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Abstract—A biological inspired image analysis technique
to extract visual texture features is presented. The Hermite
transform describes locally basic image features in terms of
Gaussian derivatives. Multiresolution combined with several
derivative orders of analysis provides detection of patterns that
characterize every texture class. Maximum energy direction
analysis and steering of the transformation coefficients increase
the method robustness against the texture orientation. Texture
features are computed by extracting statistical information
from the orientation-invariant visual features and arranged
into a compact vector. The PCA technique is used to select
the most significant linear combinations of the vector elements
to reduce vector dimensionality. We evaluate the correct
classification rate for several kinds of texture features with
real textures sets and the effects of the number of principal
components on the classification performance.

Keywords-texture classification, visual texture features, Her-
mite transform, image indexing, Content-based image retrieval
(CBIR)

I. INTRODUCTION

The increasing media content in a wide range of areas
requires automatic methods to browse on large databases to
find and retrieve images based on relevant content for the
user. Indexing and classification are crucial tasks to obtain
high retrieval performances. Browsing medical images for
diagnosis aid [1], classification of the quality of a given
process in industrial environments [2][3] and indexing of
manuscripts [4] are some examples.
In order to obtain useful features for classification and

indexing, in this paper we propose a biologically inspired
image analysis technique to extract visual texture features
regardless the orientation of the input texture.
For texture analysis many techniques have emerged, such

as gray-level co-occurrence matrices [5], Markov random
field models [6], local binary patterns [7] and, filtered based
methods including Gabor filters [8] and different wavelets
types [9], [10]. The Gabor filtering based technique has
been widely used due to the fact that the Gabor functions
are capable to model the receptive field profiles of simple
cells of mammalian visual systems. Another reason is their
optimal joint resolution in both the space and frequency
domains [11].

The Hermite transform is a local decomposition technique
that expands an image into orthogonal polynomials with
respect to a Gaussian window [12]. One of the advantages of
using the Hermite transform over wavelet-based methods is
that its analysis functions are similar to Gaussian derivatives.
Psycho-visual evidence suggests that the Gaussian deriva-
tives fit the receptive field profiles of mammalian visual
systems [13].
In this paper, we present an exhaustive evaluation of the

correct classification rate (CCR) of several kinds of common
statistical texture features extracted from the orientation
invariant visual features. We compare the results with the
classification performance obtained after a dimensional-
ity reduction method with principal components analysis
(PCA). The effects of the number of principal components
(PCs) on the classification rates are also reported. Previous
work [14] has shown that the augmented variance ratio
(AVR) improves the CCR with a reduced number of feature
elements.
Sect. II presents the theoretical foundations of the Hermite

transform and its steered version in Sect. III to achieve
rotation-invariance. The common statistical texture features
that we evaluate are presented in Sect. IV. Section V presents
the PCA dimensionality reduction method. Datasets and
experimental setups are detailed in Sect. VI. Finally, results
and conclusions are given in Sect. VII and VIII respectively.

II. HERMITE TRANSFORM
A one dimensional polynomial transform fn(x) locally

represents an input signal in terms of a sum of the windowed
V (x) input signal f(x) times its orthogonal polynomial
Gn(x) at every window position [12]:

fn(x0) =

∫
x

f(x)Gn(x0 − x)V 2

n (x0 − x)dx (1)

By choosing a Gaussian window

V (x) =
1√√
πσ

· e−x2/2σ2

(2)

its corresponding orthogonal polynomial are given by the
Hermite polynomials Hn(x) [15]:

Hn(x) = (−1)nex2 dne−x2

dxn
, n = 0, 1, 2, . . . (3)
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Figure 1. Hermite transform at one scale of analysis. Input texture
corresponds to a region from the Brodatz texture D74 [16]

The expansion coefficients fn(x) are obtained by convo-
lution of the input signal f(x) with the Hermite analysis
functions dn(x) given in terms of the window and the
Hermite polynomials as:

dn(x) =
(−1)n√
2nn!

· 1

σ
√
π
Hn

(x
σ

)
e−x2/σ2

(4)

Since the analysis functions have the property of being
both spatially separable and rotationally symmetric the two
dimensional analysis functions are written as:

dn−m,m(x, y) = dn−m(x)dm(y) (5)

where n −m and m denote the analysis order in x and y
direction respectively. As a result, we can expand a given
input image f(x, y) given the 2D analysis function from Eq.
5 as:

fn−m,m(x0, y0) =

∫
x

∫
y

f(x, y)·dn−m,m(x0−x, y0−y)dxdy
(6)

for n = 0, 1, . . . ,∞ and m = 0, . . . , n. Fig. 1 shows the
Hermite transform at one scale of analysis. From left to
right and from top to bottom the analysis order increases in
the x-direction and y-direction respectively.

III. ORIENTATION INVARIANT VISUAL FEATURES
Since all Hermite analysis filters are polynomials times

a radially symmetric window function, rotated versions of
a filter of order n can be constructed by taking linear
combinations of the original filters of order n [17], The

Figure 2. Steered Hermite transform for one scale of analysis. Input texture
corresponds to a region from the Brodatz texture D74 [16]

transformation can be written in terms of the orientation
selectivity αn−k,k(θ) [18]:

fθ
n−m,m(x0, y0, θ) =

n∑
k=0

fn−k,k(x0, y0)αn−k,k(θ) (7)

which has been named the steered Hermite transform [19].
The terms αn−m,m(θ) are the Cartesian angular functions
of order n which give such orientation selectivity and are
defined as:

αn−m,m(θ) =
√

Cm
n cosn−m(θ) sinm(θ) (8)

where C corresponds to a binomial window which approx-
imates the discrete Gaussian window. Fig. 2 shows the
steered Hermite transform at one scale of analysis.
The local energy can be written in terms of the steered

Hermite coefficients as:

EN =
N∑

n=0

n∑
m=0

[fn−m,m]2 =
N∑

n=0

n∑
m=0

[fθ
n−m,m]2 (9)

for all N ≥ 0. One may distinguish 1D local energy terms
and 2D local energy terms. Thus, we can split local energy
of (9) up to order N as:

EN = [f0,0]
2 + E1D

N + E2D
N (10)

where f0,0 represents the DC Hermite coefficient and

E1D
N =

N∑
n=1

[fθ
n,0]

2 (11)
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E2D
N =

N∑
n=1

n∑
m=1

[fθ
n−m,m]2 (12)

One of the objectives when steering coefficients is to
maximize detection of patterns along a given local direction
θ. In this way, [20], [18], [19] propose strategies in which
θ is selected such that E1D

N is maximized. Fig. 2 shows the
steered Hermite transform at one scale of analysis. Observe
that most content of visual information has been compacted
on the first row as 1D patterns.

IV. STATISTICAL TEXTURE FEATURES
The CCR was evaluated for several kinds of statistical

texture features found in the literature:
1) mean,

μ =
1

H ×W

W∑
w=1

H∑
h=1

fθ
n,0 (13)

2) standard deviation,

σ =

√√√√ 1

(H ×W − 1)

W∑
w=1

H∑
h=1

[fθ
n,0 − μ]2 (14)

3) and energy features

E0 =

W∑
w=1

H∑
h=1

[fθ
n,0]

2 (15)

E1 =
E0

H ×W
(16)

E2 =
1

H ×W

W∑
w=1

H∑
h=1

|fθ
n,0| (17)

E3 =
1

H ×W

W∑
w=1

H∑
h=1

√
|fθ

n,0| (18)

where H and W are the dimensions of the steered Hermite
coefficients.
For every one of the texture features described above, a

feature vector x is obtained by concatenating the extracted
features xj from the steered Hermite coefficients of order
n at every scale of analysis s. Note that the analysis order
is given by 1 ≤ n ≤ N up to order N and the scales of
analysis by 1 ≤ s ≤ S. Thus, the vector size is S ×N .

V. PRINCIPAL COMPONENTS ANALYSIS
The principal components analysis (PCA) technique,

also know as the Karhunen Loeve (KL) transform or the
Hotelling transform, is based on factorization techniques
developed in linear algebra. PCA can be seen as a trans-
formation of the original dataset into a new vector space
spanned by basis functions that decompose the data in
decreasing order energy components. In order to reduce
dimensionality or compress original data the minor energy

components may be eliminated. Many classification schemes
work in this space in order to achieve better separability.
Let X represent a set of m vectors or measures:

X = {x1, x2, . . . , xm} (19)

whose vectors xi have n elements each one. From now and
on we name such elements, features:

xi = {xi,1, xi,2, . . . , xi,n} (20)

We can group all the features in a feature matrix FX as:

FX =

⎡
⎢⎢⎢⎣

x1,1 x1,2 . . . x1,n

x2,1 x2,2 . . . x2,n

...
...

...
...

xm,1 xm,2 . . . xm,n

⎤
⎥⎥⎥⎦ (21)

where n and m are the number of features and measures
respectively. The idea behind PCA is to highlight data
that produce maxima variations measured by the covariance
matrix defined as:

ΣX =

⎡
⎢⎢⎢⎣

σ1,1 σ1,2 . . . σ1,n

σ2,1 σ2,2 . . . σ2,n

...
...

...
...

σn,1 σn,2 . . . σn,n

⎤
⎥⎥⎥⎦ (22)

with σi,j being the covariance between features i and j. The
objective of PCA is to transform the data in a way that the
covariance matrix becomes diagonal.
In order to transform each feature vector defined in the

set X into another feature vector defined in the new set Y
we look for a transformation W, such that the covariance
matrix of the elements in Y is diagonal. The transformation
is linear and it is defined as:

FY = FXW
T (23)

To obtain the covariance of the features in Y based on the
features in X, such that ΣY is diagonal we can use the
following equation:

ΣY =WΣXW
T (24)

By performing some basic liner algebra operations we can
find the matrix transformation W by solving the following
equation [21]:

(λiI− ΣX)wi = 0 (25)

where wi are the rows of W, λi and wi define the eigen-
values and eigenvectors respectively and I is the identity
matrix. The characteristic equation det(λiI − ΣX) = 0 is
used to solve for the values of λi and consequently obtain
wi from Eq. 25.
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Figure 3. Comparison of CCRs obtained with the Euclidean and Canberra
distances for several number of training textures for: a)μ, b)σ, c) E0, d)
E1, e)E2, f) E3 for dataset I.

VI. DATASETS AND EXPERIMENTAL SETUP

We evaluated our proposal by computing the CCRs using
two different real textures datasets. For each dataset, the
testing and training texture subsets were randomly selected.
The CCR was evaluated from 1 to 20 randomly selected
training texture images. This evaluation was repeated over
80 trials and therefore possible biasing due to the subset
selection was compensated. A comparison between the CCR
before and after PCA is also presented for each dataset. We
investigate the effects of the number of principal components
on the CCR performance.
In all the experiments the training textures were analyzed

at S = 4 resolution levels with the Hermite transform
up to order N = 8, yielding a feature vector of 32
arranged elements. Further steering of the Hermite transform
coefficients compensated the texture orientation changes.
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Figure 4. Comparison of CCRs obtained with the Euclidean and Canberra
distances after PCA using 14 principal components with 16 training texture
images for: a)μ, b)σ, c) E0, d) E1, e)E2, f) E3 for dataset I.

A. Classifier
We evaluated classification accuracy based on the k-

NN classifier using two distance measurements. Given two
feature vectors x and y of n features, then the Euclidean
distance is defined as:

dE(x, y) =

√√√√ n∑
j=1

(xj − yj)2 (26)

and the Canberra distance as:

dC(x, y) =
n∑

j=1

|xj − yj |
|xj |+ |yj | (27)

Classification accuracy is measured by computing the
CCR defined as:

CCR =
Nc

NTe
(28)
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Figure 5. Comparison of CCRs obtained with the Euclidean and Canberra
distances for several number of training textures for: a)μ, b)σ, c) E0, d)
E1, e)E2, f) E3 for dataset II.

where Nc is the number of testing images that were correctly
classified and NTe is the number of testing images.

B. Dataset I

It consists of 54 texture images of 512×512 pixels from
the VisTex texture database [22] as was proposed in [23].
The texture classes that were used are coded in the VisTex
database as: Bark.0000, Bark.0001, Bark.0003, Bark.0005,
Bark.0006, Bark.0007, Bark.0008, Bark.0010, Brick.0000,
Brick.0002, Brick.0004, Brick.0005, Buildings.0003,
Buildings.0009, Fabric.0000, Fabric.0002, Fabric.0004,
Fabric.0008, Fabric.0011, Fabric.0014, Fabric.0015,
Fabric.0017, Flowers.0000, Flowers.0003, Flowers.0005,
Food.0001, Food.0003, Food.0005, Food.0008, Grass.0002,
Leaves.0000, Leaves.0002, Leaves.0003, Leaves.0006,
Leaves.0010, Leaves.0013, Leaves.0014, Leaves.0016,
Metal.0000, Metal.0002, Metal.0004, Misc.0001,
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Figure 6. Comparison of CCRs obtained with the Euclidean and Canberra
distances after PCA using 14 principal components with 16 training texture
images for: a)μ, b)σ, c) E0, d) E1, e)E2, f) E3 for dataset II.

Misc.0002, Sand.0002, Sand.0005, Stone.0002, Stone.0004,
Terrain.0010, Tile.0001, Tile.0007, Water.0000, Water.0004,
Water.0006, Wood.0002.
The dataset was formed by first artificially rotation of each

texture image from 0 to 16π/18 radians with incremental
steps of π/18 radians, thus 17 rotation angles. Then 4 sub-
images of 128×128 pixels without overlap were extracted
from each rotated texture image in such a way that the sub-
images had minimal overlap between the different rotated
versions. Thus, 54 × 17 × 4 = 3672 comprises the size of
the texture dataset.

C. Dataset II

This dataset consists of 24 texture images of 538×746
pixels from the Outex texture database (available on line at
http://www.outex.oulu.fi) as was proposed in [7]. The texture
classes that were used are coded in the Outex database as:
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canvas001, canvas002, canvas003, canvas005, canvas006,
canvas009, canvas011, canvas021, canvas022, canvas023,
canvas025, canvas026, canvas031, canvas032, canvas033,
canvas035, canvas038, canvas039, tile005, tile006, car-
pet002, carpet004, carpet005 and carpet009.
The texture images were acquired with incandescent illu-

mination, named as “inca” in the Outex database, at 100 dpi
spatial resolution. The textures were naturally rotated with
nine rotation angles (0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦ and
90◦). The 24-bit RGB images were transformed into eight
bit intensity images using:

I = 0.299R+ 0.587G+ 0.114B (29)

The dataset was formed from 20 non-overlapping texture
samples of size 128×128 pixels from each intensity texture
image. Thus, 24× 9× 20 = 4320 comprises the size of the
texture dataset.

VII. RESULTS

Figs. 3 and 5 show the classification results without PCA
for datasets I and II respectively. The Canberra distance
performed the best CCRs in all experiments and similar to
the Euclidean distance in the worst cases for both datasets
without dimensionality reduction by means of PCA. For
both datasets, the features μ, E2 and E3 obtained the best
classification results.
From plots in Figs. 3 and 5 it is possible to observe that a

small number of training textures are enough to obtain good
CCRs. This is of prime importance since real recognition
and classification tasks frequently have small training sets.
In order to investigate the effects of the number of

principal components (PCs) on the CCRs performances, we
first fixed 16 and 20 training texture images for the first and
second datasets respectively.
In Figs. 4 and 6 we show the CCRs obtained after PCA by

varying the number of PCs from 1 to 14 for datasets I and II
respectively. As shown, stable CCRs were obtained starting
from 10 PCs. This represents an advantage for storage and
similarity computation of the texture feature vectors.
Comparisons of CCRs are summarized in Tables I and

II for datasets I and II respectively. After selecting 14 PCs
with the PCA technique, the Euclidean distance performed
the best CCRs in all experiments except for E0. For both
datasets, the features μ, E2 and E3 obtained the best
classification results.
We observed that the PCA technique do not improves the

CCRs. Nevertheless good approximations are obtained with
a small number of PCs.

VIII. CONCLUSION

Texture feature extraction was performed by considering
visual information by means of the analysis functions of
the Hermite transform. Visual details were then locally

Table I
COMPARISON OF CCRS (%) FOR DATASET I USING 16 TRAINING

TEXTURE IMAGES

Feature 32-Features 14-PCs

μCan 94.13 80.93
μEuc 88.80 86.64
σCan 91.76 76.17
σEuc 91.76 84.60
E0Can 91.65 89.39
E0Euc 85.71 83.89
E1Can 91.65 77.98
E1Euc 81.14 82.10
E2Can 93.78 80.60
E2Euc 92.00 86.52
E3Can 94.07 83.56
E3Euc 94.18 90.64

Table II
COMPARISON OF CCRS (%) FOR DATASET II USING 20 TRAINING

TEXTURE IMAGES

Feature 32-Features 14-PCs

μCan 97.50 91.84
μEuc 95.07 94.21
σCan 89.94 79.61
σEuc 91.17 85.79
E0Can 89.08 83.80
E0Euc 80.43 76.86
E1Can 89.08 82.76
E1Euc 84.30 82.75
E2Can 93.39 86.59
E2Euc 93.24 89.55
E3Can 95.14 86.42
E3Euc 95.53 91.94

described as rotational invariant texture patterns. The com-
parative evaluations of several kinds of texture features have
shown better CCRs performances for the statistical texture
features such as, μ, E2 and E3.
Multiple evaluations from randomly training and testing

subsets allowed to obtain average CCRs with no dependence
on the sets configuration. Using the PCA technique good
CCRs were obtained with a small number of training tex-
ture images and principal components although no CCRs
improvements were observed.
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of pork quality using gabor filter-based hyperspectral imaging
technology,” Journal of Food Engineering, vol. 99, no. 3, pp.
284–293, 2010.

[4] S. Bres, V. Eglin, and C. Rivero, “Handwriting documents
denoising and indexing using hermite transform,” in Pattern
Recognition and Data Mining, ser. LNCS, vol. 3686, 2005,
pp. 664–673.

[5] R. Haralick, “Statistical and structural approaches to texture,”
Proceedings of the IEEE, vol. 67, no. 5, pp. 786–804, 1979.

[6] G. R. Cross and A. K. Jain, “Markov random field texture
models,” IEEE Trans. PAMI, vol. 5, no. 1, pp. 25–39, 1983.
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