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ABSTRACT  

This paper describes a segmentation method for time series of 3D cardiac images based on deformable models. The goal 
of this work is to extend active shape models (ASM) of tree-dimensional objects to the problem of 4D (3D + time) 
cardiac CT image modeling. The segmentation is achieved by constructing a point distribution model (PDM) that 
encodes the spatio-temporal variability of a training set, i.e., the principal modes of variation of the temporal shapes are 
computed using some statistical parameters. An active search is used in the segmentation process where an initial 
approximation of the spatio-temporal shape is given and the gray level information in the neighborhood of the landmarks 
is analyzed. The starting shape is able to deform so as to better fit the data, but in the range allowed by the point 
distribution model. Several time series consisting of eleven 3D images of cardiac CT are employed for the method 
validation. Results are compared with manual segmentation made by an expert.  The proposed application can be used 
for clinical evaluation of the left ventricle mechanical function. Likewise, the results can be taken as the first step of 
processing for optic flow estimation algorithms.  
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1. INTRODUCTION  
Cardiac computed tomography is one of the main types of radiological images for heart analysis and detection of 
abnormalities. It provides image slices or tomograms of the heart1 that form a tridimensional object. Since the heart is an 
organ with a periodic movement, analysis with cardiac CT can be made in 4D as well, which consists of several 3D 
images taken to reveal the complete cardiac cycle of the heart. Specialists use these studies to evaluate the mechanical 
function of the heart. Because the evaluation of the structures of the heart using cardiac CT has to be made over specific 
areas of the images, it is very useful to carry out some segmentation task at first.   
 
Generally speaking, medical image segmentation is a prerequisite for many high-level tasks such as image analysis, 
computer-assisted diagnosis, geometric modeling of anatomical structures, or the construction of bio-mechanical models 
used for surgery simulation2. During decades, several algorithms for image segmentation in the field of medical 
application have been developed3-6. Many of them solved the problem by using statistical models7-8, such as Markov 
random field9, expectation maximization algorithm10, and Bayesian discriminant functions 11-12, which use statistical 
information for pixel classification.  
 
Another set of approaches are the so called deformable models. They consist of an initial instance that can be updated 
according to a set of forces in the neighborhood of a point. The shape is represented by a specific quantity of points 
describing the object contours in the image. These points are called landmarks and consist of the coordinates of the 
shape in the 2D or 3D space. The main advantage of these techniques is that they are capable of accommodating the 
common variability of biological structures. Active contour models,  “Snakes” being the most popular deformable 
models, were proposed by Kass13 et al., and consist of a framework that can delineate an object from an image. The 
method is based on the minimization of an energy associated to the current edge. It assumes that the energy is minimal 
when the “snake” is at the contour position. Some years later, Cootes et al. proposed a new method of models that can 
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constrain the specific range of a training set. They called them “Active Shape Models” or “Smart Snakes”14-15, and these 
methods have been employed by researches in modeling 2D and 3D structures in medical images16-20.   
 
Our goal is to extent 3D active shape models to represent time-series of 3D cardiac CT images. Segmentation of time-
series images has been outlined for researches to solve different kinds of problems21-22. The most common applications 
of temporal shape modeling are given for cardiac image segmentation23-24. Montagnat2 et al., attempt to model 4D 
objects using temporal constraints, they build a geometrical model based on the trajectory of corresponding vertices of 
the time-series represented by “simplex” meshes. Classical Newtonian law of motion is then used to describe the 
evolution of all vertices.      
 
We propose an Active Shape Model-based segmentation method in which the time model statistics and gray level 
information are obtained from the training set in order to optimize the image search, i.e., the position of each landmark is 
updated taking into account not only the gray level information, such as the original model works, but also the time 
model characteristics.  The rest of the paper is organized as follows. Section 2 presents a general description of active 
shape models. In section 3, we survey our method. Section 4 and 5 describe results and conclusion, respectively.   
 

2. STATISTICAL MODELS OF SHAPE 
Active shape models have demonstrated being a powerful segmentation tool for medical applications. The key point of 
this method is that instances of the models can only deform in ways found in the training set14. As a requisite for ASM 
algorithms, a set of shapes represented by n points in the spatial domain must exist.  
 

                 
Figure 1. Landmarks in 2D and 3D spaces  

 
When working with ASM, we can identify two main processes: the first of them is to capture the statistics of a training 
set by building a point distribution model and a gray level model for each landmark. The second process corresponds to 
the application of the models computed for the new image segmentation.  
   
2.1 Point Distribution Model  

In the 2D space (see figure 1), each shape Si (with i = 1, 2… N) is a vector consisting of the concatenation of the 
coordinates of each landmark:  

T
nni yxyxyxS ),,...,,,,( 111100 −−=      (1) 

 
The first step is the aligning process of the training set to a mean shape that must be chosen from the contour samples. 
The most typical aligning method in 2D is the Generalized Procrustes Analysis – GPA25. Cootes et al., proposed a 
modified version of the GPA for 2D shapes that attempts to minimize a weighted error function with four unknown 
parameters: 

)()( 1212 TMSSWTMSSE T −−−−=      (2) 
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where S2 represents the mean shape and S1  the one to be aligned; M is the transformation matrix that contains the s scale 
and θ  rotation parameters; T represents the (tx, ty) translation incognita and W is a matrix with individual weight for 
each landmark. The step is repeated for all the shapes of the training set.  A new mean shape is then calculated from the 
aligned samples Xi: 

∑=
i

iX
N

S 1        (3) 

 
Representation of shapes is quite similar for 3D spaces. Each landmark in this case is composed of three coordinates     
(x, y, z) and the shape vector is built in the same way: 
 

T
nnni zyxzyxzyxS ),,,...,,,,,,( 111111000 −−−=      (4) 

 
It can be seen that each shape has a dimension of 2nd and 3rd orders for data in two-dimensional and three-dimensional 
spaces, respectively. Nonetheless, the aligning process in the 3D space is much more complicated. Here, several 3D 
images registering approaches can be used26-27.  Hill et al. used the same minimization method depicted by equation (2), 
but for 3D objects. The problem in using this method is that the resulting equations are not linear and there are more 
unknown variables. They found the solution by considering several approximations to reduce the problem to a linear 
system, whose parameters can be calculated using conventional matrix methods. Once the mean shape is calculated, the 
next step is to compute the covariance of the data: 
 

T
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     (5) 

 
Principal Component Analysis is finally applied in order to find all the parameters necessary to assemble the Point 
Distribution Model (PDM) of the data. This is carried out by computing the eigenvectors ei and eigenvalues λi from the 
covariance matrix C. In this analysis, the principal modes of variation for each point are obtained. Since PCA reduces 
dimensionality of the data, only t eigenvectors corresponding to the higher eigenvalues are selected.  Finally, the PDM is 
written as: 

PbSS +=       (6) 
 
where P is a matrix whose columns are the set of t eigenvectors given by the higher eigenvalues and b is a weight vector 
that can vary from -3(λi)1/2 to 3(λi)1/2 as Cootes14 proposed. New shapes are generated with different values of b. 
  
2.2 Gray level profile model 

This is the second part in the construction of the training set statistical models. Because PDMs are used for image search 
and segmentation, a model of the gray level information in the neighborhood of each landmark in the image that contains 
the shape is required. As shapes are described by points enclosing a contour, gray level profiles normal to each point are 
recommended for the modeling of the edges. 

Having computed the gray level profile for each landmark, the next step is to obtain the first and second moments by 
calculating the mean and covariance matrix from the training set. Depending on the application, either the gray profile or 
its normalized derivative can be employed. Using the second characteristic (derivate of the gray profile) can be 
advantageous because it avoids the problem of different contrast in the images, what is very common in medical 
imaging, but at the same time it can be affected by noise. In the next section, we give more details of the method. 

2.3 Active Search 

This is the part where the models are addressed to segment new images. The active search starts by putting an initial 
instance near the object that will be segmented. Since ASM is a local method, we must ensure that the initialization is 
good enough to reach a solution. For this task, several algorithms have been proposed by researches in multiple 
applications16, 28.  For both 3D and 2D shapes, the next step is to look for the strongest edge in the normal direction of 
the points in order to find a better position for each initial landmark. For this purpose, there must be an objective 
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function that gives the minimal value when it is evaluated on this edge profile. The most common used objective 
function is the Mahalanobis distance, though it has the problem that we have to invert covariance matrices. When there 
are not enough training samples, as is the case of medical applications, the covariance matrices are generally singular 
what makes impossible to use conventional methods to find their inverses.   

When new positions for the landmarks are found, an aligning process must be computed to adjust the shape. Pose 
parameters (rotation, translation and scaling) are then obtained and used to calculate final deformations or shape 
parameters that move the current estimate to the new position. The process is iterative and it continues until reaching a 
specific number of iterations. Equations and mathematical formulation for this task are well explained by Cootes14 for 
2D images and by Hill29 for 3D objects.    

 

3. PROPOSED ASM-BASED METHOD FOR 4D OBJECTS (3D + TIME) 
In this section, we outline the proposed solution to address the segmentation problem of three-dimensional structures that 
change with the time. The most common cases of this problem are the 4D cardiac CT images which are the objective of 
this work. It is known that three-dimensional images in medical applications are formed by a specific number of slices or 
2D images. We assume that there is a set of time series of 3D objects previously segmented. They are represented by a 
set of points over each slice and describe the contour of the structure to be trained. In our application, the data (the time 
series of cardiac CT) are composed by a total of ten volumes (see figure 2) and the shape corresponds to the contour of 
the left ventricle of the heart. The ten volumes describe the complete cardiac cycle of the heart from systole to diastole. 

 

 
Figure 2. Landmarks for the time-series of 3D objects  

 

We start our method by accommodating the points of the time sequence as a vector. Because the sequence of volumes is 
our “temporal shape”, this vector must include all the landmarks for each volume. The concatenation begins with the 
first point of the time volume t0 and ends with the last point of the time volume t9. The mathematical representation of 
each temporal shape is as follow: 

T
tntntnttt

ttttntntntttttti

zyxzyx

zyxzyxzyxzyxS

),,,...,,,

,,,,...,,,,...,,,,,,(

999999

999000000000

)1()1()1(111

000)1()1()1(111000

−−−

−−−=
    (7) 

 

where (
kkk tntntn zyx ,, ) is the coordinate of the point n in the time tk. As it can be seen, the resulting vector that 

represents the time-series is of 30th dimension. The following steps for the training process are very similar. It is noticed 
that the points are in a three-dimensional space which implies that pose parameters must be calculated in 3D.  Having 
organized the training vectors, we choose one of them as the initial mean temporal shape; the rest are aligned by using 
the approach described by Hill29.   
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We assume that all the volumes of the time-series have the same quantity of points and the segmented shapes inside the 
volumes occupy the same number of slices. From the set of aligned vectors, the new mean temporal shape must be 
obtained. The aligning of shapes is an iterative process which is executed for a finite number of iterations or until the 
mean shape does not suffer modifications from one iteration to other. As depicted in section 2, the mean of the time-
sequence is calculated by using equation (3). 

Continuing with the training, covariance matrix and PCA of the aligned vectors are computed to finally build the Point 
Distribution Model.  This model is not able to capture the complete variability of the cardiac CT structures if we do not 
have enough training samples.  

3.1 Computing the gray level statistics  

In the previous section we mentioned that for the active search in the segmentation process, we need a gray level model 
for every landmark’s profile.  Assume that 

ntkP , is the k-th landmark for the n-th volume of the time-series. A profile 
normal to the surface in this point can be defined as: 

})(,)1(,...,,...,)1(,){( ,,,,,, nnnnnn tktktktktktk lPlPPlPlPg +−++−−=   (8) 

where l defines the extremes of the profile to each side of the principal point and follows a normal direction to the 
landmark. The size of the profile must be chosen as well. Most of the time, applications have to deal with the problems 
of contrast in the images and poor definition of edges, we choose to work with the normalized derivative 

ntkdg ,  of the 
profile. The mean profile and its mean normalized derivative for the k-th landmark are calculated from the samples of 
the training set as: 
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Finally, the gray model is completed with the covariance matrix of the profile for each landmark of the time-sequence 
vector, including the profile:  
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and its normalized derivative:  
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where T represents the transpose of the vector and N the number of training samples. 

3.2 Construction of the time model 

The main problem we are dealing with on this project is to make a representation of 3D objects that are changing their 
structures periodically, as is the case of the heart. It is well known that this organ is constantly moving and its 
mechanical behavior can be evaluated using some techniques like computed tomography imaging. In this sense, 4D 
cardiac CT studies provide heart images at each period of time or cardiac cycle.  Reviewing equation (7), the existence 
of corresponding points in each volume of the temporal shape is obvious, i.e., a landmark must be included in each 
volume of the time-sequence. For example, it is found from equation (7) that points (

000 000 ,, ttt zyx ) ,…, 

(
999 000 ,, ttt zyx ) are the same but distributed in the ten volumes of the time-series. Looking this from an image analysis 

point of view, we can observe that each point in the sequence describes a trajectory; because images code spatial 
information of objects, the trajectory depicted by each point is governed by changes of positions or coordinates along the 
volumes of the series. 

Now, it is possible to construct a time model that describes the behavior of each point of the shape when it is seen from 
one volume to other. Here, we follow the same criteria as the gray level model because of the variability that exhibits the 
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structures of the heart for different patients. Assuming the same nomenclature as the last case, we have that
ntkP ,  

represents the k-th landmark for the n-th volume of the time-series with coordinates (
nnn tktktk zyx ,, ). The vector 

describing the mentioned trajectory is the concatenation of the points in this way: 

),,,,,,,,,(
9876543210 ,,,,,,,,,, tktktktktktktktktktkk PPPPPPPPPPV =   (12) 

where tn indicates a particular volume of the sequence.  In general, cardiac CT images taken from different patients and 
equipments present a varying size of the structures of the heart.  Normalizing the vector allows us to remove the scaling 
factor among them. This is done by using an isomorphic scaling: 

k

k
k V

VT =       (13) 

where || ⋅ || is the Euclidean norm of the vector. The mean normalized trajectory vector is calculated: 
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with N being the number of volumes that contains the time-sequence. Finally, the covariance matrix of the trajectory for 
each landmark is obtained: 
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The time model is kept as the first and second order trajectory statistic described by each landmark in the temporal 
shapes of the training set. 

3.3 Objective function in the active search 

We have said that once the models have been constructed, the algorithm is ready to find new examples of shapes in the 
sample images. In the active search used for image segmentation, it is necessary to define an objective function that 
determines the best positions where the landmarks of the initial shape have to be moved in order to better fit the data. 
When working with medical images, it is very common to find problems related to the contrast and noise what make 
difficult to carry out some tasks such as segmentation.  

ASM algorithms start the process of segmentation by putting, manually or in automatic way, an initial instance as closed 
as possible to the structure to be segmented. Each landmark is moved to a better position in the normal direction by 
minimizing the objective function.  Giving the differences of contrast, the noise and the temporal behavior of 4D cardiac 
CT images, we proposed a weighted sum of Mahalanobis distances of the gray profile, its normalized derivative and the 
model time as objective functions for each point: 

T
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PiPPkiPiP kkkkkkkkkkkkkkk

TTCVTTwdgdgdYdgdgwdggYggwf )()()()()()( 1
3

1
2

1
1 −−+−−+−−= −−−     (16) 

where wm (m = 1,2,3) is the assigned weight for each part of the objective function, Pk (k = 1, 2, …, n)  indicates the 
respective landmark and i represents a specific position of the landmark Pk along its normal profile. Hence, the new 
positions of the points are finally chosen according to the minimal value obtained for the function 

kPf  evaluated in the 
normal direction of Pk. 

When new positions are determined, the process continues with the alignment of the initial shape and the one defined for 
the new landmarks. Here, angle of rotation, translation vector and a scaling factor are computed. These variables 
correspond to pose parameters of the data. New modifications are still necessary to adjust the data in order to reach the 
found solution; shape parameters are subsequently obtained in terms of the transformation matrix (rotation, translation 
and scaling) and eigenvectors calculated in the training stage. The final shape is calculated from the initial one by using 
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the pose and shape parameters. Since it is an iterative process, the final result becomes the initial shape for the next 
iteration. A complete description of the adjusting mechanism can be reviewed14. 

4. EXPERIMENTS AND RESULTS 
We evaluated our method for several time-series of cardiac CT images. The structure used for the segmentation was the 
left ventricle of the heart from an axial view. The initial instance for each test corresponds to the mean shape of the 
training and it is put manually onto the time-sequence. Figure 3 illustrates four slices of the first three volumes of the 
time-series used to test the algorithm showing the left ventricle in four-chamber axial view. 

 

 
a) 

 
b) 

 
c) 

Figure 3. Four slices of the time-series used to test the algorithm, a) Volume 1; b) Volume 2 and c) Volume 3 
 

As can be seen from the last figure, the left ventricle of the heart exhibits a great variability from one volume to the next 
in the images of the time-series. Depending on several characteristics of patients like age, gender or some cardiac 
diseases, the shape of this structure can vary considerably as well.  

4.1 Performance Metric 

The segmentation algorithm is computed for images that were not used in the training process. We carried out visual and 
quantitative performance evaluations of the automatic segmentation for each sample. For the quantitative assessment, we 
used a metric given by the mean Euclidian distance per point which is an easy but effective method that can measure the 
mean separation of each point of the shapes.  Given two points P1 and P2, the Euclidian distance between them can be 
calculated as: 

∑
=

−=
N

i
iiPP PPd

1

2
21, )(

21
     (17) 

where N is the size of P1 and P2 (N = 3 for volumes); d corresponds to the desired distance.   

Slice 1 Slice 2 Slice 3 Slice 4 
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In our evaluation, we then calculate the distance between the automatic (for the first and final iterations) and manual 
segmentations of the temporal shapes. In this project, results are given for eight 4D cardiac CT images. In table 1, the 
obtained performance for all the samples is summarized.  

Table 1. Characteristics of the samples and Euclidean distance between the automatic and manual segmentations. 
Sample Volumes of the 

Time-Series 
Slices per 
Volume 

Slices 
Segmented 

Mean Euclidean 
Distance/point of 

the Initial Instance 

Mean Euclidean 
Distance/point of 
the Final Result 

Time-Series 1 10 80 5 5.45735 5.19752 

Time-Series 2 10 145 5 4.47716 4.08912 

Time-Series 3 10 66 5 3.95231 3.58310 

Time-Series 4 10 66 5 4.12130 3.74103 

Time-Series 5 10 76 5 2.95268 2.71527 

Time-Series 6 10 81 5 3.60540 3.11042 

Time-Series 7 10 130 5 3.59310 3.44656 

Time-Series 8 10 136 5 4.93335 4.25979 

 
Figures 4 and 5 illustrate the starting temporal shape and the final segmentation for the 4D cardiac CT image of figure 3.  
The initialization is made manually by putting the mean temporal shape resulting from the training near the object. 
 

 
a) 
 

 
b) 
 

 
c) 

Figure 4. Initial segmentation of the time-series of figure 3, a) Volume 1; b) Volume 2 and c) Volume 3 

Slice 1 Slice 2 Slice 3 Slice 4 
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Table 1 shows that all the time series used for the evaluation of the algorithm do not have the same number of slices 
what means that they have different spatial resolutions along the z coordinate. Because the method implies that each 
temporal shape must contain the same number of slices, we must either make an interpolation or subsampling of the data 
with the aim of getting similar shapes. 

 

 
a) 
 

 
b) 
 

 
c) 

Figure 5. Final segmentation of the time-series shown in figure 3, a) Volume 1; b) Volume 2 and c) Volume 3 
 

4.2 Discussion  

As reflected in table 1, the ASM proposed model presents good results for segmentation of cardiac CT time-series 
images. The obtained performance is improved when the quantity of training samples is increased. What is expressed in 
this table is the mean distance for each volume’s voxel in the time-series with respect to the manual segmentation. 
Figures 3 to 5 correspond to the first time-series of table 1, which is useful to make comparisons between the visual and 
the quantitative performance. For this project we used 70 times series of cardiac CT for the PDM construction. This 
results in 43 eigenvectors that encode the complete variability of the left ventricle of the heart.  

For each slice we used 50 points around the contour of the left ventricle in an axial view. Since the objective of the 
proposed approach is to adapt it to optic flow estimation algorithms for mechanical evaluation of the heart, we only 
selected 5 slices per volume. This means that the time-series is represented by 2500 points. With the purpose of closing 
the contour in the images for visual representation, we used an algorithm that makes an interpolation among the points. 

Slice 1 Slice 2 Slice 3 Slice 4
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In order to reach the final solution, at least 40 iterations were necessary. It is observed in figure 5 that some visual errors 
are present in the final segmentation. Some of these problems can be solved by taking more landmarks for the contour.  

There is no method to choose the weight parameters for the objective function in the active search. These are selected 
experimentally. Good results were obtained for w1 = 0.3, w2 = 0.7 and w3 = 1. The idea of using weight is to compensate 
common problems normally presented on images. Even though working with the derivative function of the profiles is a 
good method to deal with contrast problems, it has the disadvantage that is very sensitive to image noise. However, 
when there are several edges very closed each other, the derivative function of the profiles can produce errors in the 
segmentation.    

 

5. CONCLUSIONS 
We have built an ASM-based method for segmentation of 4D cardiac computed tomography images. The goal of the 
project is to address automatic segmentations of the left ventricle and the structures around it, which is helpful to 
evaluate the heart mechanical functions. The detected behavior allows the doctor to take decisions about better 
procedures related to patient’s health. Because manual segmentations are always tedious and time consuming, automatic 
algorithms are always a good alternative.  

The proposed approach presents good results when enough training samples are used. This is a disadvantage of ASM 
models due to the fact that the quantity of eigenvectors defines how many deformations the shape in the active search 
can suffer.  On the other hand, the initialization must be good enough to reach the final solution. We opted for manual 
initialization although automatic methods can be used as well. 

The method was validated with eight time-series of cardiac CT images. The algorithm was compared with manual 
segmentations by calculating the mean Euclidean distance of each point. From the experimental findings, we realized 
that using a combination of the gray profile statistics, their derivative function and the time model as objective function, 
improves significantly the performance of the segmentation.  

 

ACKNOWLEDGMENTS 

This work has been sponsored by the following UNAM grant: PAPIIT IN113611 and CONACYT México. Barba-J 
thanks COLCIENCIAS Colombia for financial support in the project. 

REFERENCES 

[1] Matthew, J.,  Budoff and Jerold S., S., [Cardiac CT Imaging, Diagnosis of Cardiovascular Disease], Springer-
Verlag, London, 27-39 (2006). 

[2] Johan Montagnat, Hervé Delingette, "4D deformable models with temporal constraints: application to 4D cardiac 
image segmentation," Medical Image Analysis 9, 87-100 (2005).  

[3] Aboutanos, G.B. and Dawant, B.M., “Automatic brain segmentation and validation: image-based versus atlas-based 
deformable models,” Proc. Medical Imaging SPIE 3034, 299–310 (1997). 

[4] Ashton, E.A., Berg, M.J., Parker, K.J., Weisberg, J., Chen, C.W., and Ketonen, L., “Segmentation and feature 
extraction techniques, with applications to MRI head studies,” Mag. Res. Med. 33, 670–677 (1995). 

[5] Bloomgarden, D.C., Fayad, Z.A., Ferrari, V.A., Chin, B., Sutton, M.G.S.J. and Axel, L., “Global cardiac function 
using fast breath-hold MRI: Validation of new acquisition and analysis techniques,” Magnetic Resonance in 
Medicine 37, 683–692 (1997). 

[6] Bae, K.T., Giger, M.L., Chen, C., and Kahn, C.E., “Automatic segmentation of liver structure in CT images,” Med. 
Phys. 20, 71–78 (1993). 

[7] Tianhu, L. and Wilfred Sewchand, “Statistical approach to X-Ray CT imaging and its applications in image analysis 
– part II: A new stochastic model-based image segmentation technique for X-Ray CT image,” IEEE T. Med. Imag. 
11(1), 62–69 (1992). 

Proc. of SPIE Vol. 8436  84361E-10

Downloaded from SPIE Digital Library on 02 May 2012 to 201.141.57.94. Terms of Use:  http://spiedl.org/terms



 

 

[8] McInerney, T. and Terzopoulos, D., “A dynamic finite element surface model for segmentation and tracking in 
multidimensional medical images with application to cardiac 4D image analysis,” Comput. Med. Im. Graph. 19, 69–
83 (1995). 

[9] Held, K.,   Kops, E.R.,   Krause, B.J.,   Wells, W.M. III.,  Kikinis, R.,  Muller-Gartner, H.-W., “Markov random 
field segmentation of brain MR images,” IEEE T. Med. Imag. 16(6), 878-886 (1997). 

[10] Lorenzo-Valdéz, M., Sanchez-Ortis, G.I., Mohiaddin, R., and Rueckert, D., “Segmentation of 4d cardiac MR 
images using a probabilistic atlas and the EM algorithm,” Proc. MICCAI 2878, 440–450 (2005).  

[11] Hurn, M.A., Mardia, K.V., Hainsworth, T.J., Kirkbride, J., and Berry, E., “Bayesian fused classification of medical 
images,” IEEE T. Med. Imag. 15, 850–858 (1996). 

[12] Laidlaw, D.H., Fleischer, K.W., and Barr, A.H., “Partial-volume bayesian classification of material mixtures in MR 
volume data using voxel histograms,” IEEE T. Med. Imag. 17, 98–107 (1998). 

[13] Kass, M., Witkin, A., and Terzopoulos, D., “Snakes: Active contour models,” Int. J. Comp. Vision 1, 321–331 
(1988). 

[14] Cootes, T.F., Taylor, C.J., Cooper, D.H., and Graham, J., “Active shape models - their training and application,” 
Computer Vision and Image Understanding 61(1), 38–59 (1995). 

[15] Cootes, T.F., Hill, A., Taylor, C.J. and Haslam, J., “The use of active shape models for locating structures in 
medical images,” Proc. IPMI 1993, 33–47 (1993). 

[16] Cosio, F.A., “Automatic initialization of an active shape model of the prostate,” Medical Image Analysis 12(4), 
469–483 (2008). 

[17] Mitchell, S.C., Bosch, J.G., Lelieveldt, B.P.F., van der Geest, R.J., Reiber, J.H.C. and Sonka, M., “3-D active 
appearance models: segmentation of cardiac MR and ultrasound images,”  IEEE Transactions on Medical Imaging 
21(9), 1167–1178 (2002). 

[18] Van Assen, H. C., Danilouchkine, M. G., Frangi, A. F., Ordás, S., Westenberg, J. J. M., Reiber, J. H. C., Lelieveldt, 
B. P. F., “SPASM: A 3D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data,” Medical 
Image Analysis 10, 286–303 (2006). 

[19] Tobias Heimann, Hans-Peter Meinzer, “Statistical shape models for 3D medical image segmentation: A review,” 
Medical Image Analysis 13, 543-563 (2009). 

[20] Frangi Alejandro, Daniel Rueckert, Julia Schnabel and Wiro Niessen, “Automatic 3D ASM Construction via Atlas-
Based Landmarking and Volumetric Elastic Registration,” Proc. IPMI 2082, 78-91 (2001). 

[21] Ghassan, H. and Tomas Gustavsoon, “Deformable spatio-temporal shape models: extending active shape models to 
2D + time,” Image and Vision Computing 22, 461-470 (2004). 

[22] Timo Kohlberger, Daniel Cremers, Mikael Rousson, Ramamani Ramaraj and Gareth Funka-Lea, “4D Shape Priors 
for a Level Set Segmentation of the Left Myocardium in SPECT Sequences,” Proc. MICCAI 4190, 92-100 (2006). 

[23] Chandrashekara, R., Rao, A., Sanchez-Ortiz, G. I. and Ruecker, D., “Construction of a statistical model for cardiac 
motion analysis using nonrigid image registration,”  Proc. IPMI 2003, 599-610 (2003).  

[24] Debreuve, E., Barlaud, M., Aubert, G., Laurette, “Space-time segmentation using level set active contours applied to 
myocardial gated SPECT,” IEEE Transactions on Medical Imaging 20(7), 643–659 (2001). 

[25] Dryden, I. L. and Mardia, K. V., [Statistical Shape Analysis], Jhon Wiley & Sons, New York, 83-107 (1998). 
[26] Paul, J. B. and Neil, D. M., “A Method for Registering of 3-D Shapes,” IEEE Transactions on Pattern Recognition 

and Machine Intelligence 14(2), 239-256 (1992). 
[27] Chandrashekara, R., Rao, A., Sanchez-Ortiz, G.I., Mohiaddin, R.H., Rueckert, D., “Construction of a statistical 

model for cardiac motion analysis using nonrigid image registration,” Proc. Taylor  C. J. A. N. Information 
Processing in Medical Imaging 2732, 599–610 (2003). 

[28] Karim, L. and Guang-Zhong Yang, “Optimal Feature Point Selection and Automatic Initialization in Active Shape 
Model Search,” Proc. MICCAI 5241, 434–441 (2008). 

[29] Hill, A., Thornham and Taylor, C. J., “Model –Based Interpretation of 3D Medical Images,” Proc. 4th British 
Machine Vision Conference 1993, 339-348 (1993). 

Proc. of SPIE Vol. 8436  84361E-11

Downloaded from SPIE Digital Library on 02 May 2012 to 201.141.57.94. Terms of Use:  http://spiedl.org/terms


