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ABSTRACT 

The steered Hermite Transform is presented as an efficient tool for multi-sensor image fusion. The fusion algorithm is 
based on the Hermite transform, which is an image representation model based on Gaussian derivatives that mimic some 
of the most important properties of human vision. Moreover, rotation of the Hermite coefficients allows efficient 
detection and reconstruction of oriented image patterns in reconstruction applications such as fusion and noise reduction. 

We show image fusion with different image sensors, namely synthetic aperture radar (SAR) and multispectral optical 
images. This case is important mainly because SAR sensors can obtain information independently of weather conditions; 
however, the characteristic noise (speckle) present in SAR images possesses serious limitations to the fusion process. 
Therefore noise reduction is a key point in the problem of image fusion. In our case, we combine fusion with speckle 
reduction in order to discriminate relevant information from noise in the SAR images. The local analysis properties of 
the Hermite transform help fusion and noise reduction adapt to the local image orientation and content. This is especially 
useful considering the multiplicative nature of speckle in SAR images. 

Keywords: Image fusion, Hermite transform, steerable transforms, local orientation analysis, speckle reduction, remote 
sensing. 
 

1. INTRODUCTION 
Image fusion improves interpretation and provides better analysis capability. Image fusion provides a tool to combine 
information sources with different spectral, spatial and temporal resolutions. Recent multiresolution techniques such as 
image pyramids and wavelet transforms have been used in image fusion. Several authors have showed that, for image 
fusion, the wavelet transform approach obtains good results [1]. A methodology for image fusion based on the Hermite 
transform (HT) is presented in this paper. The tool shown here is appealing for different fusion applications, this is, it can 
be used to fuse images from the same sensor such as optical imagery, or from different sensors, such as synthetic 
aperture radar (SAR) images with optical imagery. 

HT fusion schemes take advantage of the fact that Gaussian derivatives are good operators to detect relevant image 
patterns [2]. Moreover, the HT can be locally rotated, adapting to the local dominant orientation which results in 
significant energy compaction [3],[4],[5]. In this paper we concentrate in multisensor image fusion, namely SAR and 
multispectral Landsat 7 TM. This case is important since SAR sensors can obtain information independently from 
weather conditions; however noise present in SAR images (speckle) possesses limitations to the fusion process. We 
tackle the problem by combining fusion with speckle reduction in order to discriminate relevant information from noise 
in the SAR image. The fusion algorithm is based on the directional oriented Hermite transform, which is an image 
representation model based on Gaussian derivatives that mimic some of the most important properties of human vision. 
The local analysis properties of the Hermite transform help fusion and noise reduction adapt to the local orientation and 
image content. This is especially useful considering the multiplicative nature of speckle in SAR images.  
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2. HERMITE TRANSFORM 
In this section we will briefly discuss the basic principles of the Hermite transform. The HT is a special case of a 
polynomial transform. First, windowing takes place at several positions over the input image, resulting in a sampling 
lattice S . In the second step, the local information contained within every window is expanded in terms of a set of 
orthogonal polynomials ( ), ,m n mG i j− . In the case of the HT, a 2-D Gaussian function is used as local analysis window 

[2]: 
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Windowing takes place at several positions (p,q) that conform the sampling lattice S  over the entire image. In order to 
fully recover the original image from the localized information, a periodic weighting function W(i,j) must be defined: 
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of orthogonal polynomials ( ), ,m n mG i j−  of order m  in i  and order n m−  in j . For the case of the Gaussian window, 

the corresponding orthogonal polynomials are the Hermite polynomials: 
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where ( )nH i  denotes nth Hermite polynomial 

 
The polynomial coefficients ( ), ,m n mL p q− are calculated by convolution of the original image ( ),L x y  with the 

function filter ( ) ( ) ( )2
, ,, , ,m n m m n mD i j G i j V i j− −= − − − − followed by subsampling at positions (p,q), i.e., 
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The inverse polynomial transform is defined by an interpolation process with pattern functions ( ), ,m n mP i j− : 
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In practice, HT implementaion using a Gaussian window requires the choice of some parameters, i.e. the size of the 
Gaussian window spread (σ) and a subsampling factor that defines the sampling lattice S. Resulting Hermite coefficients 
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are arranged as a set of NxN  equal-sized subbands, one coarse subband L 0,0  representing a Gaussian-weighted image 
average and detail subbands L n,m corresponding to higher-order Hermite coefficients, as shown in Fig. 1. 

 

 
 

Fig. 1. A spatial representation of Hermite transform coefficients as a set of NxN  subbands L n,m . The subband size depends on the 
subsampling factor used in the expansion. Diagonals depict zero-order coefficients (n = 0), first-order coefficients (n = 1), e tc. 

 
 

2.1 Steered Hermite Transform 
The result of a Hermite transform is an overcomplete signal description, however, high energy compaction can be 
obtained through adaptively steering the transform. The term st eerable filters describe a set of filters that are rotated 
copies of each other. They can be constructed as a linear co mbination of a set of basis filters. Based on the steering 
properties, the Hermite transform can be ro tated at each window position in the imag e so that it adapts to the local image 
orientation. This adaptability results in significant compaction. 

 For orientation analysis purposes it is convenient to wo rk with the rotational version of the Hermite transform. 
The polynomial coefficients can be  computed by convolution of the image with the filter functions ( ) ( )m n mD x D y − . 
They are separable in spatial and polar domain, and their Fourier transform can be expressed in polar coordinates 
considering cosxω ω θ=  and y senω ω θ= , as follows 

 

 ( ) ( ) ( ) ( ),m x n m y m n m nd d g d ω ω θ ω− − = ⋅     (6) 

where ( )nd ω  is the Fourier transform of the filter function of the n th order derivative of Gaussian, given by 
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 ( ) ( ),
! cos

! !
m n m

m n m
ng sen

m n m
θ θ θ −

− = ⋅
−

 (8) 

In terms of orientation frequency functions, this pr operty of the Hermite filters can be expressed by 
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where ( ) ( ), 0
n

m kc θ is the rotated coefficient. Fig 2. shows the directional Hermite decomposition over an image. First, a 

Hermite transform was applied and then the coefficients of this transform were rotated toward the estimated local 
orientation, according to a criterion of maximum oriented energy at each window position. For local 1D patterns, the 
steered Hermite transform provides a very efficient representation. This representation consists of a parameter θ  that 
indicates the orientation of the pattern and a small number of coefficients that represent the profile of the pattern 
perpendicular to its orientation. For such pattern, steering over θ  results in a compaction of energy into the coefficients 

,0nLθ , while all other coefficients are set to zero. Using Hermite coefficients, the energy content can be expressed as 

(Parseval Theorem) 
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The steered Hemite transform offers a way to describe 1D patterns on the basis of their orientation and profile. We can 
define the 1D energy and the 2D energy measures of the signal contained within each local position as 
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Fig. 2. Steered Hermite transform. Left: Original coefficients, Right: Steered coefficients. 
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3. FUSION METHOD BASED ON HERMITE TRANSFORM  
The general framework for fusion through Hermite transform includes six steps (Fig. 3):  
 
(1) Perform the Hermite transform over the images to be fused. 
(2) Detect local image orientations  by maximizing the energy measure ( )1 D

NE θ  for each window position. In practice, 

one estimator of the optimal orientation ( , ) p qθ  can be obtained through 1
0,1 1,0( , ) tan ( , ) / ( , )p q L p q L p qθ −= ⎡ ⎤⎣ ⎦  where 

0,1L (p,q )  and 1,0L ( p,q) are the first-order Hermite transform coefficients at window positions ( p,q). 

(3) Steer the transform coefficients  of each image towards directions ( , ) p qθ . 
(4) Select coefficients from each sour ce image at every window position. The coefficient variance at each window 
position is computed as a measurement of the activity associated with the central pixel of the window.  
A strong value indicates the presence of  a dominant pattern in the local area. A binary decision map is constructed 
indicating which image has dominant patterns at each window position.  
This binary map is subject to consistency verification. 
(5) Construct a new set of transform coe fficients from the coefficients of both  source images according to the binary 
map. 
(6) The final step is the inverse transformation from the new coefficient set. This results in the fused image. 

 
Fig. 3. Hermite transform fusion for multispectral and panchromatic images. 

 
3.1 Speckle reduction 
In the case of synthetic aperture radar im ages, the presence of speckle in the imag e seriously impairs the fusion process, 
therefore we propose a method to reduce speckle based on the Hermite transf orm that can be inco rporated within the 
fusion process. 
Our method is based on two strategies. First, an adaptive HT coefficient threshold scheme locally adapts to the mean 
luminance value, thus compensating the multiplicative nature of  speckle. Second, the Hermit e Transform coefficients are 
rotated towards the dominant local orientation of edges.  
In the case of noisy edges, this orientation matches the edge orientation, so when edges are reconstructed through an 
inverse transform, only those coefficients aligned with the corresponding edge orientation are included. All other 
coefficients are set to zero, thus elim inating the structure of speckle on edges, while preserving their sharpness. 
Regarding the threshold scheme, the HT coefficients can be us ed to discriminate noise from relevant information such as 
edges and lines in SAR imagery.  
A binary decision mask containing relevant image locations is  built by properly thresholding the first-order transform 
coefficient energy 1E : 2 2

1 0,1 1,0E L L= +  where 0,1L and 1,0L  are the first order coefficients of the HT.  

The optimal threshold is estimated considering two importan t characteristics of SAR images . First, one-look amplitude 
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SAR images have a Rayleigh distribution and the signal-to-noise ratio (SNR) is approximately 1.9131. Second, in 
general, the SNR of multilook SAR images does not change over the whole image.  
The threshold is calculated by: 

 2
002

2 1ln
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where SNR is the signal to noise ratio, equal to 1.9131; lookN is the number of looks of the image; RP  is the probability 

(percentage) of noise left on the image and will be set by the user; 00L  is the zero-order Hermite 

coefficient; ( ) ( ) ( )1,0 1,0 0
, * , * ,L x y

R x y D x y D x yα
= =

= − − , LR  is the normalized autocorrelation function of the input 

noise, and 1,0D  is the filter used to calculate the HT first-order coefficient.  

A careful analysis of this expression reveals that this threshold adapts to the local content of the image because of the 
dependence of the noise variance on the local mean value, the latter being approximated by the Hermite coefficient 00L . 

Fig. 4. Top left, SAR AeS-1 image with speckle. Top right, SAR image with speckle reduction. Bottom left, RGB composition of 
multispectral Landsat-7 ETM+. Bottom right, Resulting fused image fusion with noise reduction 
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4. EXPERIMENTAL RESULTS 
Experiments were carried out fusing optical  multispectral (MS) images with synthetic aperture radar (SAR) images. MS 
optical images consisted of Landsat 7 ETM+, 30m spatial resolution and spectral ranges: B1 (0.45-0.52 mµ ), B2(0.52-
0.60 mµ ), B3(0.63-0.69 mµ ), B4(0.76,0.90 mµ ), B5(1.55-1.76 mµ ), B7(2.08-2.35 mµ ). SAR images consisted of 
AeS-1, 5m spatial resolution images. Landsat 7 ETM+ data was obtained on 11 January 2001, while AeS-1 data was 
acquired on January 1999.  
Figure 4 and, 5 illustrates the result of MS and SAR image fusion with the HT. Fusion results show that all spectral 
properties are preserved with respect to or iginal MS image, and at the same time, the spatial resolution of the SAR image 
has been integrated in the fused image  

Fig. 5. Idem as Fig. 4. 
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5. CONCLUSIONS 
In this work we presented the HT as an efficient tool for image fusion in remote sensed data. The use of Gaussian 
derivatives as basis functions of the HT makes this transform especially suitable to represent relevant image structures 
such as edges. Moreover, the rotation property of the HT presented here is an important feature that allows detecting the 
orientation of relevant image structures.  
This translates into an energy compaction into few coefficients of the transform. Furthermore, the local orientation 
property of the HT is a key factor for the reconstruction of oriented patterns. We profit from this property in the proposed 
speckle reduction algorithm for SAR images. 
 The proposed scheme for fusion between MS and SAR images also shows very good performance, since the higher 
resolution and relevant texture of the SAR image are incorporated into the MS image without loosing spectral integrity 
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