 sit down 2 

remain still 2 eat 2 

cheer lip 2 drink 2 

walk I stand lip I 
walk I 

TABLE IV: Set of Test Activities for Viterbi Path Labelling 
Test (Standing Start) 

Test 6 Test 7 

activity example activity example 

remain still I remain still I 
lay down on sofa 2 stand up 2 

remain still 2 walk 2 

stand up I sit down I 
Test 8 Test 9 

activity example activity example 

remain still I remain still I 
use vacuum cleaner I stand lip 2 

remain still 1 walk 2 

use laptop 1 sit down 2 

standup 2 remain still I 
walk I 

sit down 2 

write I 
Test 10 

activity example 

remain still 1 

stand up 2 

walk 2 

sit down 2 

remain still I 

TABLE V: Set of Test Activities for Viterbi Path Labelling 
Test (Sitting Start) 

Regarding this test, two details must be pointed out. The 



first detail is that the activities of the MSRDaily data set start 
either from a standing position or a sitting position; and the 
other detail is that the routines are built by concatenating the 
motion data without any motion segmentation. Thus, for both 
cases, the Viterbi Path can show states which are not related 
to the activities indicated in the routine. 

IV. RESULT S 

The results on the Activity Labelling Tests show that 
a Connected Hidden Markov Model which uses Orthogonal 
Direction Change Chain Codes as observations, has a slightly 
inferior accuracy at recognizing activities than a Control Con
nected Hidden Markov Model which uses Average Euclidean 
Distance of Joints as observations (Tables VI, VII, VIII, IX). 

Viterbi Path Labelling Accuracy(%) 

Routine Test Subject 1 Test Subject 2 Test Subject 3 Test Subject 4 

1 28.70% 1.30% 23.07% 42.59% 

2 31.04% 12.65% 38.40% 50.10% 

3 38.79% 24.79% 27.61% 23.93% 

4 39.11% 3.30% 29.18% 32.86% 

5 31.55% 8.83% 26.56% 33.78% 

6 29.87% 10.30% 32.62% 35.02% 

7 9.87% 13.95% 9.91% 30.71% 

8 1.94% 6.98% 8.73% 25.14% 

9 15.79% 13.30% 4.22% 65.86% 

10 4.90% 7.67% 2.20% 52.18% 

TABLE VI: Viterbi Path Labelling Accuracy (Arms, Normal
ized Skeleton, Euclidean Distance Classifier, 256 Symbols) 

Viterbi Path Labelling Accuracy(%) 

Routine Test Subject 1 Test Subject 2 Test Subject 3 Test Subject 4 

1 18.24% 4.36% 21.35% 20.22% 

2 16.67% 9.31% 15.97% 10.18% 

3 15.46% 18.70% 21.79% 19.26% 

4 25.76% 14.34% 22.05% 20.23% 

5 28.87% 12.58% 15.70% 22.76% 

6 21.39% 8.66% 24.22% 4.63% 

7 30.13% 11.82% 7.55% 27.66% 

8 19.17% 8.65% 15.29% 21.17% 

9 11.13% 6.76% 2.53% 5.15% 

10 19.33% 11.50% 11.14% 16.89% 

TABLE VII: Viterbi Path Labelling Accuracy (Arms, 17mm 
ODC3, Levenshtein Distance Classifier, 256 Symbols) 

Viterbi Path Labelling Accuracy(%) 

Routine Test Subject 1 Test Subject 2 Test Subject 3 Test Subject 4 

1 31.37% 2.24% 22.70% 14.81% 

2 40.06% 3.34% 22.43% 16.17% 

3 29.28% 25.96% 23.67% 13.25% 

4 51.87% 19.54% 23.27% 27.98% 

5 33.73% 22.37% 18.42% 22.88% 

6 34.41 % 3.58% 22.08% 7.24% 

7 27.24% 8.72% 11.95% 17.98% 

8 4.74% 6.32% 10.76% 10.98% 

9 4.86% 1.39% 2.17% 12.94% 

10 10.95% 11.50% 3.67% 9.67% 

TABLE VIII: Viterbi Path Labelling Accuracy (Arms, 42mm 
ODC3, Levenshtein Distance Classifier, 256 Symbols) 

V. CONCLUSIONS 

In this research, it was presented the first steps in the 
development of a system for natural interaction with robots, by 

Viterbi Path Labelling Accuracy(%) 

Routine Test Subject 1 Test Subject 2 Test Subject 3 Test Subject 4 

1 14.46% 6.24% 6.99% 22.22% 

2 5.96% 9.31% 6.08% 9.58% 

3 18.66% 28.21% 18.34% 16.44% 

4 27.05% 15.36% 15.70% 14.78% 

5 37.50% 23.10% 10.86% 19.73% 

6 22.34% 5.67% 17.24% 6.51% 

7 27.50% 13.18% 20.13% 21.44% 

8 13.57% 9.23% 11.98% 18.21% 

9 4.35% 5.79% 1.45% 6.19% 

10 25.00% 14.83% 23.90% 18.94% 

TABLE IX: Viterbi Path Labelling Accuracy (Arms, 68mm 
ODC3, Levenshtein Distance Classifier, 256 Symbols) 

recognizing human actIvIties from data of three-dimensional 
sensors, such as the Microsoft Kinect sensor, using Orthog
onal Direction Change Chain Codes for digitization of three
dimensional joint data, and Hidden Markov Models for activity 
recognition. The Orthogonal Direction Change Chain Codes 
provide a way of digitizing joint data which is invariant 
to rotation, translation and mirroring, which simplifies the 
matching against a set of key frames, which represent positions 
in the motion range of a limb. 

A Connected Hidden Markov Model to recognize activities 
with repetitive motion was proposed for motion recognition. 
The results of the tests showed that the Connected Hidden 
Markov Model is capable of recognizing activities in standing 
and sitting positions. The follow-up for this work is to integrate 
spatial information to the motion analysis to enhance the 
classification of motionless activities as well as performing 
a thorough research on techniques of fuzzy string search, to 
enhance the accuracy of the classification Chain Codes. 
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