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ABSTRACT

One of the main goals of texture analysis is to provide a robust mathematical description of the spatial behavior
of intensity values in any given neighborhood. These local distributions —called textures— characterize object
surfaces and are used for pattern identification and recognition of images. However, some spatial patterns may
vary from quite simple stripes to randomness, where textures look like unstructured noise. Since textures can
exhibit a large number of properties such as surface materials and geometry of the lighting sources, many different
approaches have been proposed. A featured method is the modification of Wang’s algorithm made by Ojala et
al, the so-called local binary patterns (LBP). The LBP algorithm uses a 3 X 3 square mask named “texture
spectrum” which represents a neighborhood around a central pixel. The values in the square mask are compared
with the central pixel and then multiplied by a weighting function according with their positions. This technique
has become popular due to its computational simplicity and more importantly for encoding a powerful signature
for describing textures. Specially, it has gained increased importance in image classification, where the success
not only depends on a robust classifier but also relies in a good selection of the feature descriptors. However,
Ojala’s algorithm presents some limitations such as noise sensitivity and lack of invariance to rotational changes.
This fact has fostered many extensions of the original LBP approach that in many cases are based on minor
changes in order to attain e.g. illumination and rotational invariance or improving the robustness to noise. In
this paper we present a detailed overview of the LBP algorithm and other recently modifications. In addition, we
perform a texture classification study with seven algorithms in presence of rotational changes, noise degradation,
contrast information, and different sizes of LBP masks using the USC-SIPI database. The LBP histograms have
been evaluated using the Kullback-Leibler distance. This study will be a valuable insight for establishing a robust
and efficient texture descriptor to solve real world problems.
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1. INTRODUCTION

Many methods of analysis characterize textures in terms of their intrinsic features but given the fact that
textures are quite varied, the algorithms not only depend on studying the images but also on the goal for which
the image texture is used. Since texture is a fundamental image property composed of repetitive patterns that
describes a perceptually homogeneous region, it has been studied in the fields of visual perception and computer
vision. Commonly, it is used in early stages of the visual information processing, especially for classification and
segmentation purposes‘1
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Although textures are widely used as descriptors, it has been difficult to establish an appropriate defini-
tion. Many vision researchers have given definitions frequently in the context of different applications areas.
Approaches to texture analysis are usually categorized into: i) statistical methods: these methods analyze
spatial distribution of pixels using features taken from the first and second-order histograms based on the as-
sumption that the intensity variations are more or less constants within a region and take greater values outside
their boundary.?2 Inside of this group one can highlight the features extracted from the co-occurrence matrix.?
i1) spectral methods: these methods collect a distribution of filter responses for a further classification. A
comparative study can be found in Randen et al.* Many algorithms in this category are focused on face recog-
nition classification.® In particular, Gabor filters have proven to be powerful and precise for describing texture
patterns.® ) structural methods: textures are characterized by a set of primitives which are organized
according to a certain placement rule. The placement rule defines the spatial relationship among primitives and
may be expressed in terms of adjacencies. iv) stochastic methods: these methods assume that textures are
the realization of stochastic processes and estimate the associated parameters, e.g., Seetharaman uses a Bayesian
approach as a texture descriptor.”

Recent trends in texture classification attempt to unify the concepts of statistical and structural approaches.
Ojala® observed that these two concepts have complementary characteristics that allow modeling textures as
distributions of texture units. The LBP operator proposed by Ojala® is a two-level version from the Wang’s
work? which compare the values in a square mask against a the central pixel. This operator belongs to a group
of non-parametric local transformations that are distinguished by the use of ordered information among data.
Non-parametric local transformations are local transformations that rely on the relative order of pixel values.
They transform an image into an array of integer labels, (see Fig. 2) and encode the pixel-wise information of
the textures as a histogram. This histogram can be interpreted as the fingerprint of the analyzed object.

Similarly to the Ojala’s work, Zabih'® proposed two alternative non-parametric local transforms. The first
transform called rank transform (RT) is defined as the number of pixels in a local square region that are lesser
that the value of a central pixel. The second non-parametric local transform named census transform (CT)
maps the local square neighborhood into a bit string representing the set of neighbor pixels that are lesser than
a central pixel value. Both RT and CT depend solely on a set of pixel comparisons. Nevertheless, the first
limitation of these kind of methods is that the amount of information associated to a pixel is not very large
which induces noise sensitivity. Another limitation is that the local measures rely heavily upon the intensity of
a central pixel. However, the last drawback can avoid by doing comparisons using local means or median values
instead of central pixel intensities.

After the initial LBP proposal, many modifications and improvements have emerged in the literature, most of
them are related to face analysis where it is assumed that input faces are registered. For a thorough description
of LBP operators see two recent surveys and a book monograph.® 1112

In this paper we present a detailed overview of the original LBP algorithm as well as the most significant
extensions that have been proposed in the literature from theoretical to practical perspective. In Section 3
we perform an assessment of seven algorithms in presence of rotational changes, noise degradations, contrast
information, and different sizes of LBP masks using the USC-SIPI database. This study includes classification
tests using KL distance. Finally, conclusions are drawn in Section 4.

2. LOCAL BINARY PATTERN METHODS

The very first approach to LBP was given by Ojala® and is based on the idea that textural properties within
homogeneous regions can be mapped into patterns which represent micro-features. The LBP proposal uses a
3 x 3 square mask called “texture spectrum” which represents a neighborhood around a central pixel, Fig. 1(a).
The values in the square mask are compared with the central pixel, those ones lesser than the central value are
labeled with “0” otherwise they are labeled with “1”, Fig.1(b). The labeled pixels are multiplied by a weighting
function according with their positions to form a pattern chain, Fig. 1(c). Afterward, the values of the eight
pixels are summed to obtain a label for this neighborhood, Fig. 1(d), this method produced 2% possible labels.

Ojala claimed that this type of threshold provides a robust way for describing local texture patterns. However,
Tan'? have revisited the original approach and demonstrated that a generalization of LBP called local ternary
patterns (LTP) is more discriminant and less sensitive to noise for texture analysis.
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Figure 1. Based on a square mask of 3 x 3 the LBP algorithm computes a label by comparisons between a central pixel
and its surrounding neighbors. This method produces 2% possible labels. In this example, we chose a circular path to visit
all the pixels but in the original proposal the order to visit all the pixels is per row. Hence the central value is p. = 10
and the final label will be 27.

Finally, after this process is completed for the whole image, a histogram is computed so that can be interpreted
as a fingerprint of the analyzed object. Although this method provides information about local spatial structures,
it is not invariant to rotational changes and does not include contrast information which has been demonstrated
to be crucial to improve the discrimination of some textures.

Figure 2. Many methods based on the original LBP algorithm have emerged in the literature. Using Bark texture (D12)
in Fig. 2(a), we show in Fig. 2(b) seven LBP-images. From left to right: LBP, LBPR'y', LBPp's, LBPRY', LBPRY,
LBPg';, and LBPp'R" respectively. Fig. 2(c) results are magnified by a factor of 4 for a better visualization.

2.1 Modifications of the local binary pattern method

In this work, a wide set of LBP methods are analyzed. Here, we summarize the main characteristics of the
algorithms selected in the current study. In particular, this study is focused in analyzing LBP algorithms that
provide rotational invariance for their direct implication in practical applications.

¢ Ojala proposed a generalization of his own operator.'* Such generalization can be obtained using a circular
neighborhood denoted by (P, R) where P represents the number of sampling points and R represents the
radius of the neighborhood. The sampling point coordinates (x,,y,) are calculated using the expression
(zc + Rcos (32) ,y. — Rsin (222)). When the sampling coordinates do not fall at integer positions, the
intensity values are bilinearly interpolated. This implementation is called circular LBP (LBPp R).

!

-1

LBPpr(gc) =Y s(gp—gc)2” (1)

S
I
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where g, is the central pixel at (z.,y.) coordinates and {g,|p =0, ..., P — 1} are the values of the neighbors.

The comparison function s (x) is defined as:

1 ifz>0
S(x){ 0 ifzx<0 @)

Eq. (1) represents a “texture unit” composed of P + 1 elements (central pixel included). There are 27
possible texture units describing spatial patterns in a neighborhood of P points. In addition, LBPp g
achieves invariance against any monotonic transformation by considering the sign of the differences in

S (gp —9e)-

Pietikdinen proposed a modification called rotation invariant LBP (LBP};’?}{’) in order to minimize the
effects of rotation.!® The main idea is to apply a circular shift to find the minimum value that the pattern
chain may represents, see Eq. (3). This approach identifies 36 different values when using P = 8. However,
the Eq. (3) only achieves invariance in a discrete digital domain because only for 90° perfect rotation
invariance can be achieved.

LBPE (ge) = min {ROR (LBPp g (g.) i) [i =0,...,P -1} (3)

where ROR (z,1) performs a circular bit-wise right shift operation i times.

Ojala observed that over 90% of texture patterns can be described with few spatial transitions, which
are the changes (0/1) in the pattern chain.!* He introduced a uniformity measure U (LBPp g (g.)) which
corresponds to the number of spatial transitions as follows:

P—1
U(LBPpr(ge) = |5 (gp—1 — 9¢) — 5 (90 — 9 | + > |5 (9p — 9¢) — 5 (9p — 9c) | (4)
p=1
In this way, the uniform LBP (LBPE';) can be obtained as:
P-1
UNL S — (e if U LBP 8 c S 2
LBPPVR (gc) _ pgo (gp g ) ( PR(g )) (5)
P+1 otherwise

Yan Ma'® proposed the number LBP (LBPp'") as an extension of the Eq. (5) by dividing the non-uniform
patterns into groups based on the number of “1” or “0” bits as follows:

P-1
5(9p = ge) if U(LBPpr/(gc)) <2
p=0
LBpglj{m (gc) = . U (LBPRR) >2 and (6)
, Numq {LBPpr(g.)} if Ny (LB P (40} > Numo {LBPr 5 (a.)}
. U (LBPRR) >2 and
Numo{LBPp R (g9.)} if Nums {LBPr1 (62)} < Numo {LBPr.z (6}

where Num; {e} is the number of “1” and Numg {e} is the number of “0” in the non-uniform pattern.

Liu stated that the likelihood of a central pixel only depends on its neighbors.'”Hence, the neighbor-
intensity LBP (LBPﬁfR) can be obtained by replacing the central pixel with the average of its neighbors

as follows:
P-1

LBPIQJL.R (9¢) = Z s (gp — p)2” (7)
=0

S
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where
| Pl
n=52_ % (8)
p=0

The presence of noise can seriously impair the performance of the LBP operator. Zabih’s proposal'®
replaces the central pixel with the median of itself and the P neighbors.

P-1
LBPRE (9:) = Y s(9p — ) (9)
p=0
where g represents the median of the P neighbors and the central pixel. This modification is still invariant

to rotation but less sensitive to noise. It is also invariant to monotonic illumination changes.

Fu and Wei'® addressed the problem of noise by considering that in most cases the central pixels provide
more information than their neighbor counterparts. They redefined Eq. (2) as:

1 x>
s(x)—{ 0 |z]<ec (10)
where c is a fixed threshold.
Fu and Wei proposed the centralized LBP (LBPg) as follows:
~1

LBPER(9) = 3 5 (00 = G 5) 27+ 5 (90 = G1ot) 2
p=0

vly

wrs
—
—
—_
~

and g0 is defined as:

1 P—1
_ 12
Gtot Pl <Qc + Z 9p> (12)

p=0

Due to the fact that the algorithm considers correlation between opposite pixel points, this algorithm is
not invariant to rotation.

Tan proposed an extension called extended LBP (LBP}%%) by using the value of central pixels plus a
tolerance interval ¢ as local threshold.'® t is a user-specific value, usually set at “1”. Each pixel in the
interval g. £t is quantized as zero. Pixels above the tolerance interval are labeled with “1” and those below
the interval are labeled with “—1” as follows:

1 ifx>t
s(z)y=< 0 if|z| <t (13)
-1 ifx<—t

here x is the difference between the P neighbors and their central pixel. Each ternary pattern is split into
upper and lower patterns and each part is encoded as a separate LBP pattern. Finally, their histograms
are concatenated.

Guo?® suggested to consider both the sign and magnitude of a d, vector to form the completed LBP
(LBPpR'). In Eq. (1), only the sign component is considered. Here, d, = {g, — gc[p =0,1,..., P — 1} is
split into two components as follows:

dp = spxmy = { b i sign (dy) (14)

where s, and m,, are the sign and magnitude of d, respectively.
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o Liao proposed the dominant LBP (LBP;?.?]?) which is a modification of Eq. (5) based on the fact that
LBPﬁj}% in practice is not well suited to encode some complicated pattern textures such as curvature edges
and crossing boundaries of corners.2! A possible explanation is due to the fact that the extracted uniform
patterns do not have a dominant proportion of them to better represent the object (or image). Liao et
al. have shown that given a set of training images, the required number of patterns to better representing
textures corresponds to at least 80% of the pattern occurrences. The first step of their procedure is to
compute the histogram and sort it in descending order. The second step is to extract a vector to obtain
the 80% of pattern occurrences. This procedure guarantees a suitable framework for representing textures.

o Previously, Ojala'# proposed the use of a joint representation LBPp r/V ARp g, where V ARp r represents
the local variance. However, VARp r has continuous values. Therefore, it has to be quantized. Guo??
included complementary information of the local contrast in a new scheme called local binary pattern
variance (LBPVp R).

A rotation invariant measure of the local variance can be defined as:

P-1
1
VARpR(g:) = 5 ) (9 —u)’ (15)
p=0
where {g,/p =0, .. — 1} are the g. neighbors and u = 5 Zp o Ip-

Calculation of the LBP histogram does not include the information of variance VARp r. The LBPVp
descriptor offers a solution for that as follows:

N M
LBPVpg(k)=> > w(LBPpr(i,j),k),k € [0,K] (16)

i=1 j=1

. VAR i,7) LBPpgr(i,j) =k
w(LBPp R (i,]),k) :{ 0 P (i,]) other(wijsl

(17)
The variance VARp r can be used as an adaptive weight to adjust the contribution of the LBP code in
the histogram calculation.

The advantage of the LBPp r/V ARp r scheme is the use of both local spatial and contrast information and
the quantization of the variance can be done by the distribution of values into N bins with an equal number
of entries. Another option is to distribute all the quantized variance values into histograms with the same
number of bins that the LBP histogram. It is important to consider that too few bins will fail to provide
enough discriminative information while too many bins may lead to sparse and unstable histograms.

3. ASSESSMENT RESULTS

The experimental tests were performed using the USC-SIPI image database available at.?? This database consists
of thirteen grayscale textures of 512 x 512 pixels. The textures bark (D12), brick (D94), bubbles (D112), grass
(D9), leather (D24), pigskin (D92), raffia (D84), sand (D29), straw (D15), water(D38), weave (D16), wood (D68),
and wool (D19) —the number between parenthesis is the identification number in the Brodatz texture book?*-
were digitized at seven different rotation angles: 0, 30, 60, 90, 120, 150, and 200 degrees. The USC-SIPI image
database provide a hardware-rotated subset of textures avoiding in this way the introduction of artifacts if the
rotation is performed by software. For purposes of efficiency, all images were rescaled at 64 x 64 and 128 x 128
pixels with 8 bits/pixel using bicubic interpolation.

In this evaluation set, we consider seven rotation invariant descriptors: LBP™", LBPE, LBPp'y, LBPE,
LBPg%”, LBP%%, and LBPpR" from the list of methods described in Section 2. Furthermore, we distinguish
two subsets: i) LBP}Z””}%", LBPFR, LBPITEd, and LBPg"El which are modifications of the LBP™™ approach.
The methods in this subset compute the LBP labels based on the pattern chain values and their final histograms
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is of 36 bins length. i7) LBPE" is a refined model of LBPE;. These methods compute the LBP labels based
on the number of transitions of the pattern chains.

In order to evaluate the robustness of the algorithms against rotational changes, we calculated the mean and
variance features of each reference LBP (non-rotated textures) and compare against its rotated versions. We
used a normalized measure of dispersion C, and computed the statistical variations among the orientations as

follows: o

where o and p are the standard deviation and mean for each feature respectively. The lower coefficient the higher
robustness against rotation changes.

Table 1 shows the coefficients of variation for the two groups of images (64 x 64 and 128 x 128 respectively).
pes and o, represents the mean and the variance of test images of 64 x 64 pixels and 198 and oi,g represents
the mean and the variance of the test images of 128 x 128 pixels respectively.

Table 1. The slight numerical variations of the C, indicates the robustness of the the extracted features. The lower the
coefficient of variation the higher the robustness to rotation changes.

LBP™n  LBPp#  LBPR, LBPRg LBP{m LBPEY  LBPpYr
pes 00104 00057 00162  0.0100  0.0100  0.0071  0.0049
o2, 0.0094 00175 00321  0.0350  0.0350  0.0303  0.0329
pos  0.0089  0.0053  0.0089  0.0050  0.0050  0.0046  0.0033
0% 0.0086  0.0122  0.0222  0.0299  0.0299  0.0275  0.0241

We should note that LBP™" and LBP},’}}{L differ that the first one does not use interpolated neighbors but

the second one does. Interpolated neighbors minimize the feature mean p but increase the variance 2.

3.1 Kullback-Leibler distance
Since LBP histograms act as fingerprints of textures, it is possible to consider them as similarity measures among
all different textures. Although the Kullback-Leibler divergence (KL) —a generalization of Shannon’s entropy—
is not a true metric rather it is a relative entropy measure, it can be used as a suitable metric for measuring
distances between histograms as follows:
b—1
Dkr(A,B) =) Pi(B)log

=0

P; (B)
P; (A)

(19)

where A and B are two histograms with b bins length each, and P; denotes the probability of the ¢ bin.

The classification procedure setup consisted of comparing histogram distance of each reference image against
all rotated images, (see Table 2). This experiment was performed both for testing images of 64 x 64 and 128 x 128
pixels.

The classification rates are consistent with those reported in the literature. Pietikiinen'® reported an error
rate of 38.5% for the LBP™™ algorithm. Here, we got 38.46%. The best classification rate is achieved with
the LBng)]%”, one possible reason is that this approach rules out 20% of patterns that in many cases can be
interpreted as noise.

3.2 Noise sensitivity

LBP algorithms are very sensitive to noise, specially when a small neighborhood is used. Since the amount of
information associated to a pixel is not very large, even a small change in any pixel value could lead to a different
label. Table 3 shows the classification performance of the noisy images of 128 x 128 pixels. The seven algorithms
have been evaluated with the addition of Gaussian noise with mean g = 0 and standard deviation ¢ = 0.1 and
under the effects of Poisson noise. These noise algorithms were implemented with the Matlab imnoise function.
According with Table 3 and for the images analyzed, LBng’]{‘ performed best for Gaussian noise and LBPp’,
for Poisson noise.
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Table 2. Comparison of texture classification using the KL distance.

Scheme 04 > 64 128 > 128 References
# textures Accuracy rate (%) # textures Accuracy rate (%)
LBpmir 56 61.54 66 72.53 15
LBPRy 58 58.24 63 69.23 15
LBPy, 57 62.64 65 71.43 17
LB 54 59.34 71 78.02 10
LBP{og 68 74.73 73 80.22 2
LBP, 67 73.63 73 80.22 14
LBPpYy 63 69.23 73 80.22 16

3.3 Adding variance information

Ilumination variations are one of the most important challenges for the current feature descriptors. Tan!?
claims that LBP performance decreases almost exponentially under extreme conditions. The LBP by itself is
only invariant to monotonic illumination changes and does not entail the contrast information of textures which
is important in the discrimination.

In the next experiment we used the Eq. 15 for computing the local variance information of the test images.
Here we are interested in combined information of both LBP and local variance VARp r features. However,
V ARp r produces continuous values which need to be quantized. Ojala proposed to quantize variance values so
that all bins have an equal number of elements.® So far, establishing the number of bins is still an open issue.

LBP and VARp R histograms could be combined in two ways: jointly or mixed,.?° In the first one, similar
to 2D joint histograms, we can build a 3D joint histogram of them. In the second way, a large histogram is built
by concatenating both LBP and VARp g histograms to form the so-called “pseudo joint histogram”.

Table 4 shows classification rates of LBP algorithms with and without VARp r information on images of size
128 x 128. Here we used pseudo joint histogram.

As we expected, the results obtained with joint pairs of features provide the best performances with error
rates around 7.70%. This emphasizes the importance of using other features besides the LBP operator. In fact,
if we consider only the local variance VARp g as a feature descriptor, the classification rate reaches 86.81%.

In the next Fig. 3 we present a performance comparison between LBP;% and LBP#%\VAR p,r approaches.
There is a strong indication that the local variance is more discriminant than LBP features themselves in the

Table 3. Performance of LBP approaches under additive Gaussian noise with media ;= 0 and ¢ = 0.1 and under Poisson
noise.

Scheme Gaussian noise Poisson noise
# textures Accuracy rate (%) # textures Accuracy rate (%)

LBp™in 55 60.44 71 78.02
LBP}D”%" 52 57.14 66 72.53
LBP}?fR 51 56.04 73 80.22
LBPIZ'?%d 53 58.24 74 81.32
LBPg:’IT{n 61 67.03 69 75.82
LBPE’}% 60 65.93 69 75.82
LBPﬁszm 51 56.04 51 56.04
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Table 4. Comparison of texture classification including local variance information.

Scheme LBP only VARpRr
# textures Accuracy rate (%) # textures Accuracy rate (%)

LBp™in 66 72.53 76 83.51
LBP}Z?%” 63 69.23 81 89.01
LBPp', 65 71.43 81 89.01
LBPRg 71 78.02 80 87.91
LBP{R 73 80.22 81 89.01
LBPg 73 80.22 84 92.30
LBPpun 73 80.22 82 90.10

classification process. A Fischer discriminant score?® will allow to select the most informative features by rejecting
those noisy features.

3.4 Neighborhood size

Another important issue of the original LBP is the neighborhood size. The next experiment was aimed to assess
the radius size influence in texture classification. Table 5 presents the classification performance of the seven
LBP approaches with radius R = {1, 2,3} on images of size 128 x 128.

Table 5. Comparison of texture classification using different neighborhood size.

Scheme R=1 R=2 R=3

LBPRy 63 71 56
LBPp, 65 71 70
LBPRg 71 64 57
LBP{R 73 74 67
LBPp; 73 72 70
LBPRY 73 68 63

For the subset one, the highest classification rate was achieved with R = 2 while higher radius size caused
poor classification rates. On the contrary, for the subset two, (the last two methods of Table 5), the best rates
was achieved with R = 1.

4. CONCLUSIONS

The main goal of this study was to perform a comparative study of several LBP approaches because this concept
has represented a milestone in texture analysis. The LBP descriptors have been powerful tools for feature
encoding. They have been successfully used in many different image analysis applications, in particular in the
area of face recognition due to their excellent properties and computational simplicity. Since the original LBP
proposal has many limitations such as noise sensibility and it is affected by rotational transforms, a large number
of extensions have been proposed. Here, we presented a wide overview of the most important LBP approaches
proposed in the literature and performed evaluation tests for texture classification of seven algorithms in presence
of rotational changes, noise degradation, contrast information, and different sizes of LBP masks using the USC-
SIPI database. Although in general, the classification rates of the seven LBP’s are poor, starting from 58.24%
up to 80.22%, the results obtained with joint pairs of features, both LBP and local variance, provide the best
performances with error rates around 7.7%. However, due to their lack of strength against noise and non-uniform
illumination changes, it needs a pre-processing step (filtering) as a previous stage to increase their robustness.
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brick bubbles orass leather pigskin raffia sand straw water weave wood wool

bark 0_!10 0.!10 0.00 0.00 0.00 0.00 0.!10 0.60 0_50 0.!10 0.60 0.!10 —
brick X 029 0.00 000 000 000 0.00 0.00 0.00 000 000 000 000
bubbles — 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000
grass — 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000
leather — 000 0.00 000 000 0.00 000 000 0.00 000 000 000
pigskin{— 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000
raffial- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000
sand~ 000 0.00 0.00 000 000 000 000 000 000
straw |- 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.00 000 —
water— 0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.00 029 043 0.00 0.00 000
weave — 000 0.00 0.00 000 000 000 0.00 0.00 0.00 000 1.00 000 000
wood [~ 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.00 043 0.00 0.00 0.29 000
wool - 0_?0 0_?0 0_?0 n.llm 0_?0 n.llm 0_?0 0_?0 0.?0 0_?0 n.llm 0.?0 1.00
(a)
bark brick bubbles grass leather pigskin raffia sand straw water weave wood wool
bark U_!JU U.bu 0.00 0.00 0.00 U.bﬂ U.!JU U.bU U.EU U.EU U.bﬂ U.EU —
brick 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 —|
bubbles — 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 —|
grassf— 0.00 029 000 000 0.00 000 0.00 000 000 000 —|
leather — 0.00 043 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 —|
pigskinf— 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 —|
raffiaf- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 —|
sand— 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 —|
straw— 000 0.00 000 000 0.00 000 000 0.00 000 000 000 —|
water— 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
weave|~ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
wood— 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
wool — n,lnn n,lnn n,llm n,lnn n,lnn n,llm n,?n n,lnn n,?n

(b)
Figure 3. Performance comparison between (a) LBPE'; and (b) LBPE:\V ARp r. In most cases, the variance information

minimizes the error rate except for the “grass” class. In general, the variance information increases up to 12% the
classification rate.
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The results can be summarized into three groups: i) LBPs based on minimal chains: LBP™™" LBP].Z}%‘, and
LBng’I? compute a minimal chain. Their performance could be affected by noise because if a pixel intensity
value is disturbed the final LBP label changes. i) LBPs based on neighborhood values: Prior a LBP label
computation, LBP];‘fR and LBP]}}%d perform a weighted average of neighboring pixels to minimize the effects of
noise. 4ii) LBPs based on uniform values: LBPﬁ”}%, LBPpR" compute a uniformity measure prior LBP label
computation which corresponds to the number of spatial transitions in the pattern. Since LBPp';" add extra
information of non-uniform patterns into the LBP histogram it has a better texture classification performance
than LBng}{;.

Further work includes extending this techniques by applying a preprocessing stage based on Gabor filtering
for increasing the robustness to illumination and noise degradations. Another extension will be based on the use
of FPGAs to reduce the computational time.
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