Laboratory Assignments to Teach the Basics of Programmableogic Applied to
Mobile Robots

Jesus Savage, Francisco Dorantes, Alejandra Sanchez, Marco Morales
Ruben Anaya, Norma Chavez, Rodrigo Savage, Boris Escalante Robotics Laboratory
Bio-Robotics Laboratory Department of Digital Systems, ITAM
School of Engineering FI, UNAM Mexico City, Mexico
Mexico City, Mexico Email: marco.morales@itam.mx

Email: robotssavage@gmail.com

Abstract—In this paper is presented a set a laboratory them are completed in average in two weeks. The material
assignments that teach engineering students the basics dfet ysed in these assignments consist of the Altera’s TerAsic
design of state machines using programmable logic devices. board, the MAX Il Micro Kit [1], see figure 1, small dc

The system developed at the end of these assignments is a t toboard d lectroni dul
small mobile robot that contains a behavior, based on a state motors, protoboards and power electronic moadules.

machine, to avoid obstacles. These assignments have been
tested with mechatronic, electrical and computer engineéng
students, and they considered that the material presented
in them were sufficient to understand the basics of how to
build state machines using programmable logic devices. The
material is also useful for students interested on mobile roots,
specifically in the area of subsumption theory using behavis

to control a mobile robot.

Keywords-State Machines; Mobile Robots Behaviors; FPGs

I. INTRODUCTION

There is a need of good and interesting laboratory as-
signments for students that teach them the basics of digital
design with sequential logic, including the concept ofestat
machines.

In recent years with the availability of affordable FPGAs
systems, as the ones developed by Altera and Xilinx, the
quality of the projects that can be done by students has been
increased considerably. :

Thus, in this paperyis presented a set a laboratory aée" Introductory Assignment
signments that teach engineering students the basics of the The first laboratory assignment is an introduction of the
design of state machines using programmable logic device§oftware, Quartus from Altera, and hardware tools to be used
The system developed at the end of these assignments isdgring the course. In this assignment the students are asked
small mobile robot that contains a behavior, based on a stat@ design a simple system with a binary counter. They use
machine, to avoid obstacles. These assignments have be@]‘? buttons included in the board to increment the counter
tested with mechatronic, electrical and computer enginger and to reset it, the outputs of it are shown using the board’s
students and they considered that the material presented §@ds, Figure 1 shows the layout of this design.
them were sufficient to understand the basics of how to Also in this assignment the students are introduced to
build state machines using programmable logic devices. Thée simulator, figure 2 shows a graphic of the design’s
material is also useful for students interested of mobileSimulation.
robots, specifically in the area of subsumption theory using Due to the high speed of the board’s clock, the students

Figure 1. MAX Il Micro Kit

behaviors to control a mobile robot. are asked also to design a clock divider to see visualy the
perfomance of the counter using the leds of the board, see
Il. LABORATORY ASSIGNMENTS figure 4.

The assigments are taught during a course semester inIn the design of this divider they are introduced to VHDL
laboratory sessions that last 2hrs, once a week, and each odding, figure 5 shows its code.

| Iy | Maste Time Bar 16175ns |oPointer | 80ns Intervat 183ns Star End
A e 228 800 60,0 ns 240,05 3200 400,0ns 480,0ns 5600ns 64005
% Nams 1618 [16.175ns
I A S MAMAANANAMA NN AN AT A rin
[[B0l |
= c sol | 1 1 1 1 1 1 1 1
:‘ 3 81

o] D B0 I 1 I 1 I 1 [L
=
24

TEEREE

Figure 3. Simulator of the counter design

—a an

B
¢

instd —o 23
o
U

7T

Figure 4. Clock divider included in the counter’'s design

B. Sate Machine Assignment

In the second assignment the students are introduced to
the implementation of state machines using VHDL [2]. Also
they are introduced to the concept of simple mobile robot
behaviors using state machines [3]. Ronald Brooks in ttee lat
80's proposed a new robotics paradigm to control robots,
in which their behaviors are build using augmented state
machines (AFSM) shown in figure 6. In an AFSM some
of its inputs and outputs can be substituted for other values
externally by another AFSM.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use [IEEE.STD_LOGIC_ARITH.ALL;

use [IEEE.STD_LOGIC_UNSIGNED.ALL;

entity divider is
Port (clk : in std_logic;
div_clk : out std_logic);
end divider;

architecture Behavioral of divider is
begin
process (clk)
variable cnt: std_logic_vector (27 downto 0):
begin

if rising_edge (clk) then

if cnt=X"4000000" then

cnt:=X"0000000";
else
cnt:= cnt+1;

end if;

end if;

div_clk == cnt (25);

end process;

end Behavioral;

Figure 5. Clock divider programmed using VHDL

reset

suppression
X R [
INPUT BEHAVIORAL OUTPUT
LINES MODULE LINES

inhibition

Figure 6. Augmented Finite State Machine

Then by connecting together the AFSMs, each one conmotors that move the robot forward and backward, if they
taining a behavior, emergent intelligence can be achievethove to the same direction, and they turn the robot in its on
by a robot. In the subsumtion architecture each of theaxis, if one motor is in one direction while the other goes
robot’s behaviors, AFSMs, depending of their hierarchy into the contrary one.
the system their inputs and outputs can the canceled by other Figure 9 shows the algorithm state machine (ASM) for
AFSMs, figure 7 shows one example of this architecture. the obstacle avoidance behavior.

In this laboratory session the students learn how to design In figure II-D it is shown the implementation of this ASM
a behavior for a robot that avoids obstacles. Figure 8 showssing VHDL. In this laboratory assignment the inputs of the
this behavior [4], the robot has two sensors in its left andstate machine are introduced using the buttons of the Altera
right side, that allows it to detect obstacles. It has also tw board and the outputs are visualized using the leds of it.

Level 2 By
_g e N
E ﬂ
o image
& candidate
(] explore
heading 1
t
.@ 0 o]
. 4
v
® BACKWARD
stor]ng TURN_LEFT
Figure 7. Brooks’ subsumtion system to control a robot 6
FORWARD
_— TURN_RIGHT
N
TURN_RIGHT
TURN LEFT / _ SR
7 [ﬂ U
P o = >
BACKWARD £
%
FORWARD
—_—
T rorn rigH Figure 9. Algorithm State Machine for a mobile robot thatidgmbstacles
TWICE
Ve =5V
] - >“117 ENABLE Vs
bir. 12 TIRTY
TURN LEFT L W
TWICE
BACKWARD alo
aln
SR
WFT3
DFAUT3
ENABLEZ
Vel. 2

—
BACKWARD

¢ =)

\ -

HT \

el

TURN RIG

Figure 8. Robot avoiding an obstacle

C. Power Stage Assignment

In this laboratory assignment the students are required
to build the power stage that controls the operation of the
motors, figure 10 shows it.

This stage is connected to the FPGA board with the digital
design shown in figure 11, which basically turns a motor on
and off and set its direction.

Figure 10. Power stage

_

tum_on. =4

turn.off EW‘—WE°* Laz
iy :

1

B
| forward ... CoHE e sar e
backward | Co oo - ,—J:?%‘““““—ng f =
s

i
B

e vd
|

I S e

I

Figure 11. Digital design that turns the motor on and off

D. Construction of the robot assignments

For future work more laboratory assignments will be

In these laboratory assignments the students are ask&§veloped in which more complex robots’ behaviors will
to put together the state machine design together with thB® Programed.

power stage, see figure 12.

ACKNOWLEDGMENT

This work was supported by PAPIME-DGAPA UNAM

DJ%F«LHIA:; auck POWER STAGE OUTPUTS
o - e under Grant PE101107 and PAPIIT-DGAPA UNAM under

SENSORS

STATES

Figure 12. State Machine layout

Grant IN-107609

REFERENCES

[1] Terasic Technologies, (2009). Max Il Micro UserManuat r

lease v1.32.

[2] Sunggu Lee, (2005).Advanced Digital Logic: State Maehi

Design Using VHDL, Verilog, and Synthesis for FPGAS.

Also they are asked to build the frame of the robot and3] Brooks, R. A. (1986). A robust layered control system &or
put the motors and the sensors, see figure 13. The sensors mobile ribot. IEEE Journal of Robotics and Automation, RA.-

that detect the obstacles are tactile or infrared ones. This
assignments are distibuted in four weeks.

Figure 13. Robot with fpga

1. CONCLUSION

These laboratory assignments have been used by stu-
dents of two of the leading engineering schools in Mexico
at the ITAM and UNAM. The students that are using
these assignments are from the electrical, mechatronits an
computer engineering programs in both universities. The
assignments catch the interest of the students by showing
them an immediate feedback of their work. They are very
satisfied not only because they learn how to design se-
guential systems using modern tools but also as a "Ludic”
experience, when they see the robot that they built really
avoids obstacles. A video clip of one of the robots built with

these assignments can be watched at the following address:

http://www.youtube.com/user/BioroboticsUNAM
Also the laboratory assignments can be download from
the following site: http://biorobotics.fi-p.unam.mx/

2(1):14-23.

[4] Arkin, R.C., (1998). Behavior-Based Robotics- MIT Pses

Cambridge, MA.

library IEEE;
use [EEESTD_LOGIC_1164 ALL;
use [EEE.STD_LOGIC_ARITH.ALL;
use [EEE STD_LOGIC_UNSIGNED ALL;
entity carta_asm_2 is
Port{ RELOJ:in STD_LOGIC;
RESET :in STD_LOGIC;
S:in std logic_vector (1 downto0); - SLand SR
backward : out STD_LOGIC;
forward : out STD_LOGIC;
tum_right : aut STD_LOGIC;
tum_left : ot STD_LOGIC;
out_present_state :out std_logic_vector (3 downto 0));
endcarta_asm_2;

architecture Behaviomal of carta_asm_2 is
signal next_state : std_logic_vector (3 downto 0)
constant s : std_logic_vector(3 downto 0)
constant s1: std_logic_vector(3 downto 0)
constant s2: std_logic_vector(3 downto 0)
constant 53
constant s4: std_logic_vector(3 downto 0)
constant s5: std_logic_vector(3 downto 0)
constant s6: std_logic_vector(3 downto 0) =
constant s7 : std_logic_vector(3 downto 0)
constant s8: std_logic_vector(3 downto 0)
constant s9:

constant $10 :
constant 511 @

begin
process (RELOJ reset, next_stale, 5)
begin
if re then next_state <=s;
elsif rising_edge (RELOJ) then
Case next_state is
when s0 =>

tum_right <= 0
if $=X"0" then
forward <=1

L
forward <='0%
elsif§ =X"2" then
next_state<= s3;
forward <= 0%
elsif § =X"3" then
next_state<= s5;
farward <= 0%
end if;
when s1 =>
forward <=0
backward <
turn_left
turmn_right <= '0';
next_state<= s2;
whens2 =
forward <= 0
backward
turn_left <
tum_right <
next_state<=
‘whens3 =>
forward <=0’

next_state<= sd;

whens4 =>

turmn_left <="0";

turn_right <

next_slate<=
whens5 =>

forward <=0

backward

wmn_left <=

turn_left <=0
turn_right <
next_state<= s10;
whens10=>
forward <
backward
tum_left <="0;
turn_right <
next_state<= s11;
whensl1=>

turn_left <="0;
trn_right
next_state<= s0;

when others => null;
end case;
out_present_state <= next_state;

end if;

end process;

Figure 14. VHDL implementation of the ASM

