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ABSTRACT

Focusing cameras is an important problem in computer vision and microscopy. Due to the limited depth of
field of optical lenses in CCD devices, there are sensors which cannot generate images of all objects with equal
sharpness. Therefore, several images of the same scene have different focused parts. One way to overcome this
problem is to take different in-focus parts and combine them into a single composite image which contains the
entire focused scene. In this paper we present a multi-focus image fusion algorithm based on feature extraction
and wavelets. Classical wavelet synthesis is known to produce Gibbs phenomenon around discontinuities. The
approach of wavelet on the interval transform is suitable to orthogonal wavelets and does not exhibit edge
effects. Since Canny filter’s operator is a Gaussian derivative, a well known model of early vision, we used
it to get salient edges and to build a decision map who determines which information to take and at what
place. Finally, quality of fused images is assessed using both traditional and perception-based quality metrics.
Quantitative and qualitative analysis of the results demonstrate higher performance of the algorithm compared
to traditional methods.
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1. INTRODUCTION

At present time, image fusion is widely recognized as an important tool for improving performance in image-
based applications such as remote sensing, machine vision, medical imaging, optical microscopy and so on. Image
fusion allows merging images from multiple sensors or even multiple images from the same sensor. Its goal is
to integrate complementary and redundant information to provide a composite image which could be used to
better understanding of the entire scene.

Image fusion can be defined as the process by which two or more images or some of their features are
combined together to form a single image more suitable for human and machine perception or further task such
as segmentation, feature extraction and object recognition.1

In this paper, we considered multi-focus images, i.e, situations where two or more images that depict the
same scene will not be in-focus everywhere(if one object is in-focus, another one will be out of focus). This
occurs because there are sensors which cannot generate images of all objects at various distances with equal
sharpness. Another example of multi-focus images is found in optical microscopy. Limited depth of field is a
common problem with conventional light microscopy. Since the specimen can be sectioned by moving the object
along the optical axis, portions of the objects’ surface outside the optical plane appear defocused in the acquired
image.2 The advantages of multi-focus images can be fully exploited by merging the sharply focused regions into
one image that will be in-focus everywhere.3,4
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In the previous literature, many techniques for multi-focus image fusion have been suggested. An overview
on this issue can be found in.5,6 Some methods such as wavelet-based algorithms and the Hermite transform
have shown better results for visual interpretation.7,8 Wavelet methods are widely employed, classical approach
uses quadrature mirror filter banks (QMF) and Fourier transform (FT), but exhibits edge effects and artifacts
due to aliasing in the fused image.9,10 In this work, we used a orthonormal wavelets on the interval construction
in order to avoid some of disadvantages of the classical approach.11

The existing multi-focus image fusion methods can be classified into several groups. A common classification
is to distinguish three different levels according to the stage at which the fusion takes place: pixel, feature and
decision level.12

• Pixel level fusion generates a fused image in which information content associated with each pixel is
determined from a set of pixels in source images. Fusion at this level can be performed either in spatial or
in frequency domain. However, pixel level fusion may conduct to contrast reduction.13

• Feature level fusion requires the extraction of salient features which are depending on their environment
such as pixel intensities, edges or textures. This similar features from the input images are fused. This
fusion level can be used as a means of creating additional composite features. The fused image can also be
used for classification or detection.14

• Decision level is a higher level of fusion. Input images are processed individually for information extraction.
The obtained information is then combined applying decision rules to reinforce common interpretation.15

An important preprocessing step in image fusion is image registration. Corresponding pixel positions in
the source images must refers to the same location. In this paper, we assumed that source images are already
registered.

In the next section a new feature level fusion algorithm is proposed. Firstly, multiresolution wavelet is
presented and then the detailed algorithm is given. Section 3 presents some experimental results. Finally,
conclusions are given in section 4.

2. MULTI-FOCUS IMAGE FUSION

First, we give a brief description of the fusion methodology based on the multiresolution analysis (MRA). An
image often contains physically salient features at many different scales or resolutions. There is strong evidence
that the human visual system (HVS) processes information in a MRA fashion and it is especially sensitive to
contrast changes.4 At the beginning of analysis all scales or resolutions have the same importance. MRA scheme
decomposes input images into several coefficients each of which captures information present at a given scale.
One major advantage of MRA is that spatial as well as frequency domain localization of an image is obtained
simultaneously. The basic idea in MRA is to decompose input images at first by applying wavelet transform.
Then the fusion operation on the transformed images is performed and finally the fused image is reconstructed
by inverse transform that restores intensity values and spatial resolution. See Fig. 1.

In addition to this, wavelet transform of an image provides a multiple scale pyramid decomposition. There are
four coefficients after each decomposition. These are Low-Low, Low-High, High-Low and High-High coefficients.
The next decomposition stage operates only on Low-Low coefficient. See Fig. 1(a).

General theory of MRA assumes that signals or images have infinite length. If the MRA analysis is applied to
images with finite support, undesirable edge effects will occur. However, filtering operations require values of the
images outside its supported range. Images can be extrapolated by means of periodic, symmetric or polynomial
based methods, which allow filters to be applied on the images ∈ L2 (R). Also, special filters can be designed
to replace original filters at the image borders.11 These filters are adapted to interval boundaries and do not
require values outside interval. In this work we have implemented a polynomial method for orthogonal wavelets
that appears in.16
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(a) Analysis stage (b) Synthesis stage

Figure 1. Block diagram for MRA scheme.

2.1 Fusion Algorithm

The proposed algorithm is shown in Fig. 2. We only show a bi-modal case but can be easily extended to a
multi-modal case. The algorithm consists of the following steps:

1. Decomposition of the input images using wavelet on the interval transform in one or more levels. Accord-
ing to wavelet theory, the bigger decomposition level is, the smaller low frequency information contains.
Justification of the number of decomposition levels appears in. 17

2. Extraction of salient features in each wavelet coefficient using the Canny’s filter. The edge detection process
serves to simplify the analysis of images by drastically reducing the amount of data to be processed, while
at the same time preserving useful structural information about object boundaries. We chose this filter
because is based on Gaussian derivatives (GD) (see Fig. 3). Since receptive fields of simple cells in the
primate visual cortex were well fit in the space and time domains by the GD model, filters based on GD
are good operators for the detection of relevant image patterns at different spatial scales. 18

Figure 2. Fusion algorithm scheme
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3. Build a decision map using Eq. 1.
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where a k
A and a k

B are intensity values of decomposed input images at level k , E k
A and E k

B are found edges
of image A and B at level k respectively. y k

F is intensity value of fused image in wavelet domain. CICB
are context independent constant behavior operators. 19 CICB is composed of operators which have the
same behavior whatever the values of the information to combine and which are computed without any
contextual or external information, i. e., ∨ (a, b ) ∈ image F (a, b ) ≥ max(a, b )

4. Inverse Wavelet on the Interval transform of fused image y k
F .

Figure 3. Canny operator in 3D

3. EXPERIMENTAL RESULTS

We have performed various experiments using different orthogonal wavelets in order to compare the proposed
algorithm with traditional fusion methods using a toolbox developed in Java language called FUSION LAB
and described in. 20 Fig. 4 shows a snapshot of the evaluation tool. We have separated our experiments in two
classes:

• Multi-focus image fusion with ground truth . Images with a reference image (distortion free).

• Multi-focus image fusion without ground truth . Images without a reference image. 21

Figure 4. Fusion Lab developed with Java 1.5 and Eclipse IDE
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3.1 Evaluation of multi-focus image fusion with ground truth

In experiment #1, we considered gray scale images of size 512×512 (see Fig. 5). The ground truth image where
both the apple and the napkin container are in-focus is shown in Fig. 5(a), Fig. 5(b) has the napkin container
blurred and the apple in-focus and Fig. 5(c) the other way around.

(a) Ground truth (b) Input image A (c) Input image B

Figure 5. Input images for apple and napkin container experiment.

In scheme 1 we fused input images using Haar wavelet with two levels of decomposition∗. Larger values of
low-low and detail coefficients were selected for reconstructing the fused image (MAX-MAX). In this scheme we
did not perform any feature extraction.

In scheme 2 we fused input images with the same rule of previous scheme (MAX-MAX) and we performed
feature extraction with parameters: filter = Prewitt, σ = 0.6, low-threshold = -100 and high-threshold = -10.

Fig. 6(a) shows the decision map obtained from image A and Fig. 6(b) shows the decision map obtained from
image B for scheme 2.

Fused image result of scheme 1 is shown in Fig. 7(a) and fused image result of scheme 2 is shown in Fig. 7(b).
We compared both fused images with ground truth image in order to assess our proposed algorithm.22 Table 1
shows quantitative results.

(a) Decision map for image A (b) Decision map for image B

Figure 6. Decision Maps for proposed algorithm

∗Haar coefficients a0 = 1√
2
, a1 = 1√

2
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(a) Fused image for scheme 1 (b) Fused image for scheme 2

Figure 7. Results for apple and napkin container experiment

Table 1. Results for apple and napkin container experiment. Fourth column shows results using signal to noise ratio of
Wigner-Ville distribution SNRW .23 In the fifth column we used a perceptual quality metric based on structural similarity
(SSIM)24

scheme PSNR [dB] MSE SNRW SSIM

#1 26.466 2.256e−4 7.600 0.952

#2 45.301 2.950e−5 22.552 0.996

In experiment #2, we used human white blood cell images from confocal microscope (see Fig. 8). A confocal
microscope uses point illumination and a pinhole in an optically conjugate plane in front of the detector to
eliminate out of focus information, only the light within the focal plane can be detected. Fig. 8(a), is the ground
truth image, Fig. 8(b) and Fig. 8(c) are blurred versions of it.

(a) Ground truth (b) Input image A (c) Input image B

Figure 8. Human white blood cells images from confocal microscope for experiment #2.

In scheme 3 we fused input images using DB2 wavelet with one level of decomposition†. Average values of
low-low and detail coefficients were selected for reconstructing the image one (AV-AV). In this scheme we did
not perform any feature extraction.

In scheme 4 we fused input images with the same rule of previous scheme (AV-AV) and we performed feature
extraction.

†DB2 coefficients a0 = 1+
√
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Fig. 9(a) shows the decision map obtained from image A and Fig. 9(b) shows the decision map obtained from
image B for scheme 4. Fused image of scheme 3 is shown in Fig. 7(a) and Fig. 10(b) shows fused image of scheme
4. The quantitative results appear in Table 2.

(a) Decision map of image A (b) Decision map of image B

Figure 9. Decision maps for scheme 4

(a) Fused image for scheme 3 (b) Fused image for scheme 4

Figure 10. Fused images of human white blood cells experiment.

Table 2. Results for human white blood cells experiment.

scheme PSNR [dB] MSE SNRW SSIM

#3 30.086 9.8117e−4 7.696 0.965

#4 44.391 3.638e−5 16.431 0.995

3.2 Evaluation of multi-focus image fusion without ground truth

Among the quality metrics, the mean square error (MSE) and signal to noise ratio (SNR) are widely employed
because they are easy to calculate and usually they have low computational cost, but these objective metrics
require a reference image together with the processed image in order to evaluate the visibility of artifacts. This
imposes obvious limitations on those applications where such metric cannot be used. Non-reference metrics are
much more difficult to define, since the metrics are not relative to the original image by providing an absolute
value associated to a given image. Here, we used a non-reference quality metric based on information that
appears in.21
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For experiment #3 we used images by courtesy of Dr. Shutao Li (see Fig. 11). Input image A Fig. 11(a).
has letters in-focus and drink blurred. Fig. 11(b) the other way around.

In scheme 5 we fused input images using SYM4 wavelet with one levels of decomposition ‡ . We use (MAX-
MAX) rule for merging coefficients. In this scheme we did not perform any feature extraction.

In scheme 6 we fused input images with the same rule of previous scheme (MAX-MAX) and we perform
feature extraction with parameters: filter = Prewitt, σ = 0 .7, low-threshold = 15 and high-threshold = 25.

(a) Input image A (b) Input image B

Figure 11. Input images for experiment #3.

Fused image result of scheme 5 is shown in Fig. 12(a) and fused image result of scheme 6 is shown in Fig. 12(b).
The resulting performance metric for both schemes are given in Table 3.

(a) Fused image for scheme 5 (b) Fused image for scheme 6

Figure 12. Results for drink and letters experiment.

Table 3. Results of the fusion performance for experiment #3. Mutual Information uses α = 0 .8

Fusion I q (F,A ) I q (F,B ) M q
FAB NM q

FAB

#1 2.277 2.181 4.459 0.320

#2 2.363 2.155 4.519 0.324

In the last experiment #4 we fused three artificial images taken in our laboratory with a digital Reflex camera.
Input images are shown in Fig. 14(a). These input images have distinct focal planes of the same scene.

‡ SYM4 coefficients a 0 = −0.1294, a 1 = 0 .2241, a 2 = 0 .8365 and a 3 = 0 .4830
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In scheme 7 we fused images using DB2 wavelet with one level of decomposition and MAX-MAX criteria for
merging coefficients. In this scheme we did not perform any feature extraction.

In scheme 8 we fused images whit the same criteria of scheme 7 but we performed feature extraction with
parameters: filter = Sobel, σ = 0 .4, low-threshold = 0 and high-threshold = 25.

(a) Input image A (b) Input image B (c) Input image C

Figure 13. Input images for experiment #4.

Fused image result of scheme 7 is shown in Fig. 14(a) and fused image result of scheme 8 is shown in Fig. 14(b).

(a) Fused image of scheme 7 (b) Fused image of scheme 8

Figure 14. Fused images for experiment #4.

4. CONCLUSIONS

In this paper we proposed a feature level fusion algorithm that incorporates a Gaussian derivative model of early
vision and we developed an evaluation tool called Fusion Lab. We evaluated the performance of the proposed
algorithm. Based on results showed in Tables 1 to 3 and based on visual perception we can conclude that the
feature level fusion method proposed performs better than tradition fusion methods. A possible explanation is
due to the fact, that the feature level method preserves the information from the edges.
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