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Abstract: In this paper, we propose a segmentation method for time series of 3D cardiac images based on 

deformable models. The goal of this work is to extend active shape models (ASM) of tree-dimensional objects to the 

problem of 4D (3D + time) cardiac CT image modeling. The segmentation is achieved by constructing a point 

distribution model (PDM) that encodes the spatio-temporal variability of a training set, i.e., the principal modes of 

variation of the temporal shapes are computed using some statistical parameters. An active search is used in the 

segmentation process where an initial approximation of the spatio-temporal shape is given and the gray level 

information in the neighborhood of the landmarks is analyzed. The starting shape is able to deform so as to better fit 

the data, but in the range allowed by the point distribution model. Several time series consisting of eleven 3D images 

of cardiac CT are employed for the method validation. Results are compared with manual segmentation made by an 

expert.  The proposed application can be used for clinical evaluation of the left ventricle mechanical function. 

Likewise, the results can be taken as the first step of processing for optic flow estimation algorithms.  

 

1. INTRODUCTION  

Cardiac computed tomography is one of the main types of radiological images for heart 

analysis and detection of abnormalities. It provides image slices or tomograms of the heart
 
that 

form a tridimensional object. Since the heart is an organ with a periodic movement, analysis with 

cardiac CT can be made in 4D as well, which consists of several 3D images taken to reveal the 

complete cardiac cycle of the heart. Specialists use these studies to evaluate the mechanical 

function of the heart. Because the evaluation of the heart structures using cardiac CT has to be 

made over specific areas of the images, it is necessary to carry out some segmentation task at 

first.  Generally speaking, medical image segmentation is a prerequisite for many high-level tasks 

such as image analysis, computer-assisted diagnosis, geometric modeling of anatomical 

structures, or the construction of bio-mechanical models used for surgery simulation [1]. During 

decades, several algorithms for image segmentation in the field of medical application have been 

developed [2]. Many of them solved the problem by using statistical models [3-5]. Other set of 

approaches are the so called deformable models. They consist of an initial instance that can be 

updated according to a set of forces in the neighborhood of a point. The shape is represented by a 

specific quantity of points describing the object contours in the image. Cootes et al. [6] proposed 

a method of models that can constrain the specific range of a training set. They called them 

“Active Shape Models”.   

Our goal is to extent 3D active shape models to represent time-series of 3D cardiac CT 

images. We propose an Active Shape Model-based segmentation method in which the gray level 

information are obtained from the training set in order to optimize the image search.   

 

 

2. PROPOSED ASM-BASED ALGORITHM FOR 4D OBJECTS (3D + TIME) 

In this section, we outline the proposed solution to address the segmentation problem of time-

varying three-dimensional structures. The most common cases of this problem are the 4D cardiac 

CT images which are the objective of this work. It is known that three-dimensional images in 



 

 
 

 

medical applications are formed by a specific number of slice

there is a set of time series of 3D objects previously segmented

points over each slice and describe the contour 

the data (the time series of cardiac CT

the shape corresponds to the contour of 

the complete cardiac cycle of the heart from systole to diastole.

 

Figure 1

 

We start our method by accommodating the points of the time sequence as 

the sequence of volumes is our “
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where (
kkk tntntn zyx ,, ) is the coordinate of the point 

resulting vector that represents the time

training process are described in

them as the initial mean temporal shape; the rest are aligned by using the 

Continuing with the training, covariance matrix and

finally build the Point Distribution Model. 

variability of the cardiac CT structures if we do not have enough training samples. 

2.1 Computing the gray level statistics

For the active search in the segmentation process

landmark’s profile.  Assume that 

A profile normal to the surface in this point can be defined as:
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where l defines the extremes of the profile to each side of the principal point 

normal direction to the landmark.

medical applications are formed by a specific number of slices or 2D images. 

there is a set of time series of 3D objects previously segmented. They are represented by a set of 

ribe the contour of the structure to be trained. In our application, 

s of cardiac CT) are composed by a total of ten volumes (see figure 1

the shape corresponds to the contour of the left ventricle of the heart. The ten volumes describe 

the complete cardiac cycle of the heart from systole to diastole. 

1. Landmarks for the time-series of 3D objects 

by accommodating the points of the time sequence as a

“temporal shape”, this vector must include all the landmarks for 

each volume. The concatenation begins with the first point of the time volume 

volume t9. The mathematical representation of each temporal 
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) is the coordinate of the point n in the time tk. As it 

vector that represents the time-series is of 30th dimension. The following steps for the 

in [6]. Having organized the training vectors, we choose one of 

them as the initial mean temporal shape; the rest are aligned by using the Procrustes method

covariance matrix and PCA of the aligned vectors are computed to 

finally build the Point Distribution Model.  This model is not able to capture the complete 

variability of the cardiac CT structures if we do not have enough training samples. 

tatistics  

or the active search in the segmentation process, we need a gray level model 
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normal direction to the landmark. The size of the profile must be chosen as well. 
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The following steps for the 

Having organized the training vectors, we choose one of 

rocrustes method [7]. 

of the aligned vectors are computed to 
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variability of the cardiac CT structures if we do not have enough training samples.  

a gray level model for every 

volume of the time-series. 

  (2) 

the extremes of the profile to each side of the principal point and follows a 

The size of the profile must be chosen as well. Most of the 



 

 
 

 

time, applications have to deal with the contrast problems in the images and poor definition of 

edges, we choose to work with the normalized derivative 
ntk

dg ,  of the profile. The mean profile 

and its mean normalized derivative for the k-th landmark are calculated from the samples of the 

training set as: 
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Finally, the gray model is completed with the covariance matrix of the profile for each 

landmark of the time-sequence vector, including the profile and its normalized derivative: 
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where T represents the transpose of the vector and N the number of training samples. 

2.2 Objective function in the active search 

In the active search used for image segmentation, it is necessary to define an objective 

function that determines the best positions where the landmarks of the initial shape have to be 

moved in order to better fit the data. When working with medical images, it is very common to 

find problems related to the contrast and noise what make difficult to carry out some tasks such 

as segmentation. ASM algorithms start the process of segmentation by putting, manually or in 

automatic way, an initial instance as closed as possible to the structure to be segmented. Each 

landmark is moved to a better position in the normal direction by minimizing the objective 

function.  Giving the differences of contrast, the noise and the temporal behavior of 4D cardiac 

CT images, we proposed a weighted sum of Mahalanobis distances of the gray profile and its 

normalized derivative as objective functions for each point: 
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where wm (m = 1,2) is the assigned weight for each part of the objective function, Pk (k = 1, 2, …, 

n)  indicates the respective landmark and i represents a specific position of the landmark Pk along 

its normal profile. Hence, the new positions of the points are finally chosen according to the 

minimal value obtained for the function 
kP
f  evaluated in the normal direction of Pk. When new 

positions are determined, the process continues with the alignment of the initial shape and the one 

defined for the new landmarks. Here, angle of rotation, translation vector and a scaling factor are 

computed. These variables correspond to pose parameters of the data. New modifications are still 

necessary to adjust the data in order to reach the found solution; shape parameters are 

subsequently obtained in terms of the transformation matrix (rotation, translation and scaling) 

and eigenvectors calculated in the training stage. The final shape is calculated from the initial one 

by using the pose and shape parameters. Since it is an iterative process, the final result is the 

initial shape the next iteration. 

 

3. EXPERIMENTS AND RESULTS 

We evaluated our method for several time-series of cardiac CT images. The structure used for 

the segmentation was the left ventricle of the heart from an axial view. The initial instance for 

each test corresponds to the mean shape of the training and it is put manually onto the time-



 

 
 

 

sequence. The segmentation algorithm is computed for images that were not used in the training 

process. We carried out visual and quantitative performance evaluations of the automatic 

segmentation for each sample. For the quantitative assessment, we used a metric given by the 

mean Euclidian distance per point which is an easy but effective method that can measure the 

mean separation of each point of the shapes.  In our evaluation, we then calculate the distance 

between the automatic (for the first and final iterations) and manual segmentations of the 

temporal shapes. In this project, results are given for eight 4D cardiac CT images. In table 1, the 

obtained performance for all the samples is summarized.  

 

Table 1. Characteristics of the samples and Euclidean distance between the automatic and manual 

segmentations. 

Sample Volumes of the 

Time-Series 

Slices 

Segmented 

Mean Euclidean 

Distance/point of 

the Initial Instance 

Mean Euclidean 

Distance/point of 

the Final Result 

Time-Series 1 10 5 5.45735 5.19752 

Time-Series 2 10 5 4.47716 4.08912 

Time-Series 3 10 5 3.95231 3.58310 

Time-Series 4 10 5 4.12130 3.74103 

Time-Series 5 10 5 2.95268 2.71527 

Time-Series 6 10 5 3.60540 3.11042 

Time-Series 7 10 5 3.59310 3.44656 

Time-Series 8 10 5 4.93335 4.25979 

 

 
a) 

 

 
b) 

Figure 2. Final segmentation of the time-series shown in figure 3, a) Volume 1; b) Volume 2 
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As reflected in table 1, the ASM proposed model presents good results for segmentation of 

cardiac CT time-series images. The obtained performance is improved when the quantity of 

training samples is increased. For this project we used 70 times series of cardiac CT for the PDM 

construction. This results in 43 eigenvectors that encode the complete variability of the left 

ventricle of the heart. Figure 2 illustrate the final segmentation for a 4D cardiac CT image used in 

which is shown the first two of the ten volumes of the time-serie.  The initialization is made 

manually by putting the mean temporal shape resulting from the training near the object. For each 

slice we used 50 points around the contour of the left ventricle in an axial view. Since the 

objective of the proposed approach is to adapt it to optic flow estimation algorithms for 

mechanical evaluation of the heart, we only selected 5 slices per volume. This means that the 

time-series is represented by 2500 points. 

4. CONCLUSIONS 

We have built an ASM-based method for segmentation of 4D cardiac computed tomography 

images. The goal of the project is to address automatic segmentations of the left ventricle and the 

structures around it, which is helpful to evaluate the heart mechanical functions. The proposed 

approach presents good results when enough training samples are used. This is a disadvantage of 

ASM models due to the fact that the quantity of eigenvectors defines how many deformations the 

shape in the active search can suffer.  On the other hand, the initialization must be good enough 

to reach the final solution. We opted for manual initialization although automatic methods can be 

used as well. The method was validated with eight time-series of cardiac CT images. The 

algorithm was compared with manual segmentations by calculating the mean Euclidean distance 

of each point. From the experimental findings, we realized that using a combination of the gray 

profile statistics and their derivative function improves significantly the performance of the 

segmentation.  
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