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Abstract. Since Daugman found out that the properties of Gabor filters
match the early psychophysical features of simple receptive fields of the
Human Visual System (HVS), they have been widely used to extract tex-
ture information from images for retrieval of image data. However, Gabor
filters have not zero mean, which produces a non-uniform coverage of the
Fourier domain. This distortion causes fairly poor pattern retrieval ac-
curacy. To address this issue, we propose a simple yet efficient image
retrieval approach based on a novel log-Gabor filter scheme. We make
emphasis on the filter design to preserve the relationship with receptive
fields and take advantage of their strong orientation selectivity. We pro-
vide an experimental evaluation of both Gabor and log-Gabor features
using two metrics, the Kullback-Leibler (DKL) and the Jensen-Shannon
divergence (DJS). The experiments with the USC-SIPI database confirm
that our proposal shows better retrieval performance than the classic Ga-
bor features.

Keywords: Gabor filters, Image retrieval, Jensen-Shannon divergence,
Log-Gabor filters, Texture analysis.

1 Introduction

Due to the massive amount of digital image collections, visual information re-
trieval has become an active research area. The content-based image retrieval
approach (CBIR) is based on extracting the content of visual information such
as color [1] or textures [2] and its goal is to retrieve images from a data bank
using features that best describe objects in a query image [3]. Image characteri-
zation by feature extraction is used to catch similarities among images. Hence, it
is a crucial stage in CBIR. Theoretically, having more features implies a greater
ability to discriminate images. However, this is not always true, because not all
features are important for understanding or representing a visual scene [4].
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Texture is one of the most important features in image retrieval [5], [6]. It
provides a robust mathematical description of the spatial distribution of gray
levels within a bounded neighborhood and refers to visual patterns that have
properties of homogeneity [7]. However, texture characterization is not an easy
problem because some spatial patterns can be quite simple as stripes while others
can exhibit complex behavior like those in natural images. From a mathematical
point of view, it is usual to analyze the spatial distributions as intensity variations
from deterministic –where textures contain periodic patterns– to randomness –
where textures look like unstructured noise. Since texture is a fundamental image
property that describes a perceptually homogeneous region, the HVS requires
that textures can be extracted and processed in an optimal way.

Spectral methods for characterizing textures have proven to be powerful tools
[8]. These methods collect a distribution of filter responses and extract features
from the first and second order statistics [9]. Especially, the use of Gabor fil-
ters in texture analysis was motivated due to the studies of Daugman on visual
modeling of simple cells. He found out that the experimental findings on orienta-
tion selectivity of visual cortical neurons were previously observed by Hubel and
Wiesel in human beings and cats [10], [11], [12]. Gabor filters represent time-
varying signals in terms of functions that are localized in both time and frequency
domains. These functions described by the product of a Gaussian function and
a sinusoid constitute a unique family of linear filters that behave optimally in
the sense that their simultaneous resolution in both domains is maximal [13].

Manjunath and Ma in [14] proposed a method for texture analysis. The input
images are filtered using a set of Gabor filters and the mean and standard de-
viation are taken to build a feature vector. Their method is generally accepted
as a benchmark method for texture retrieval. However, Gabor filters have not
zero mean, which produces a non-uniform coverage of the Fourier domain. This
distortion may cause fairly poor pattern retrieval accuracy [15].

In this paper, we propose a simple yet efficient image retrieval approach based
on a novel log-Gabor filter scheme. In Section 2, the classic Gabor filter and
the log-Gabor model proposal are presented. In Section 3, the DKL and DJS

are described. In Section 4, we compare retrieval accuracy of both Gabor and
log-Gabor filter banks over the USC-SIPI database [16]. Finally, our work is
summarized in Section 5.

2 Bio-Inspired Models for Texture Feature Extraction

Daugman [11] proposed a 2D extension of the Gabor filters –receptive fields are
deployed in two dimensions– and showed that they occupy an irreducible vol-
ume in the four-dimensional (4D) hyperspace where the four orthogonal axes
correspond to spatial (x, y) and frequency (u, v) variables. The joint 2D res-
olution achieves the lower bound of the 2D uncertainty principle as follows:
(Δx) (Δy) (Δu) (Δv) ≥ 1

16π2 .
The canonical 2D Gabor filter in spatial domain is defined as:

g (x, y) = e
− 1

2

(
(x−x0)2+γ2(y−y0)2

α2

)
+i(2π[u0(x−x0)+v0(y−y0)]+φ)

(1)
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where (x0, y0) are the center of the filter, (u0, v0) and φ represent the radial
frequency and the phase of the sinusoidal signal respectively. (α, γ) are the space
constants of the Gaussian envelope along x and y axes respectively and they
control the filter bandwidth.

Here, we assume the use of real Gabor filters (just the even part) centered
at the origin. Therefore, we obtain the next expression that provides a suitable
symmetric filter for detecting salient edges [17] as follows:

g (x, y) = e
− 1

2

(
x2+γ2y2

α2

)
cos (2πu0x) (2)

Using the rotation matrix, Rθ = [cos θ, − sin θ; sin θ, cos θ] and applying in Eq.
2 yields the 2D polar Gabor representation as follows:

g (x, y) = e
− 1

2

(
x̃2+γ2ỹ2

α2

)
cos (2πu0x̃) (3)

with
x̃ = x cos θ − y sin θ
ỹ = x sin θ + y cos θ

(4)

The frequency and orientation selectivity properties of Gabor filters can be more
explicit in Fourier domain. The Fourier transform of g (x, y) is given by:

Ĝ (u, v) = e
−2π2α2

[
(ũ−u0 cos θ)2+ 1

γ2 (ṽ+u0 sin θ)2
]

+ e
−2π2α2

[
(ũ+u0 cos θ)2+ 1

γ2 (ṽ−u0 sin θ)2
] (5)

where (ũ, ṽ) = (u cos θ + v sin θ,−u sin θ + v cos θ).
Ĝ (u, v) represents a rotated Gaussian function by an angle θ with u0 fre-

quency units shifted along the axes.
Psychophysical experiments showed that frequency bandwidths of simple cells

are about one octave apart [11], [18], [19]. The half-amplitude bandwidth of the
frequency response, Bu, satisfies this condition and is linked to central frequency
u0 as follows:

α =

√
log (2)

(
2Bu + 1

)

√
2πu (2Bu − 1)

(6)

In order to determine the optimum angular bandwidth Bθ we considered an
isotropic Gabor filter. Hence, we forced γ = 1.

α

γ
=

√
log (2)√

2πu tan
(
Bθ

2

) (7)

in this way, Bθ ≈ 36◦ is obtained, but for computational efficiency Bθ = π
6 was

chosen.
Although Gabor filters possess a number of interesting mathematical proper-

ties (they have a smooth and indefinitely differentiable shape and they do not
have side lobes neither in space nor frequency domain) they present a main draw-
back, the filter averaging is not null and therefore the DC component influences
intermediate bands. They overlap more at lower frequencies than in higher ones
yielding a non-uniform coverage of the Fourier domain, (see Fig. 1(a)).
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(a) (b)

Fig. 1. Profiles of the frequency response of (a) Gabor and (b) log-Gabor filters. Note
that the DC component is minimized by introducing the ln function.

2.1 Log-Gabor Filters

Log-Gabor filters, firstly proposed by D. Field [20], are defined in the frequency
domain as Gaussian functions shifted from the origin due to the singularity of
the log function. They always have a null DC component and can be optimized
to produce filters with minimal spatial extent in an octave scale multiresolution
scheme, (see Fig. 1(b)). Log-Gabor filters can be splited into two components:
radial and angular filters, Ĝ (ρ, θ) = ĜρĜθ, as follows:

Ĝ (ρ, θ) = e
− 1

2

[
log( ρ

u0
)

log(αρ
u0
)

]2

e
− 1

2

[
(θ−θ0)

αθ

]2
(8)

where (ρ, θ) represent the polar coordinates, u0 is the central frequency, θ0 is
the orientation angle. αρ and αθ determine the scale and the angular bandwidth
respectively. We set αρ = 0.75 that results in minimal overlap among scales one
octave apart and αtheta = pi

6 as it was mentioned before. In order to better cover
the Fourier plane even scales are rotated by a constant factor consisting of the
half a distance between filter centers, (see Fig. 2(c)), [21].

(a) (b) (c)

Fig. 2. Half-amplitude bandwidth of the frequency response of (a) an ensemble of
Gabor filters. (b) Contour comparison between Gabor and log-Gabor filters before
rotating the log-Gabor even bands. (c) Log-Gabor filters (1 octave bandwidth).
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3 Texture Retrieval Based on Entropy Information

As in [14], any image coefficient, C(s,θ), defined as C(s,θ) = I (x, y) 	 g (x, y)(s,θ)

where I (x, y) is the given image, g (x, y)(s,θ) is the filter at the scale s and
orientation θ, and 	 indicates the convolution, represents texture characteristics
in a particular scale and orientation. Thus, energy signatures such as the mean
μ(s,θ) and the variance σ2

(s,θ) can be used as texture features for constructing a
feature vector as follows:

t =
[
μ(0,0), σ

2
(0,0), . . . , μ(s−1,θ−1), σ

2
(s−1,θ−1)

]
(9)

Although theKullback-Leibler divergence –a generalization of Shannon’s entropy–
is not a true metric rather it is a relative entropy, it can be used as a suitable de-
scriptor for measuring distances between histograms or feature vectors. Then, the
distance between two texture imagesA andB with tA and tB as the corresponding
feature vectors is defined as:

DKL (A,B) =

b−1∑

i=0

tB (i) log

(
tB (i)

tA (i)

)
(10)

where b is the length of the feature vectors tA and tB .
In addition, the Jensen-Shannon divergence [22] denoted by ψ can be used for

evaluating distance between two textures as follows:

ψ =
√
2DJS (A,B) (11)

where

DJS (A,B) =
1

2
DKL

(
A,

A+B

2

)
+

1

2
DKL

(
B,

A+B

2

)
(12)

4 Experimental Results

We used the USC-SIPI texture database [16], to measure retrieval accuracy (RA)
of both Gabor and log-Gabor filters. USC-SIPI consists of twenty gray-scale
textures of 512 × 512 pixels. Each image was divided into sixteen 128 × 128
non-overlapping patches, thus creating a database of 320 texture images. The
resulted patches were processed with a filter bank (4 scales and 6 orientations) in
order to form 320 feature vectors of 48 bins-length each. Each feature vector is a
query pattern and was used to calculate distances among the 320 textures. The
distances were sorted in increasing order and the closest sixteen patches were
retrieved. We must note that in [14] the mean and the standard deviation were
used to form a query image. Here we use the mean and the variance because
they improve the retrieval performance.

The average retrieval rate (ARR) is the standard metric for evaluating CBIR
systems and is listed in Table 1 for the different texture images used in this
study. ARR is calculated by the following procedure: First, each texture (D*) is
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Table 1. ARR for the 20 texture images, D* indicates the Brodatz texture. ARR is
computed using Gabor and log-Gabor filter banks and both D
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Table 3. ORR for Gabor and log-Gabor schemes

Gabor filters log-Gabor filters

distance (%) (%)

DKL 84.78 89.72

DJS 84.80 89.84

and 89.84% of patches retrieved correctly with DKL and DJS respectively. This
represents an increase in the classification rate up to 4.94% usingDKL and 5.04%
using DJS .

5 Conclusions

Here we presented the classic Gabor scheme for texture analysis and summa-
rized its properties and drawbacks. Further, a novel scheme for CBIR was pre-
sented. This proposal based on log-Gabor filters has a strong correlation with the
HVS. It may say that the proposal is a bio-inspired model where the parameters
agreed with simple cells in the visual cortex. In addition, we evaluate the tex-
ture distances using two metrics, the well-known DKL and the Jensen-Shannon
divergence, which boosts the retrieval process. The log-Gabor filtering approach
outperforms the retrieval performance for the analyzed textures in comparison
with the Gabor filters.
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