
Filtering and Detection of Low Contrast Structures on Ultrasound 
Images  

 
Lorena Vargas-Quinteroa, Boris Escalante-Ramíreza, Fernando Arámbulab 

aDep. de Procesamiento de Señales, Facultad de Ingeniería; bCentro de Ciencias Aplicadas y 
Desarrollo Tecnológico 

Universidad Nacional Autónoma de México 

ABSTRACT  

In this paper, we propose a detection method of low contrast structures in medical ultrasound images. Since noise 
speckle makes difficult the analysis of ultrasound images, two approaches based on the wavelet and Hermite-transforms 
for enhancement and noise reduction are compared. These techniques assume that speckle pattern is a random signal 
characterized by a Rayleigh distribution and affects the image as a multiplicative noise. For the wavelet-based approach, 
a Bayesian estimator at subband level for pixel classification is used. All the estimation parameters are calculated using 
an adjustment method derived from the first and second order statistical moments. The Hermite method computes a 
mask to find those pixels that are corrupted by speckle.  In this work, we consider a statistical detection model that 
depends on the variable size and contrast of the image speckle. The algorithms have been evaluated using several real 
and synthetic ultrasound images. Combinations of the implemented methods can be helpful for automatic detection 
applications of tumors in mammographic ultrasound images. The employed filtering techniques are quantitatively and 
qualitatively compared with other previously published methods applied on ultrasound medical images. 
 
Keywords: Speckle, Hermite Transform, Wavelet Transform, Ultrasound image, Detection Theory. 
 

1. INTRODUCTION  
Ultrasound is a medical imaging modality that is widely used in clinical applications. It is based on the transmission of 
high frequency sound waves into the body. The returning pulse-echoes are captured and processed to build the digital 
image. Unfortunately, these images are often characterized by low contrast and intrinsic artifacts called speckle, which is 
the result of constructive and destructive coherent interferences of the back scattered ultrasound echoes. 
Lesion detection tasks, such as small cancerous lesions and cysts, using ultrasound images are very common. Currently, 
there are several techniques that allow solving this problem but many of them differ in efficiency, speed and process 
optimization. High performance is searched in the detection process since it may seriously affect the medical diagnosis. 
For this reason, in ultrasound image it is very important consider some characteristics such as spatial and contrast 
resolutions as well as noise have to be considered. 

Several methods have been developed to assist ultrasound diagnosis, which allow physicians to find information present 
in the images that is not easily detected. Examples are found in the development of techniques devoted to the automatic 
measurement of fetal organs or gynecological problems1. However, the limited contrast of ultrasound images can cause 
some problems in the differentiation of soft tissue or lesions2.  

Barrett et al. based their results on objective assessment of image quality and ideal observer performance for detection 
tasks3. Their work offers a rigorous treatment of ideal observers, and proposes some suitable analytical techniques for 
performance assessment.  

In the literature, there are several ultrasound imaging statistical models4. Smith and Wagner5 -7, e.g., take from 
Goodman8 the speckle statistic models for ultrasound images. Detection performance, as studied by Wagner5 -7, assumes 
linear shift-invariance, large area lesions, low contrast lesions and independent samples. In the same way, they analyzed 
the ultrasound B-mode images from a stochastic theory point of view. 












Insana and Hall9 interpreted the developments made by Smith and Wagner theories. They conducted experiments to 
measure how close humans are at low-contrast lesion detection in B-mode images from the ideal observer performance.
Clarkson and Barrett10 discuss the ideal observer for a number of different detection tasks and probability models. 
 
On the other hand, its noninvasive nature, the speed, low cost and the portability of scanners, make ultrasound imaging 
an attractive tool for medical diagnosis. However, it presents some limitations including image quality and speckle 
pattern effects which hinder visual interpretation. 

For the solution of these problems, several filtering techniques have been proposed with the aim of enhancing ultrasound 
images. Most speckle filters are developed for enhancing visualization of speckle images in spatial domain11. Yu and 
Acton12 developed the Speckle Reducing Anisotropic Diffusion (SRAD) by showing that Lee26 filters can be represented 
as partial differential equations. Then, SRAD is derived by allowing an edge-sensitive anisotropic diffusion within this 
context. Loizou11 et al., implemented a solution for SRAD based on filters and local statistics.  

Recently, several attempts have been made to reduce the speckle noise using wavelet transforms as a multi-resolution 
image processing tool. Techniques based on wavelets can be classified into two categories: homomorphic filtering and 
non homomorphic filtering. The first process is applied on a logarithmic transformation and it is followed by an 
exponential transformation13, 22. The process for the non homomorphic is realized onto the original image and the most 
notable approaches are proposed by Pizurica14. Moreover, Yue15 et al. developed a novel Multiscale Nonlinear Wavelet 
Diffusion method for ultrasound speckle suppression and edge enhancement.  

In this paper, we compare findings obtained for Hermite-based method proposed by Escalante-Ramirez16 -18 et al., with 
the wavelet-based Bayesian approach developed by Gupta22 et al. We adopted these techniques because they have 
demonstrated being efficient to remove speckle patterns while the edges are preserved. 

The main objective of this work is to make an implementation of filtering and detection algorithms for applications of 
low contrast structures in ultrasound images. We compared the performance of the detection methods when a filtering 
process for speckle suppression is previously applied. 

The rest of the paper is organized as follows.  Section 2 presents a general description of the implemented system.  In 
section 3, two statistical detection models are shown. Model of the speckle image and filtering techniques adopted in this 
paper are analyzed in section 4. Speckle reduction results obtained using different filters and detection performance 
results are described in section 5.  Finally, conclusions and future works are presented in section 6. 

 

2. SYSTEM DESCRIPTION 
Figure 1 describes a general block diagram of the steps followed in this work. We focus our work in evaluating decision 
theories with ultrasound images for lesion detection applications. The analysis is made using original images and their 
filtered versions. We assume that lesions in the ultrasound images are coded as areas of increasing variance. From a 
visual point of view, our ultrasound images are characterized by a bright structure surrounded by a dark background 
when lesions are present. 

 
Figure 1. Block diagram of the general system.  

Likewise, we try to verify how much the filtering process influences the detection when automatic algorithms are used. 
As described, several filtering algorithms are employed. Two decisions rules are evaluated with filtered and non- filtered 
real and synthetic images. 

 







3. DETECTION THEORY 
In the detection analysis of a B-mode scans, the statistical properties of the image must be considered. The speckle pattern 
is due to interference of sound wavelets scattered by structures or tissue. In this paper, the speckle pattern is analyzed 
using stochastic signal theory such as Goodman8, Smith and Wagner5, 7 exposed in their works. Formulations for speckle 
modeling in ultrasound B-Scan images adopt the coherent optical theory for laser systems.  

Lesion detectability in this type of images is deduced from the first and second order statistical moments of the speckle. 
We study two cases for the ultrasound images: 1) Firstly, we assume that each ultrasound image is a realization of a 
stochastic process that exhibits a Rayleigh distribution; 2) Secondly, images possess Gaussian distributions as a result of 
the summation of multiple random processes in the ultrasound system. In this process, the sample images are considered 
as vectors or signals denoted by x. which is carried out by the concatenation of each column.  

The detection technique is based on a binary decision rule in which one of two possibilities is selected. For the case of 
lesion detection in ultrasound images, the algorithm must decide if the abnormality is present or not. Because speckle is 
present in the image in both cases, we must define a conditional probability density functions when the lesion is present 
and when it is absent. 

3.1 Rayleigh distribution case 

A Rayleigh distribution8 for the ultrasound image magnitude appears when the signals that form each point of the image 
are complex Gaussian random fields that result from the addition of real and imaginary components (ar and ai).  For the 
statistical model, it is assumed that the random variables that compose the random field are not correlated and 
independent. The probability density function for the signal present and absent can be written, respectively as: 
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where )/( 1ixf  is the probability density function for the signal present and )/( 2ixf is the probability density 
function for the signal absent.  

Using Bayes theory, the likelihood ratio for the signals is calculated5-7: 
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Applying logarithm transformation and knowing that the factors are constant7, the equation for the decision function 
is finally obtained: 
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The final decision rule is applied by comparing  with a threshold. M represents the number of pixels analyzed. Instead 
of measuring the speckle spot area, as suggested by Smith7, we measure the pixels of the whole image because we 
consider that each ultrasound image is a stochastic process with no certainty of the presence of a lesion.  

3.2 Gaussian distribution case 

In the second case, a Gaussian distribution assumes that the image is a contribution from many random processes in the 
ultrasound system. According to the central limit theorem, for large values of M a Gaussian distribution is obtained. The 
joint density function for N random variables is computed as: 
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where x is the vector that contains the random variables; Ks is the covariance matrix (s = 0, 1) for the signal present and 
absent which correlates the random variables that compose the image. The log likelihood ratio is the decision function. 
For the Gaussian case, the decision rule29 is calculated as: 
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where K0 and K1 are the covariance matrices for the absent and present signals, respectively. As in the previous case, the 
decision rule depends on a threshold that determines if a lesion is present or not. 

 

4. FILTERING METHODS FOR ULTRASOUND IMAGES  
Speckle in ultrasound B-scans is seen as a granular structure which is caused by the constructive and destructive 
coherent interferences of back scattered echoes from the scatters that are typically much smaller than the spatial 
resolution of medical ultrasound system. This phenomenon is common to laser, sonar and synthetic aperture radar 
imagery (SAR). Speckle pattern is a form of multiplicative noise and it depends on the structure of image tissue and 
various imaging parameters32. Having a general speckle model is important for formulating techniques that reduce these 
patterns in ultrasound images. There are many formulations13, 14 that agree in modeling speckle images as: 

),(),(),( jinjiyjig                                                                   (6) 

where y is the noise free image, n is an arbitrary speckle pattern contribution and g corresponds to the noisy 
observation;  (i, j) are the spatial coordinates in the image. The additive noise component is insignificant with respect to 
the multiplicative component. For this reason, it is not considered in the last equation. The multiplicative components are 
transformed into additive by applying a logarithmic transformation,  
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Thus, the signal model of equation (6) can be written as: 
),(),(),( jiNjixjip                                                                  (8) 

Now, additive noise suppression methods can be applied to equation (8) for the speckle reduction. Once the filtering 
process is carried out, the image is returned to original space by computing an exponential transformation.   

In this paper, we analyze different filtering techniques for ultrasound images. We show results for several approaches for 
speckle reduction: 1) Algorithm proposed by Donoho20 which consists of a soft-thresholding method using wavelet 
decomposition; 2) Lee approach26 that uses a statistical technique to define a noise model in order to subsequently apply 
a local statistical filter; 3) Wiener filter19, 33 which estimates the local variance and mean around each pixel to develop a 
local and adaptive estimation using the found parameters and 4) Pizurica�s method14 consisting of a wavelet-based 
algorithm that exploits the correlation of significant image features across the resolution scales to perform a preliminary 
coefficient classification. This is afterwards used to empirically estimate the statistical distributions of the coefficients 
that represent significant image features on the one hand and mainly noise on the other. Technical and implementation 
details can be reviewed in the cited references.  

Other considered filters are based on the Hermite transform16-18, proposed by Escalante-Ramirez et al., and wavelet 
Bayesian theory22 developed by Gupta22.  

Generally speaking, Hermite and wavelet approaches use multiresolution representations for the filtering process. In 
figure 2 a general diagram of the filtering sequence used for these two techniques is shown.  

 







 
Figure 2.  General scheme of the filtering system using multiresolution analysis for Hermite and wavelet approaches.  

The process in the last scheme starts by changing the domain of the input image and continues filtering the resulting 
coefficients.  Finally, the filtered resulting image is calculated by returning to the original representation space. Some 
details of these techniques are described below. In the case of the wavelet-based approach, a logarithmic transformation 
is firstly applied before making the multiresolution decomposition. In contrast, Hermite-based approach decomposes the 
original image without previous transformation.  

4.1 Wavelet filtering 

Wavelet decomposition produces a family of hierarchically organized decompositions, i.e., a signal is decomposed into a 
hierarchical set of approximations and details. A wavelet prototype function, called an analyzing wavelet or mother 
wavelet23 is selected to analyze the image.  

The two-dimensional Discrete Wavelet Transform is defined mathematically as:  
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   NjNjkbawhere jj ,,2,2  
f is the original image, g is the wavelet function, a is a scale factor of the wavelet function, b is a position parameter and 
C(a,b) is the set of transform coefficients. 

In general, when the wavelet transform is used for filtering, each subband is modified using some criteria depending on 
the characteristics of the images. In the case of ultrasound images, the process is applied on the detail coefficients which 
represent the high frequency information. 

Once the subbands are filtered, the resulting image is obtained by applying the inverse process calculated by: 
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where  is the wavelet function. Barba24, 34 et al., provide a complete explication of this process. 

4.1.1 Wavelet-based Bayesian approach 

Gupta13, 22 et al., proposed a method in which a Rayleigh distribution is used for modeling speckle noise and a Gaussian 
distribution for the original ultrasound image. Therefore, the probability density function (pdf) of the Rayleigh 
distribution28 that characterized the speckle noise can be defined by the equation:  
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Mihck25 et al., demonstrated that the histogram of the wavelet coefficients can be approximated by the zero mean 
Gaussian distribution. Mathematically, this can be represented as: 
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Therefore, using these equations, and according to the MAP theory and the Bayes rules, Gupta13, 22 et al., found a final 
estimation expression to enhance each subband of the wavelet transform: 

)(2

442
,0max)()(� 22

42222422

x

xxx yyy
ysignyx                                (13) 

where 2/ ; 2 is the noise variance, it is estimated by 
6745.0
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level diagonal detail subbands; C is a constant that control the noise level to be eliminated. Finally, 
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yx is the standard deviation of the signal and 2� y is the wavelet coefficient variance. 

4.2 Hermite transform for image filtering  

The Hermite transform is a special case of polynomial transforms that can be used for multirresolution image analysis 
as well. The polynomial transform allows obtaining an image decomposition localized by a window function. Several 
window sizes are used in order to obtain a multiresolution analysis. Image polynomial coefficients Lm,n-m(p,q) are 
obtained by the convolution of the original image L(x,y) with the analysis filters::                                        

Dm,n-m(x,y) = Gm,n-m(-x,-y) V2(-x,-y).                                                                (14) 

The inverse polynomial transform is computed by interpolation   
N

n

n

m Sqp
nmmmnm qypxPqpLyxL

0 0 ),(
,, ),(),(),(�                                                   (15) 
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V(x,y) is the localization function window function that, in the case of the Hermite transform, corresponds to a Gaussian 
function. In this case, the set of orthogonal polynomials corresponds to the Hermite polynomials 16-18. 

The process of filtering using the Hermite transform is similar to wavelet-based methods. The idea is to change the space 
of representation and then apply the corresponding filters. In order to return to the original space, the inverse process 
must be calculated. 

4.2.1 Speckle noise reduction algorithm using polynomial transform 

In this algorithm an energy mask is estimated which indicates the location of edges on the image.  The mask is calculated 
from the first order energy image which corresponds to the first order coefficients of the Hermite transform. The 
estimated mask allows detecting edge positions of the image even if they are corrupted by speckle noise. The pixels 
corresponding to noisy homogeneous areas are then suppressed while image edges are enhanced.  

The first order energy image corresponding to the convolution of the input image L with the first order derivatives of a 
Gaussian function can be used to separate edges from noise using thresholding techniques. The threshold can be found 
by:  
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where
00110 ),(),(),( yxL yxDyxDyxR and LR is the auto-correlation function of L; PR is the percentage of noise 

allowed to remain in the image; L00 is the zero order coefficient and A is the SNR2
llook,  )/( lloopll SNRN ;  N is the 

number of looks of L. This algorithm can be reviewed with more detail in Escalante-Ramirez17 et al. 

 

5. RESULTS AND DISCUSSIONS 
We start our study by using three types of test images. 1) Synthetic ultrasound images which can be simulated as the 
magnitude of a complex Gaussian random field that has been lowpass-filtered14. For this task, we built and algorithm 
that is capable of generating synthetic ultrasound images. 2) Public simulated images using FIELD II, a free domain 
ultrasound simulator31.  3) Real speckled ultrasound images. In total, 148 images of size 120 x 120 pixels are used for 
validation. Quantitative and qualitative analysis was carried out for the filtering and detection algorithms.  

5.1 Filtering results 

We present in figure 3 visual results of the filtering process for several filters applied onto a simulated ultrasound image. 
This image was obtained from14 and corresponds to a common sample used in the literature for algorithms validation. 
These filters are: Wiener filter30, soft thresholding20, wavelet-based Bayesian method13, 22 and Hermite-based approach17.  

                     
            Original Image                    Speckle Simulated                          Lee Filter                       Homomorphic Wiener 

             
             Soft-thresholding                 Pizurica�s Method                        Bayesian                                     Hermite                      

Figure 3. Visual comparison of several reduction speckle filtering on a 150 x 150 simulated speckle image (SNR = 4.28 dB) 

Because the goal of this paper is to compare the above mentioned methods in the process of lesion detection, we used a 
simulated image (see figure 4) which presents a common low contrast structure that can be considered as a lesion in real 
ultrasound studies. The image was generated using FIELD II software31.   

From the visual results illustrated in figures 3, 4 and 5, it is noticed that a better performance is obtained with the 
Hermite-based approach. This filter appears to be much more efficient than the rest in removing speckle patterns while 
the edges of the images are preserved. Lee and Wiener filters get to preserve the edges, but they are poor in reducing 
speckle in homogeneous areas. Soft-thresholding demonstrates to have a deficient performance in the task of speckle 
reduction. The resulting filtered image is very similar to the original one.  







Pizurica�s method aims at preserving the edges of the images but the speckle pattern is still present to human observers. 
The wavelet-based Bayesian is a method that proves to be efficient to reduce speckle pattern but image edges are 
considerably blurred. Hermite technique reduces speckle while preserving the edges of the image. 

            
             Speckle Simulated                         Lee Filter                    Homomorphic Wiener 

             
                      Soft-thresholding                 Pizurica�s Method                      Bayesian                                  Hermite                      

Figure 4.  Subjective comparison of different techniques in the image simulated with FIELD II program.  

                 
              Real ultrasound image                Lee Filter                 Homomorphic Wiener 

                 
                                  Soft-thresholding          Pizurica�s Method                Bayesian                        Hermite                      

Figure 5.  Subjective comparisons of different techniques using a real ultrasound image.  

In order to quantify the performance of the used filters, we used three common metrics: Signal to Noise Ratio (SNR), 
Peak Signal-to-Noise Ratio (PSNR) and the Correlation Coefficient (CoC).  

Signal to Noise Ratio. This metric compares the level of the desired signal to the level of background noise. 
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where 2
s  corresponds to noise free image variance and 2

N represents the error variance between the original image 
and the reduced speckle image. A large SNR value is associated with a good image quality. 

Peak Signal-to-Noise Ratio (PSNR). With this metric the radio between the maximum possible power of a signal and the 
power of corrupting noise that affects the fidelity of its representation is measured. 

 







Evaluated Parameters 
                   Method  SNR(dB)             PSNR                CoC  
                     = 0.4 
Input Image with speckle noise  7.8231                29.8628             0.9868 
Lee Filter  5.0428                22.2583             0.9632 
Wiener  8.8585                31.9303 0.9916 
Soft-thresholding  8.0444                30.2230 0.9880 
Pizurica�s method  9.1310                29.8628             0.9839 
Bayesian  9.2149                32.6356             0.9930 
Hermite  9.1307                40.2814             0.9900 
 
                     = 0.9 
Input Image with speckle noise  4.2820                22.7811             0.9661 
Lee Filter  4.7352                22.9140             0.9457 
Wiener  5.8116                25.8389 0.9661 
Soft-thresholding  7.4025                30.8080 0.9468 
Pizurica�s method  7.7186                24.1265             0.9477 
Bayesian  7.5756                32.8391             0.9704 
Hermite  8.1459                36.9777             0.9830 

MSE
M ensity

2
intmax

10log10=PSNR                                                            (18) 

 

Correlation Coefficient (CoC). Measurement that determines the degree in which two variables are associated. 
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In table 1, we summarize the resulting metrics for the mentioned filtering process. Here, two standard deviations for the 
speckle pattern are used. From the numerical findings, it can be noticed that the Hermite method presents again the best 
performance among the filtering algorithms. 

Table 1. Calculated parameters. 

5.2 Detection results 

In the second part of our experiments, we evaluate the performance of the detection task by using the real ultrasound 
images depicted in the previous section. Findings were evaluated with the Rayleigh-based probability test given by 
equation (3). For the performance assessment, we used the Receptor Operator Characteristic - ROC curve3. This curve 
evaluates the percentage of false positive rate (sensitivity) vs. true positive rate (specificity). 

The ROC curve is compared for the detection process applied onto the original, the filtered images using wavelet-based 
Bayesian and Hermite-based method.  These methods are addressed to elaborate tools that can either replace the human 
observers or help them in the lesion detection task. In figure 6 the ROC curve for the cases considered is illustrated. As 
mentioned, the test is carried out with 146 images equally distributed with and without structure (lesion). 

The best performance is achieved for the method that presents the ROC curve closest to the vertical axis, so that the 
largest quantity of true positives and least quantity of false alarms are found.  From this figure, it is noted that the best 
target detection performance is achieved when the images are filtered applying the Hermite transform. Working with 
speckle images reduces the detection efficiency. The analysis was also made for the Gaussian case taking several 
random ultrasound images that exhibit Gaussian distributions. We based this method on the fact that the addition of 
several random variables results in Gaussian distributions. We estimate the corresponding statistic parameters like the 
covariance matrices from a set of training samples for lesion present and lesion absent cases. 







 
Figure 6. ROC curves of Rayleigh-based observer performance for the original and filtered ultrasound images.  

Thresholds for the decision rules are selected manually and experimentally analyzing the set of data. It is worth 
mentioning that this threshold depends on the characteristics of the samples images. From experimental results, we 
proved that the distribution of the images does not suffer changes after applying the filtering process. We attribute this 
result to the fact that filtering techniques reduce speckle but do not eliminate it completely. This allows us employing the 
studied decision theory for the filtered images as well. 

6. CONCLUSIONS 
Filtering and detection tasks were analyzed according to signal detection theory in ultrasound images. Filtering 
techniques visually enhance the appearance of ultrasound images and help in the detection tasks. The best performing 
system uses a robust multiresolution despeckling method that preserves important features in ultrasound images based on 
the Hermite transform. It was demonstrated quantitatively and qualitatively that this filter presents the best performance 
considering the adopted metrics SNR, PSNR and CoC. 

On the other hand, we considered two possible observer models for detection tasks of low contrast structures in 
ultrasound images. Under the assumption of Gaussian and Rayleigh distributions, we adopt the theory of observers for 
small and low contrast lesion areas. Decision rules are found and the filtering process is included for optimal detection. 
In this case, it is shown that filtering techniques improve the detectability of the structures. In this contexture aim at 
designing, we try to design a signal detection and filtering framework for automatic detection task in ultrasound B-scan 
images. The percentage of detection of lesion increases when the images are previously filtered. In future works, we will 
analyze different kinds of structures present in ultrasound images and comparisons with the human observer will be 
included.   
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