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ABSTRACT

At present time, image fusion is widely recognized as an important aspect of information processing. It consists
of combining information originated from several sources in order to improve the decision making process. In
particular, multi-focus image fusion combines images that depict the same scene but they are not in-focus
everywhere. The task seeks to reconstruct an image as sharp as possible by preserving in-focus areas while
discarding blurred areas. The quality of fused images is of fundamental importance. Many objective quality
metrics for image fusion have been proposed. However, the evaluation of fused images is still a difficult task,
especially because there is no reference image to compare with. Blind image quality assessment refers to the
problem of evaluating the visual quality of an image without any reference. In this paper, we describe a blind
image fusion quality assessment procedure based on the use of mutual information (MI). This procedure is concise
and explicit and will be useful in scenarios where the absence of a reference image can hamper the assessment
of the results. Furthermore, several image fusion algorithms have been rated and they have shown that our
metric is compliant with subjective evaluations. Consequently, it can be used to compare different image fusion
methods or to optimize the parameter settings for a given fusion algorithm.
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1. INTRODUCTION

Image quality is of fundamental importance in a large number of applications and it has been described in terms
of the presence of visible distortions such as blur, block effects and noise. Although image quality assessment
is a hardly new topic and plays an important role in various image–processing areas, only limited success has
been achieved. A common way to measure image quality is based on early visual models but since human beings
are the ultimate receivers in most applications, the most reliable way of assessing the quality of an image is by
subjective evaluation.

In order to define what image quality is, we need to answer what images are used for. Some authors refer to
image quality as fidelity and it is defined as the capacity of a process to render an image accurately. Both terms,
image quality and image fidelity, are often used interchangeably. But this is a wrong idea. Image fidelity is the
ability to detect differences between images. In contrast, image quality deals with subjective impressions and it
is much more difficult to characterize. However, the most accepted idea about image quality is “the degree to
which an image satisfies the requirements imposed on it”1

The subjective quality measure, mean opinion score (MOS), provides a numerical indication of the perceived
quality. It has been used for many years and considered the best method for image quality. Nevertheless, MOS
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metric is inconvenient because it demands human observers, is expensive, and is usually too slow to apply in
real–time scenarios. Moreover, quality perception is strongly influenced by a variety of factors that depend on the
observer. For this reason, it is desirable to have an objective metric able to predict image quality automatically.

Many objective image quality metrics have been proposed. They are based on measuring physical charac-
teristics and they intend to predict perceived image quality accurately and automatically. It means, that they
should predict image’s quality that an average human observer will report. Objective quality metrics attempt to
quantify the visibility error between a distorted image and a reference image and they have several advantages.
Firstly, they can be used to monitor quality control systems. Secondly, they can be employed to benchmark
image processing algorithms and they are useful to optimize parameter settings.

Among the available ways to measure objective image quality, the mean square error (MSE) and peak
signal–to–noise ratio (PSNR) are widely employed because they are easy to calculate and usually they have low
computational cost, but such measures are not necessarily consistent with human observer evaluation.2 Both
MSE and PSNR reflect the global properties of the image quality but they are inefficient in predicting structural
degradations. An illustrative example is shown in Fig. 1, where an original image was deformed by different
types of distortion: Gaussian noise, impulse noise and Gaussian blur. PSNR and MSE values are given. Note
that PSNR values regarding to the original image, Fig. 1(a), are nearly identical, even though the images present
different visual quality.

(a) Original Image (b) PSNR = 25.1399 dB, MSE = 3.062× 10−3

(c) PSNR = 25.0572 dB, MSE = 3.1209× 10−3 (d) PSNR = 25.2439 dB, MSE = 2.9896× 10−3

Figure 1. Image quality comparison using PSNR for “flower” image deformed with different types of distortions. Reference
image was taken from Ponomarenko’s database.3 Fig. 1(a) Reference image. Fig. 1(b) Gaussian noise. Fig. 1(c) Impulse
noise. Fig. 1(d) Gaussian blur.
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Other metrics have been proposed such as Wigner signal–to–noise ratio (SNRW )4 and structural similarity
quality index (SSIM).5 These approaches are based on some models derived from human visual system (HVS).
However, all of these objective metrics require a reference image, (distortion free), together with the processed
image in order to evaluate the visibility of artifacts. This imposes obvious limitations on the applications where
such metrics can be used.

In many practical applications, image quality metrics do not have access to reference images. However, it is
desirable to develop measurement approaches that can evaluate image quality blindly. Blind or non–reference
image quality assessment turns out to be a very difficult task, because metrics are not related to the original
image.6

In this paper, we considered multi-focus images, i.e, situations where two or more images that depict the
same scene will not be in-focus everywhere (if one object is in–focus, another one will be out–of–focus). This
occurs because there are sensors which cannot generate images of all objects at various distances with equal
sharpness. The advantages of multi–focus images can be fully exploited by merging the sharply focused regions
into one image that will be in-focus everywhere.7

The existing evaluation metrics of image fusion algorithms are broadly based on a measure of the fidelity
from the input images to the fused output. Nevertheless, most methods are just informal tests over a few scenes
and they did not consider HVS.8–10

In the following sections, we present an evaluation procedure for image fusion algorithms based on MI. Firstly,
we give a brief definition of MI. Later, we present the proposed algorithm, and finally, we show some experimental
results using both standard and blind image quality metrics.

2. MATHEMATICAL BACKGROUND

The introduction of MI in the field of images dates back to early 1997 when Viola et al introduced a registration
measure for multi-modality images.11 MI measures the degree of dependence between two random variables.
The definition is related to the relative entropy or Kullback–Leibler Distance (KLD) as follows:

DKL(A||B) =
∑
i

A(i) log
A(i)

B(i)
(1)

for two random variables with distribution functions A(i) and B(i).

MI is a special case of the measured distance between the joint probability density function of two random
variables and the product of their marginal probabilities. From (1) we have:

I(A,B) =
∑
a,b

p(a, b) log
p(a, b)

p(a)p(b)
(2)

where p(a, b) is the joint distribution function and p(a) and p(b) are the marginal probability functions.

The Viola’s theory is that there is a maximal dependence between pixel gray values of two images when they
are correctly aligned. The fewer registration errors, the greater the MI value.

2.1 Mutual Information Properties

MI has the following properties:

1. I (A,B) ≥ 0 MI is non negative.

2. I(A,B) = 0 if and only if both random variables A and B are independent. When A and B are not in any
way related, no knowledge is gained about one random variable when the other is given.

3. I(A,B) = I(B,A) Symmetry property. However, MI is not symmetric in practice. Some techniques such
as interpolation for registering different number of samples, can result in differences in outcome when
registering A to B or B to A
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4. I(A,A) = H(A) The information content of a random variable A about itself is equal to the entropy of
random variable A.

5. I(A,B) ≤ H(A) and I(A,B) ≤ H(B) The information the random variables contain about each other
cannot be greater than the information from the random variables themselves.

2.2 Joint and Marginal Distributions

Let us consider the image intensity values a and b of a pair of corresponding pixels in two images as a random
variables A and B. Marginal and joint distribution estimations p(a), p(b) and p(a, b) respectively, can be obtained
by normalization of the joint and marginal histograms of both images as follows:

p(a) =
∑
b

p(a, b) (3)

p(b) =
∑
a

p(a, b) (4)

p(a, b) =
h(a, b)∑

a,b

h(a, b)
(5)

where h es the joint histogram of the image pair given by a 2D matrix of the following form:

h(a, b) =

⎛
⎜⎜⎜⎝

h(0, 0) h(0, 1) . . . h(0, N − 1)
h(1, 0) h(1, 1) . . . h(1, N − 1)

...
...

...
h(M − 1, 0) h(M − 1, 1) . . . h(M − 1, N − 1)

⎞
⎟⎟⎟⎠ (6)

under the assumption that the intensity values in the first image may vary from 0 to M − 1 and in the second
image from 0 to N − 1.

The value h(a, b) is the number of corresponding pairs having intensity value a in the first image and intensity
value b in the second image. From Eq. (3) to Eq. (5) we can be concluded that the joint histogram is the only
requirement to determine the MI between two images.

3. DESCRIPTION OF THE METHOD

Let us consider the case of two input images, A and B. Fused image F should contain important information
from the original image set. Since MI is the information amount that one image contains over the other, we can
calculate the amount of information that image F contains from both input images A and B using Eq. (2).

I(F,A) =
∑
f,a

p(f, a) log
p(f, a)

p(f)p(a)
(7)

I(F,A) is the amount of information that fused image F contains from input image A. In a similar way, we can
calculate I(F,B).

I(F,B) =
∑
f,b

p(f, b) log
p(f, b)

p(f)p(b)
(8)

I(F,B) is the amount of information that fused image F contains from input imageB. Therefore, the performance
of image fusion algorithms can be defined as:

M (F,A,B) = I(F,A) + I(F,B) (9)
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Eq. (9) reflects the total amount of information that fused image F contains from both input images A and
B. Nevertheless, the metric defined above is not enough, because it has significant disadvantages, mainly due to
the fact that it assigns the highest value to the average method (AM). AM fuses images by averaging them, but
is well known that AM is not correlated with subjective procedures, because introduces contrast loss.12

Cvejic et et al proposed a modified metric using Tsallis entropy (TE) in order to get a more accurate model
that transfers information from input images into the fused output.13 TE is a generalization of the standard
Boltzmann–Gibbs entropy. It is defined as:

Hq =
1

1− q

(∑
x

pq(x)− 1

)
(10)

in this case, p denotes the probability distribution function of interest and the parameter q is a measure of the
non–extensitivity property of the system of interest.∗

Besides that, Tsallis proposed a divergence measure that represents the degree of dependence between two
discrete random variables defined by:

D (P ||R) =
1

1− q

(
1−

∑
x

pqx

rq−1
x

)
(11)

with q ∈ R− {1}.
Replacing px and rx in Eq. (11) by the joint probability function and the product of the marginal densities

between fused image F and input images A and B respectively, we have:

Iq(F,A) =
1

1− q

⎛
⎝1−

∑
f,a

p(f, a)q

(p(f)p(a))
q−1

⎞
⎠ (12)

and in the same way

Iq(F,B) =
1

1− q

⎛
⎝1−

∑
f,b

p(f, b)q

(p(f)p(b))
q−1

⎞
⎠ (13)

Replacing Eqs. (12) and (13) into Eq. (9), the image fusion performance measure can be defined as:

Mq (F,A,B) = Iq(F,A) + Iq(F,B) (14)

3.1 Normalized Version of the Proposed Method

Now, we turn into a normalized version definition of this metric. Image entropy measures how well we are able
to predict the intensity at an arbitrary point within the image. If there is no uncertainty about pixel value then
the entropy is zero. This means that the image is completely homogeneous (flat image). On the other hand,
if the image has higher entropy value then the image consists of a large number of intensities, which all have
the same probability. The MI between two images expresses how much the uncertainty on one of the images
decreases when the other one is known.

We assumed that a good image fusion algorithm must preserve the information between source images. This
metric represents how much information was obtained through the fusion process. Input images can be used to
assess the performance of different image fusion rules. Since no assumptions is made, the measure is very general
in the sense that it can be applied in many fusion scenarios. Besides that, the size of the overlapping part among

∗An intensive property is a physical property of the system that does not depend on the system size or the amount
of material in the system. By contrast, an extensive property of a system does depend on the system size or the amount
of material in the system. Non-extensive systems are those for which the thermodynamic properties do not scale linearly
with the system size.
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the images influences the MI measure. A decrease in such overlapping part diminishes the number of samples,
which reduces the statistical strength of the probability distribution estimation.

The image fusion process can be seen as an information transfer problem in which two images are combined
into a new one that should contain all the information from the original inputs.14

However, not all of the available input information is transferred into a fused image and some loss of infor-
mation from the input images take place. At the same time, image fusion process creates additional information.
In order to get the maximal amount of information it is imperative to quantify the exclusive information gained
by the fused image F .

For a better understanding of the method, we used Venn diagram notation, see Fig. 2.

Figure 2. z area represents gained information (GI) or artifacts introduced into the fused image by the process. This
exclusive information gained by the fused image is given by the union of both input images A and B subtracted from
fused image F . t , u and v areas represent loss information (LI) during the fusion process. LI is available information
in both input images A and B but not in the fused image F . w area represents exclusive information from image A
available in the fused image F . y area represents exclusive information from image B available in the fused image F . x
area represents redundant information from both input images A and B.

From Fig. 2, we can get the total amount of information as follows:

MAXq (F,A,B) = Hq (A) +Hq (B) +Hq (F )− Iq (A,B)− Iq (F,A)− Iq (F,B) + 2Iq (F,A,B) (15)

where Iq (F,A,B) is the joint entropy between the input images and the fused image giving by:

Iq (F,A,B) =
1

1− q

⎛
⎝1−

∑
f,a,b

p(f, a, b)q

(p(f)p(a)p(b))
q−1

⎞
⎠ (16)

Using the quotient between Eq. (14) and Eq. (15) we can define the normalized metric of order q.

NMq (F,A,B) =
Mq (F,A,B)

MAXq (F,A,B)
(17)

rewriting Eq. (17)

NMq (F,A,B) =
Iq(F,A) + Iq(F,B)

Hq (A) +Hq (B) +Hq (F )− Iq (A,B)− Iq (F,A)− Iq (F,B) + 2Iq (F,A,B)
(18)
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4. EXPERIMENTAL RESULTS

We present two experiments. In the first one, experiment #1, we used an artificial ground truth with the purpose
of compare our method with other objective quality metrics. We considered grayscale images A and B of size
256×256 with 8 bits per pixel. In the second test, experiment #2, we do not have any reference images. We
evaluated two different fusion schemes only with the proposed algorithm. This is a real scenario where our metric
will be very useful due to the fact we do not have a reference image to compare with. Therefore we cannot apply
standard objective metrics.

4.1 Experiment with an Artificial Reference Image

In experiment #1, we introduced defocus blur in two complementary regions of the original image Fig. 3(a).
Fig. 3(b) and Fig. 3(c) represent both input images A and B respectively.

(a) Ground truth (b) Input image A

(c) Input image B

Figure 3. Images for the experiment #1. Fig. 3(a), shows the artificial ground truth (distortion free), Fig. 3(b) and
Fig. 3(c) are blurred versions of it.
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After registration process, input images were combined using the discrete wavelet transform (DWT). We
generated three fused images using three different wavelet functions. In scheme #1.1, we used Daubechies
wavelet (Db2)

†, the result appears in Fig. 4(a). In scheme #1.2, we used Symlet wavelet (Sym4)
‡, the result

appears in Fig. 4(b). In scheme #1.3, we used Coiflet wavelet (Cf6)
§, the fused image appears in Fig. 4(c).

Details of the fusion algorithm can be consulted in Nava et al .12

(a) Result for scheme #1.1 (b) Result for scheme #1.2

(c) Result for scheme #1.3

Figure 4. Fused images for the experiment #1. Fig. 4(a) Fused image using Daubechies wavelet (DB2). Fig. 4(b) Fused
image using Symlet wavelet (Sym4). Fig. 4(c) Fused image using Coiflet wavelet (Cf6).

Table 1 presents fusion performance results of the three schemes in the experiment #1 using both standard
objective metrics such as PSNR and MSE and perceptual quality metrics like SNRW ,4 SSIM5 and Rényi Metric
(RM).15

†Coefficients for Db2: a0 = 1+
√
3

4
√

2
, a1 = 3+

√
3

4
√
2
, a2 = 3−√3

4
√
2

and a4 = 1−√3

4
√

2
.

‡Coefficients for Sym4: a0 = −0.0758, a1 = −0.0296, a2 = 0.4976, a3 = 0.8037, a4 = 0.2979, a5 = −0.0992 and
a6 = −0.0126 and a7 = 0.0322.

§Coefficients for Cf6: a0 = −0.0157, a1 = −0.0727, a2 = 0.3849, a3 = 0.8526, a4 = 0.3379 and a5 = −0.0727.
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Table 1. Results of the fusion performance for all schemes of the experiment #1.

Fusion PSNR MSE SNRW SSIM RM

#1.1 26.2837 0.0023 11.0328 0.9784 0.9950

#1.2 26.2222 0.0023 11.0803 0.9807 0.9974

#1.3 26.3830 0.0022 11.1387 0.9808 1

Table 2 presents results of the proposed metric for all fusion schemes. We have set the value of q = 0.1 to
adjust the objective metric NMq

FAB with subjective tests.

Table 2. Results of the fusion performance for the three fusion schemes in experiment #1 using the proposed metric based
on MI.

Fusion Iq(F,A) Iq(F,B) Mq(F,A,B) NMq(F,A,B)

#1.1 0.8027 0.8184 1.6211 0.8781

#1.2 0.8033 0.8225 1.6258 0.8806

#1.3 0.8038 0.8223 1.6261 0.8808

From Table 2 we can see that scheme #1.3 got the highest value. This rate agrees with values in Table 1,
where all metrics rated scheme #1.3 as the better fusion method.

4.2 Experiment with no Artificial Reference Image

In the next experiment #2, we used two grayscale images. Image A, Fig. 5(a), and image B, Fig. 5(b), that were
taken in our lab, with different focal planes.

(a) Input image A (b) Input image B

Figure 5. Multi-focal input images for the experiment #2. Fig. 5(a) has the three books in-focus. Fig. 5(b) shows three
blurred books.

We merged both images using two different fusion algorithms. In scheme #2.1 we used the algorithm
which appears in Nava et al, Fig. 6(a).12 This algorithm has shown better results in terms of visual quality
than traditional fusion algorithms based on pixels. In scheme #2.2 we fused images using traditional average
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method, which introduces contrast loss, Fig. 6(b). Consequently, we expect that the proposed metric assigns a
higher rate to scheme #2.1.

(a) Result for scheme#2.1 (b) Image result for scheme#2.2

Figure 6. Fused images for experiment #2. Fig. 6(a), shows result of the algorithm proposed by Nava et al. Fig. 6(b) was
obtained by averaging pixels. Clearly, we can see contrast loss because of the pixel average.

Table 3 shows the evaluation of the experiment #2. We can see that edges in scheme #2.1 are sharper than
in scheme #2.2. Besides, contrast in scheme #2.1 is better than in scheme #2.2. In fact, in scheme #2.2 the
whole image appears defocused because of the pixel average.

Table 3. Results of the fusion performance for experiment #2

Fusion Iq(F,A) Iq(F,B) Mq(F,A,B) NMq(F,A,B)

#2.1 0.8927 0.8584 1.7511 0.9562

#2.2 0.8233 0.7825 1.6058 0.8768

As a result, the proposed method assigns a higher value to scheme #2.1. This rated is correlated with visual
aspects. Fig. 6(a) is sharper than Fig. 6(b), then it has large number of intensities. On the contrary, Fig. 6(b)
is a more homogeneous version, which produce less MI value.

5. CONCLUSIONS

In this paper we proposed a normalized metric for image fusion based on the mutual information and Tsallis
entropy. The metric calculation is concise and explicit and it will be useful for real-time applications and
industries. It corresponds to other perceptual quality metrics such as SNRW , PSNR, SSIM and RM. Two
experiments has been studied using the proposed metric and the results have shown that they agree with
perceptual assessments. Lack of reference image or ground truth necessity is main advantage of this method.
Another advantage of the proposed method is that calculation of MI is easy because only depends on the image
histograms. We demonstrated by examples that MI increases with contrasts and resolution. One drawback of
this method is the fact that works in a pairwise manner (two images). MI of multiple random variables requires
further investigations.
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