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The Multiscale Hermite Transform
for Local Orientation Analysis

José L. Silván-Cárdenas and Boris Escalante-Ramírez

Abstract—The efficient representation of local differential struc-
ture at various resolutions has been a matter of great interest for
adaptive image processing and computer vision tasks. In this paper,
we derive a multiscale model to represent natural images based on
the scale-space representation: a model that has an inspiration in
the human visual system. We first derive the one-dimensional case
and then extend the results to two and three dimensions. The op-
erators obtained for analysis and synthesis stages are derivatives
of the Gaussian smoothing kernel, so that, for the two-dimensional
case, we can represent them either in a rotated coordinate system
or in terms of directional derivatives. The method to perform the
rotation is efficient because it is implemented by means of the ap-
plication of the so-called generalized binomial filters. Such a family
of discrete sequences fulfills a number of properties that allows es-
timating the local orientation for several image structures. We also
define the discrete counterpart in which the coordinate normaliza-
tion of the continuous case is approximated as a subsampling of the
discrete domain.

Index Terms—Hermite transform, local orientation, multireso-
lution decomposition, neighborhood operators, scale-space, steer-
able filters.

I. INTRODUCTION

ONE OF THE earliest models of the human visual system,
at cortex level, is based on the Gabor functions [1]–[4].

Filter design to simulate the visual processing carried out by
some stages of the visual system has been of much concern in
the field of visual processing information, such is the case of
the cortex transform, in which analysis functions were designed
to approximate the Gabor function profiles [5], with the advan-
tage of being able to adjust both the radial and angular band-
width. Many others have remarked on the need for a transform
exhibiting a wide range of orientation and scale tuning charac-
teristics for use with certain classes of objects common to all
images [6]–[9].

In 1987, Young proposed a model based on the Gaussian and
its derivatives [10]–[12]. Young showed that Gaussian deriva-
tives fit more accurately to the measurements of the signal at the
receptive fields than the Gabor function does, with an additional
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advantage of being orthogonal at the same location of analysis.
Considering the spatial derivatives up to some order enables
characterization of the local image structure up to that order. In
an early work [13], Koenderink and van Doorn advocated the
use of this so-called multiscale N-jet signal representation as a
model for earlier stages of visual processing. Then, in [14] they
considered the problem of deriving linear operators from the
scale-space representation [15]. They concluded that these op-
erators must obey the time-independent Schrödinger equation,
i.e., a physical equation that governs the quantum mechanical
oscillator. Thus, they provided a formal statement that Gaussian
derivatives are natural operators to derive from scale-space.
These operators have been shown to be very effective for signal
coding [16], [17] as well as useful for feature extraction [18],
[19]. Some signal decomposition models based on these opera-
tors at single scale are described in [20]–[22]. In particular, the
Hermite transform was originally introduced in [21] as a spe-
cial case of a more general transform, namely, the polynomial
transform, where some given requirements led to a Gaussian
window function and the polynomial transform resulted in the
Hermite transform. In that case, the Gaussian derivatives are in-
terpreted as the Hermite polynomials multiplied by a Gaussian
window. The signal within the window is expanded over the
basis of Hermite polynomials and therefore called the Hermite
transform. This transform was also inserted into a hierarchical
structure for a multiscale setting in [23].

Freeman and Adelson developed a technique to steer filters by
linearly combining basis filters oriented at a number of specific
directions [6]. The Gaussian derivative family is perhaps the
most common example of such functions. Since all Hermite fil-
ters are polynomials multiplied by a radially symmetric window
function, it is easy to prove that the Hermite filters of
order form a steerable basis for every individual filter of order

. Two distinct bases for the subspace of order can be readily
constructed: one from directional derivatives at sampled orienta-
tions [6] and the other from partial derivatives along orthogonal
axes [19]. The possibilities are, in fact, infinite since the set of
basis functions required to steer a function is not unique [24]. In
a related work, Martens introduced several forms of the Hermite
transform using a systematic approach developed mainly in the
frequency domain and described their application for local ori-
entation analysis [25].

In this paper, we present a similar transform based on constant
octave-width frequency bands whose profiles resemble the ones
found in biological visual systems [26], [27]. Early results of
this work were reported in [28], [29] and [30]. In this paper,
we explore in depth the theoretical results and discuss some
practical considerations for certain applications. In Section II,
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we derive the one-dimensional (1-D) multiscale Hermite trans-
form (MHT) which is, in contrast to the previously introduced
Hermite transform, based on coefficients represented in the con-
tinuous spatial domain termed the natural coordinates. A nat-
ural coordinate system is defined by normalization of the spatial
domain in proportion to the scale parameter of the representa-
tion. We also examine some properties of this signal decom-
position from the point of view of adaptive signal processing
and derive some pyramidal relations for its efficient implemen-
tation. Then, in Section III, we demonstrate how the two-dimen-
sional (2-D) coefficients over a rotated coordinate system can
be efficiently computed through a unitary transform based on
the so-called generalized binomial family (GBF). An alterna-
tive representation based on directional Gaussian derivatives is
also derived in the spatial domain and explicit relations to the
2-D separable case are provided. Applications to local orienta-
tion analysis have been the major concern in this work. It is well
known that local orientation estimation can be achieved by com-
bining the outputs from polar separable quadrature filters [9].
We illustrate here how the MHT can provide a mathematical in-
sight for more detailed analysis of local structures. In Section IV,
we present some remarks on the generalization of this decompo-
sition to three-dimensional (3-D) signals. The discrete analogue
of our signal decomposition is studied in Section V with some
examples on natural images.

A. Notation

, , and denote the set of integer, real and complex
numbers respectively. denotes the vector space of
measurable, -integrable 1-D real functions. The norm of

is given by

A -integrable function satisfy .

For , the inner product of and
is written as

The convolution of two functions and is
defined as

The identity element of under convolution is the Dirac’s
Delta function denoted by . Thus,

.

The Fourier transform of is written and
is defined by

is the vector space of measurable, square-integrable 2-D
functions . For , the inner
product of and is written as

We shall indicate the integral over a partial domain by using a
subscript notation, e.g.,

The Fourier transform of is written
and it is defined by

The variables and are used for the rotated
systems of spatial coordinates and frequency coordinates

respectively. For a given angle these variables are re-
lated through

denotes the vector space of square-summable se-
quences with . The norm in is given by

The -transform of is written and it is de-
fined by

for . This transform is related to the Discrete Fourier
Transform through the change of variable .

The discrete convolution of and is de-
fined by

The th-order forward difference operator is defined by
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where

denotes the binomial coefficients. This definition implicitly
states for or .

II. ONE-DIMENSIONAL MULTISCALE HERMITE TRANSFORM

A. Multiscale Decomposition

A scale-space representation is a special type of multiscale
representation that comprises a continuous scale parameter and
preserves the same spatial sampling at all scales. The Gaussian
scale-space, as introduced by Witkin [15], is an embedding of
the original signal into a one-parameter family of derived signals
constructed by convolution with Gaussian kernels of increasing
width.

The scale-space representation of is denoted
by for and it is defined by letting the scale-
space representation at zero scale be equal to the original signal

and for

where for , is the Gaussian kernel defined as
the scaled Gaussian

normalized with respect to the norm. The normalized
coordinate is referred to as natural coordinate [14].

The scale-space theory generalizes the existing notions of
Gaussian pyramids [31] and provides a well-founded way of re-
lating image structure between different scales. It also provides
a framework for early visual computations of a more general na-
ture [13], [32]. Indeed, it has long been known that retinal gan-
glion cell receptive fields can be described using the difference
of two Gaussian functions (DoG) of different scales (see, e.g.,
[26] and [27]). In [27], the retinal image is represented through
a wavelet-like transform where the basic filters are DoG func-
tions. Here, we use a similar idea as the starting point for the
multiscale decomposition.

Formally, the impulse response of a DoG filter is defined by
for . Thus, an input

signal can be decomposed as

(1)

where for . The DoG filter captures
the details that are to be added to a representation at scale to
obtain the representation at the lower scale . Unlike [27] here
we use so the natural coordinates between levels maintain
a factor of 2. Also, we fix for normalization purposes.

B. Structural Analysis

Image analysis is a fundamental part of most image pro-
cessing and computer vision tasks. The aim of image analysis
is to derive features from visual data for further processing and
analysis. In order to support recognition of several image struc-
tures embedded in the image data and to serve as a precursor
to more detailed analysis (e.g., defining a local orientation or
scale, or labeling a region as “corner,” “edge,” etc.) a local
structural analysis is demanded. In such a case, derivative
operators comprise a mathematical toolkit to discern among
the different image structures [14], [33].

As the meaning “local” is dependent on the considered scale,
the intrinsic dimension at a given position, i.e., the number of
degrees of freedom required to describe the local structure (see,
e.g., [9] and [34]) is scale dependent, too. In the scale-space
representation, the local differential structure must be inferred
from derivatives of the scaled representations of the signal. For-
tunately, the th-order derivative of can be obtained by
convolving the input signal with the Gaussian derivatives

(2)

where denotes the th-order Hermite polynomial for
[35]. These Gaussian derivative functions obey scale-

space properties that are better understood in the frequency do-
main. The Fourier transform of these functions is expressed in
1-D as

(3)

To simplify the notation the equivalences

and their spatial counterpart will be used in the sequel. Then, it
must be clear that

Also, from the orthogonality of the Hermite polynomials [35],
we have

(4)

Taking the th derivative of (3) with respect to the scale pa-
rameter leads to the following identity expressed in the spatial
domain:

(5)
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Fig. 1. Normalized Gaussian derivative filters in spatial and frequency domain for n = 0; . . . ; 4.

which is used, after setting , to obtain the Taylor expansion
of around , from which we subtracted the first
term to write

(6)

with the scaling constant

In practice, we must limit the number of channels as well as
the number of terms in the above expansion. There are indi-
cations from neurophysiologic studies that the human visual
system works with derivatives up to a limited order [10]. In our
initial model, however, we work with infinite expansions and,
then, finite approximations can be treated as special cases.

C. Signal Representation

Adaptive image processing as well as image coding based on
the signal decomposition approach generally requires a three-
stage process. Within this approach the signal undergoes an
analysis stage which simplifies the second stage of processing
(or coding) and a third stage, the so-called synthesis stage, takes
the intermediate representation to reconstruct a version of the
original signal [25]. Under such a scheme, it is often advan-
tageous that the synthesis stage performs similar operations to
that of the analysis stage, i.e., the basis function to invert the
transform are the same as the ones used to analyze the signal.
This property is termed self-invertibility in the literature and has
been recognized to be very important in many image processing
applications [7]. Without this property, for instance, errors in-
troduced by nonlinear processing of the coefficients (such as

quantization) will spread to locations and frequencies other than
those that were used to compute the coefficients.

Here, we factorized the even-order Gaussian derivatives in
(6) using the well-known property of concatenation [14], i.e.,

, to build a model
that employs the same functions for both the analysis and the
synthesis stages. Furthermore, if we express the convolutions as
inner products we can write the signal decomposition of (1) as

(7)

where the signal is fully described in terms of the projections

(8)

of the input signal onto the basis functions

(9)

for , , and . Complying with the desired con-
dition, these basis functions are used to both analyze and syn-
thesize the signal and are nothing but the continuously shifted
discrete-scaled version of the Gaussian derivatives normalized
in the weighted norm. The functions for ,

and , together with their Fourier transform, are
plotted in Fig. 1.

One should notice that this base is nonorthogonal in the
entire space of representation , but only with respect to
the derivation order in the sense of (4). Fortunately, overcom-
pletness is not of major concern for several image processing
applications since orthogonality requires critical sampling
constraint resulting in aliased representations that are unstable
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under scaling and rotation of the input signal [7]. Our represen-
tation has some appealing properties that are discussed in the
next sections.

D. Signal Details and Signal Smoothing

In order to determine what the above signal representation
means and what kind of signal processing it can be applied to,
we study the projections in (7) and (8) in the context of the
scale-space representation.

We define the functions

(10)

for , and refer to them as the derivative detail
functions since they provide the signal details of a given order

, at a given resolution . In the Fourier domain, they are written
as

(11)

where is the Fourier representation of the multiscale
Hermite transform (MHT) defined in (8), which is given by

(12)

On the other hand, the set of smoothed signals
for is called a multiresolution approximation of

because, at a given level of resolution, it contains all the
details of coarser resolutions. Otherwise stated

(13)

Notice that the second term in the righthand side of (13) corre-
sponds to the signal information within the channel with
scales and . One can modify the width of this channel
by simply altering the scaling constant , i.e., a particular way
of processing the coefficients at level . In particular, one
may be interested in the resynthesis of the signal at an arbitrary
scale based on the representation at discrete scales, i.e.,

(14)

where is referred to as the smoothing factor since for
the signal equals and, for , it equals .
For other values of within 0 and 1 the signal equals the scaled
representation at some scale between and . More pre-
cisely, if

with , then for .
Thus, the smoothing factor required to obtain the signal at
some given scale through (14) can be easily found as

(15)

where the resolution level must be so that and,
therefore

(16)

where denotes the largest integer lower than .

E. Pyramidal Implementation

The processing scheme in which the image is decomposed
into a number of bandpass or lowpass subimages, which are
subsequently downsampled in proportion to their resolution, is
called pyramidal representation, e.g., [31]. Each level in the
pyramid maintains a linear relation to its adjacent levels and
such relation is scale invariant. The hierarchical implementa-
tion of the Hermite transform [21] had been incorporated into
a pyramid structure and applied successfully to noise reduc-
tion in computerized tomography imagery [36]. In that case, the
pyramid scheme was used as an approximation of the multiscale
decomposition, but no theoretical derivation of the decimation
and interpolation filters was carried out. In this section, we show
that the filter functions that generate a truly multiscale repre-
sentations are completely specified in terms of the parameter

. With “truly” we mean that each level in the multiresolution
representation has a dilation (scale) parameter associated in the
corresponding basis function. In this respect, the pyramidal im-
plementation is similar to that of a wavelet transform [37], [38].

The MHT can be implemented using this approach in the con-
tinuous spatial domain since from (12) we readily find

(17)

with , which can be written in the spatial domain as

(18)

where

(19)

is a Gaussian derivative filter of fixed scale. Equation (18) says
that one only needs to filter the low-pass coefficient of the cur-
rent level with some fixed scale functions, and scale down the
output domain by a factor of two to generate the coefficients of
the next resolution level.

On the other hand, if we write (13) in the frequency domain
and use (11), we obtain the inverse relation

(20)
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Fig. 2. Pyramidal implementation of analysis and synthesis stages for the multiscale Hermite transform. (a) Analysis. (b) Synthesis.

or, written in the spatial domain

(21)

that is an upscaling relation through the filters , for
Therefore, the same set of filters allows mapping the

low-pass component at a given resolution to or from the next
lower resolution level with the advantage that they have a con-
stant scale parameter. This certainly could make implementa-
tion more efficient; however, in order to make this pyramidal
approach operable, we need to limit the number of scales of
analysis.

If we consider a finite number of channels, then from (13),
we can write the multichannel decomposition as

(22)

where and determines the resolution limits of analysis.
Although the low-pass residue has lower variations
than the input signal it can not be neglected for most practical
situations. On the other hand, the high-pass residue

can be neglected only if is small enough compared
to the information content of the signal. Unfortunately, we do
not know a priori if relevant information is contained in the
high-pass residue. Therefore, in order to recover the original
signal, an additional channel from scale 0 to scale (thus, with
a unitary scaling constant) must be added to the above expan-
sion. This results in the following signal expansion

(23)

where the two first terms in the righthand side are precisely the
low-pass and high-pass residues, respectively. The detail signals

, for , are given in terms of the Hermite
coefficients

(24)

where

(25)

for , the filters are required to generate the first layer
of the pyramid. Subsequently, lower-resolution coefficients are
generated through (18) for . Conversely, the
signal is reconstructed by integrating the highest resolution co-
efficients through

(26)

The complete analysis-synthesis process for the MHT is illus-
trated in the flow diagram of Fig. 2. All the filters required in
the pyramidal scheme have the form of , some of which are
plotted in Fig. 1.

F. Predictive Scheme

An ideal representation of the local image should be based
on a minimum number of parameters that, at the same time, are
meaningful to aid interpretation. One obvious disadvantage of
the MHT is the increment of the number of parameters to rep-
resent the input signal which gives a feeling of high redundancy
for this representation.

Such redundancy is partially due to the linear dependency
among analysis functions at different scales. Otherwise stated

(27)

where .
Notice that (27) is a generalization of (21) for higher order

coefficients. Indeed, it can be further generalized to reconstruct
the coefficients at any intermediate scale between and

by simply changing the parameter as described in
Section II-D. This property is termed shiftability in the scale
due to Simoncelli et al. [7], a concept generalized from the
steerability property first developed for the orientation domain
by Freeman and Adelson [6]. Another example of scale-steer-
able family can be found in the literature [39], which seems to
belong to other linear scale-space based on Poisson kernel [40].

In practice, one must limit the number of terms in this expan-
sion when working on a discrete grid. One might think that the
practical upper limit of derivatives will grow in proportion to the
scale of the Gaussian. However, as scale increases, less details
remain in the signal and then fewer derivatives are required. In
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the discrete formulation of Section V, a fixed number of deriva-
tives is used at each level with the exception of the first level.
In such a case, we can only approximate the set of coefficients
at a finer resolution using a partial sum similar to (27). This
can be useful for coding applications where one typically pre-
dicts the coefficients of finer resolutions from those of coarser
resolutions (which have lower entropy); then, one only trans-
mits the coarsest level together with the prediction errors of finer
levels. The mechanism is analogous to oversampling the signal
and coding the differences between contiguous samples instead
of coding the samples themselves since an increase in the sam-
pling rate reduces the total data entropy.

III. TWO-DIMENSIONAL MULTISCALE HERMITE TRANSFORM

Most of the properties of the Gaussian derivatives in
1-D are readily extended to higher dimensions, since
the multivariate Gaussian derivatives are defined as the
product of 1-D Gaussian derivatives. In particular, the
2-D Gaussian derivatives are written in the frequency do-
main as , for

; and ; where is the derivative
order with respect to , is the derivative order with
respect to , and is the total derivative order. Then, property
(5) is generalized to 2-D as

(28)

where implies the spatial coordinates . Therefore, if
, we can write the Taylor expansion for the 2-D

function as

(29)
Then, proceeding as in the 1-D case, we find the following ex-
pressions for the 2-D signal expansion

(30)

where the detail signals

(31)
are based on the projections

(32)

of the signal onto the 2-D basis functions

(33)

for ; ; , and . These
functions are separable in and , since

; therefore the 2-D MHT can be implemented by
two cascaded 1-D MHT, each over one spatial dimension.

Besides the scale-space properties, the Gaussian derivatives
in two or more dimensions exhibit many other symmetry prop-
erties related to rotation of the coordinate system that are dis-
cussed in the next section.

A. Rotated MHT

The first step in our signal analysis consists of the determi-
nation of the Cartesian Hermite transform, since associated fil-
ters are separable and maintain the pyramidal relations derived
in Section II-E and, therefore, they can be efficiently imple-
mented. For image analysis purposes, however, further steps are
required. Martens [25] has suggested mapping the Cartesian co-
efficients to polar coefficients since finding the axis of symmetry
and adaptively rotating the coordinate axes is done most easily
on these polar coefficients. However the adaptive polar Hermite
coefficients are generally mapped back to the Cartesian repre-
sentation for interpretation, coding or processing. The approach
presented in this paper differs from Martens approach in that
the adaptive rotation is performed directly on the Cartesian co-
efficients with the additional advantage that the angle functions
required to steer the 2-D isotropic Gaussian derivatives can be
efficiently implemented.

Let denote the clockwise-rotated
version of by an angle , i.e.,1

.
An explicit expression for the above rotated functions is

readily obtained in the frequency domain (e.g., see [19], [29])
and written in the spatial domain as

(34)

where the angular functions

(35)

for ; ; and , , for
, are referred to as the generalized binomial family (GBF)

of index . The reason for this name becomes clear after noticing
that the filter transfer function in the -transform domain (see
Appendix I)

(36)

can be implemented by cascading the binomial kernels
and , by and times, respectively. An efficient
implementation of these filters can be achieved, for instance, by
generalizing the algorithm of [41] to include nonunitary weights
given by these kernels. In this case, the number of operations per
sample will be multiplied by three.

The GBF satisfies a number of properties that allow ad-
dressing problems concerning local orientation analysis within
a mathematical framework. An exhaustive study of the prop-
erties of such functions is beyond the scope of this paper.
However, we will cover some interesting mathematical rela-
tions of these sequences and provide an indication to derive
them. Some of the properties are directly derived from the
definition. For instance, the symmetries

(37a)

(37b)

(37c)

1Thus, g (�;�) and g (�;�; 0) can be indistinctly used.
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Fig. 3. Flow diagrams for rotating the Hermite transform coefficients up to fourth order. Horizontal arrows are weighted with c = cos �, upward and downward
arrows are weighted with s and �s, respectively, with s = sin �. (a) n = 1; (b) n = 2; (c) n = 3; and (d) n = 4.

are easily verified from (35). But some other relations will re-
quire further development.

The original Gaussian derivatives are obtained from the ro-
tated ones by applying the same filters with a change of sign of
the angle parameter. This results in

(38)

Equations (34) and (38) are direct consequences of the steering
property satisfied by derivative filters [6], [19]. These linear
mappings define a unitary transformation carried out over the
partial derivation order of the 2-D Gaussian derivatives through
the base comprised by the functions2 , for

.
The expressions for the forward and backward rotation of

the Hermite coefficients are found after normalizing and ap-
plying the Gaussian derivatives in the above expressions to the
input signal. In order to simplify the notation let , for

denote the Hermite coefficients of order at
some generic location and scale, and let denote the
same coefficients over rotated axes by a given angle measured
clockwise with respect to axis . Then, from (34), the following
relation for these coefficients is found:

(39)

Furthermore, since the GBF for the difference of two angles can
be evaluated by concatenation of the filters with the given angles

2This base is orthonormal in the sense of (72) in the Appendix II.

(see Appendix II), a more general expression for the rotated
coefficients can be written as

(40)

from which the original coefficients are obtained by letting
.
Therefore, the rotation algorithm is rather simple. We first

de-normalize the coefficients by dividing by a factor , then
apply the GBF in cascaded fashion and, finally, multiply again
by a factor . The flow diagrams for rotating the coeffi-
cients up to fourth order are shown in Fig. 3. As it can be in-
ferred from the basic butterfly diagram of Fig. 3(a), there are
twice as many multiplications as additions. Meanwhile, a total
of additions are required for the
rotation of the th-order coefficients.

B. Anisotropic Smoothing

The smoothing method described in Section II-D is easily
generalized to two dimensions with independent smoothing fac-
tors for each dimension which, combined with the local rotation
process, allows an efficient anisotropic Gaussian smoothing of
the image.

We process the rotated coefficients to generate the smoothed
coefficients through

(41)

where and denote the smoothing factors along
directions and , the rotated coordinates that make an angle
with respect to the original coordinates and respectively.
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The smoothed coefficients , for , are still
computed through the generalized binomial family since the
filter has a transfer function

(42)
which defines a more general form of the GBF.

The image is then adaptively smoothed by processing the co-
efficients at different positions independently and by choosing
the smoothing parameters for the th layer according to

if

if
if

(43)

with , where stands for either or
and so for the scales or . The scales
and the orientation are free parameters. The natural
application of this anisotropic Gaussian smoothing is to noise
reduction, a problem which has been proven to be very hard to
solve, mainly because one usually needs to estimate the orienta-
tion parameter from the noisy data (cf. [42]). One obvious limi-
tation for this approach to noise reduction is its inability to elim-
inate noise around boundaries with high curvature (e.g., corner
and junctions).

In the next subsection, we develop a more detailed structural
analysis in the domain of the rotated MHT.

C. Local Orientation Analysis

The intrinsic dimension of a local structure in the image is the
number of degrees of freedom required to describe it [34]. We
shall say that an image is locally -D if the intrinsic dimensions
is , 1, or 2. For a locally 1-D image with normal along ,
some of the rotated coefficients vanish at that orientation, i.e.,

, where , for , are the
1-D Hermite coefficients of the image profile. Whereas for an
arbitrary rotation they have the following angular variation

Then, the original 2-D coefficients

(44)

can be used to compute the local orientation since, using the
trigonometric relations of Appendix III, we can write

(45)

It must be clear that (45) leads to solutions for in the interval
given in terms of the th-order coefficients and they are

uniformly spaced by . For the 1-D patterns, we must expect
one of the obtained solutions for equals the gradient
angle, i.e, the single solution for . Fig. 4 shows some
examples of different patterns. The orientations obtained from
(45) with through 4 are shown as compass plots. Pattern
labeled “A” is strongly oriented and, consequently, one of the
solutions for each coincides with the gradient orientation.
In order to pick up the true normal orientation for one can

determine which of the solutions gives the maximum energy
for the directional derivative .

The 1-D patterns belong to a more general set of image struc-
tures namely the symmetric patterns, which includes 2-D struc-
tures, such as corners and symmetric junctions. For these pat-
terns the local axis of symmetry, commonly used in computer
vision for object recognition, can be directly determined from
the Hermite coefficients. Indeed, (45) gives the orientation of
the axis of symmetry. In order to show this, we use the fact
that rotated coefficients of a mirror-symmetric pattern around
the angle satisfy , for odd [25]. Then,
considering (40) with and the symmetry property
given in (37b), we can write the unrotated 2-D coefficients as

(46)
The next steps consist in taking the cases and ,
multiply them by , sum over , and use the identities
(73) and (74) derived in the Appendix III. The resulting expres-
sions are finally combined by division to obtain (45). The edge
normal orientation is, therefore, the symmetry axis for the par-
ticular case of 1-D patterns. As an example consider the pattern
labeled “B” in Fig. 4. In this case, the angles selected as de-
scribed before are all around 60 . This indicates that the pattern
is approximately symmetric around that orientation. Unlike the
edge of sample “A,” the pattern of “B” correlates better with
the second-order derivatives than with the first-order ones. The
orientations produced by the former clearly define the two axes
of symmetry observed in the image. The pattern labeled “C” is
also roughly symmetric but it only has one axis of symmetry
around 100 . The first- and second-order operators most likely
describe this structure as they have higher output. In contrast to
symmetric patterns, nonsymmetric patterns (e.g., sample “D” in
Fig. 4) produce very different orientations for different deriva-
tion orders.

Interestingly, (45) gives also the solution to the general gauge
condition [33]

(47)

with rotated coefficients of not necessarily symmetric patterns.
This can be verified by substituting (39) of the rotated coeffi-
cients into (47) and using the identities of Appendix III to obtain
(45). Similarly, one can also derive the identity

(48)
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Fig. 4. Orientation analysis of different patterns. The compass plots show the orientations given by � = arctan(Q)=n+ �k=n for k = 0; 1 . . . ; n� 1, where
Q is the right-hand term of (45) computed with the coefficients at the first resolution level of the discrete MHT. The length of each arrow was set to the derivation
order n = 1,2,3,4 and its width adjusted proportionally to the magnitude of � (�). Whenever � (�) had a negative value, � + � was taken to ensure the
coherence among the estimation of different orders.

which defines a positive image measure that is invariant under
rotation.

Therefore, for a given , (47) can be regarded as a general cri-
terion to fix the rotation angle regardless of the shape of the local
pattern. In particular, the first gauge condition
leads to the gradient orientation and reduces (48) to the gradient
magnitude. The case leads to the orientation of the eigen-
vectors for the Hessian matrix, i.e., it corresponds to the diago-
nalization condition for the Hessian matrix since (47) becomes

.
In many applications, it is useful to classify the local struc-

ture into a finite set of classes in order to both process each kind
of structure more efficiently and facilitate further analysis and
interpretation. Such classification should take place within the
appropriate energy space (e.g., [29] and [43]). In Fig. 5, we il-
lustrate the space covered by certain patterns within an energy
space defined by the measured 1-D energy (i.e., the energy
of the rotated coefficients with that are nonzero for an
ideal 1-D pattern), symmetric energy (i.e., the energy of
the rotated coefficients with that are nonzero for an ideal
symmetric pattern) and 2-D energy (i.e., the energy of all
the coefficients with ). Thus, any image pattern is repre-

Fig. 5. Localization of different patterns within an energy space.

sented by a point within the space limited by four planes. Each
subspace outlined in this graphic represents a class of patterns
grouped according to their dimensionality and symmetry. Flat
patterns are located at the origin of the space, 1-D patterns are lo-
cated along an edge of the pyramid and so forth. Unfortunately,
real images are generally corrupted by noise. Since errors are
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necessarily introduced due to approximations of the processing
model and/or the arithmetic precision of the processing system,
and because a degree of subjectiveness is involved in the sepa-
ration of the above patterns, the classification problem is more
complex in practice. A more realistic approach should allow the
spaces defined by the different patterns to fuzzily overlap each
other.

D. Multidirectional MHT

Freeman and Adelson introduced a technique to synthesize
filters of arbitrary orientation from linear combination of basis
filters chosen as rotated replicas of the so-called steerable
function [6]. Directional Gaussian derivatives are perhaps the
most common example of such functions. In a related work,
Martens introduced a form of the Hermite transform termed
the Wavelet Hermite transform based on directional derivatives
[25]. In that case, the transform was defined through a sys-
tematic approach developed in the frequency domain using the
fact that the Fourier transform of Gaussian derivative filters are
separable and that the angular functions comprise a base for
the Hilbert space of periodic signals. Here, we use properties
of the GBF to derive a multidirectional form for the MHT. We
also provide explicit relations between the 2-D separable MHT
and the multidirectional MHT.

The generalized binomial sequences, when seen as angular
functions, can be expanded into their Fourier series with the
Fourier coefficients given in terms of the symmetric filters ((75)
in Appendix III). From (75b), we notice that the DC coefficient

, i.e., the mean value of the angular function, is zero if either
, , or are odd, and for even values, we can write the integral

expression

Moreover, from some well-known properties of periodic sig-
nals, it can also be written as the discrete sum

(49)

for . This expression is used to relate the
directional derivatives at uniformly spaced orientations to the
Cartesian derivatives of the Gaussian kernel. Specifically, we
set in (49) and combine with (34) to obtain the identity

(50)

with

for . Therefore, from (29), we can write an alternative
expression for the Taylor expansion of the as

in terms of directional derivatives at orientations
for . This expansion, in turn, defines

another Hermite transform so that the input signal is expressed
as

(51)

where the detail signals

(52)

are based on the projections

(53)

of the signal onto the 2-D basis functions

(54)

for ; ; ; and is the ro-
tate coordinate system. These basis functions are nonseparable
in and . However, in practice, we can compute the multidi-
rectional coefficients through the separable ones since

(55)

holds for a generic location. Moreover, it can be shown from
(50) that the signal reconstruction is also achieved by applying
the inverse MHT to the coefficients

(56)

for ; and . Notice that the sets
and are dif-

ferent; however, they synthesize the same image. This is only
explained by the fact that the coefficients at different locations
are not independent at all.

IV. THREE-DIMENSIONAL MULTISCALE HERMITE TRANSFORM

Although the most frequently used images are in two dimen-
sions, 3-D datasets often arise in medical imagery as well as
in video sequences. In this last case, a spatiotemporal signal
is mapped onto a 3-D spatial signal by transforming the tem-
poral coordinate to a spatial coordinate via multiplication by a
velocity parameter that is implicity selected with the sampling
rate [21].

The definition of the 3-D MHT is straightforward. All the ex-
pressions for this case have additional indexes for the spatial co-
ordinate and for the derivative order along the third dimension.
Here, we restrict ourselves to some remarks for the rotation of
the 3-D coefficients denoted by for .

Rotation makes sense only if the resultant coordinates have
a geometrical meaning regarding the local pattern of the image.
For 3-D imagery, we must specify the transformation in terms
of the kind of patterns we want to characterize. For instance, we
can easily characterize 2-D patterns underlying constant move-
ment along linear trajectories (at least locally and within a short
period of time) if we perform the following two rotations. First,



SILVÁN-CÁRDENAS AND ESCALANTE-RAMÍREZ: MULTISCALE HERMITE TRANSFORM 1247

perform a rotation around the axis by an angle measured in
the direction defined by the right-hand rule, i.e., the rotation of
the plane with the axis fixed and the rotation angle mea-
sured in the clock-wise direction seen from the positive part of
the axis. Then, perform a rotation around the rotated axis by
an angle obeying the same rule.

In this case, the rotated coefficients

satisfy if are the
coefficients of a 2-D pattern moving at a speed of
along the direction defined by . Furthermore, they satisfy

if are the coefficients of a
1-D pattern moving at a speed of along its normal di-
rection given by . Indeed, this rotated 3-D Hermite coefficients
allows to make a classification of different patterns immersed
in the spatiotemporal signal of a video sequence [43].

V. DISCRETE COUNTERPART

A. Discrete Scale-Space

For discrete 1-D signals, a complete theory can be based on
a discrete analogy to the above treatment. The only nontrivial
smoothing kernels of finite support arise from the generalized
binomial smoothing [44], and if it is combined with a require-
ment that the family of smoothing transformations must obey
the semi-group property over
scales and possesses a discrete scale parameter, then the sym-
metric binomial

(57)

centered at for , with the discrete scale parameter
, can be used as the discrete multiscale kernel. This

kernel is termed the discrete analogue of Gaussian kernel and
satisfies several properties in the discrete domain; for example,
it corresponds to the discrete delta function for , while
for large it approaches the Gaussian kernel, i.e.,

as (58)

for .

B. Discrete Multiscale Derivatives

Discrete derivative approximations with scale-space proper-
ties can be built as discrete differences of the binomial kernel
[45]. In this case, because the binomial kernel has a compact
support, the maximum order of derivatives is limited by the scale
parameter of the binomial., i.e.,

(59)

for and , where stands for
the Krawtchouk’s polynomial of degree , the discrete coun-
terpart of Hermite polynomials [35]. These functions approach
the Gaussian derivatives as tends to infinite. Moreover, most
of the properties of the Gaussian derivatives have their discrete
counterpart on these binomial functions with scale parameter

. For instance, the normalized Gaussian derivatives are
approximated by their discrete counterpart

(60)

for ; and even. The or-
thogonality property (4) has its discrete form on these functions,
i.e.,

In order to show the most relevant properties of these discrete
multiscale derivatives, we write them in the -transform domain
as

(61)

From this, their relation to the GBF introduced in previous sec-
tion should be clear

(62)

The concatenation property

(63)

is easily derived in the -domain as the convolution operation
reduces to a product operation. Also, the differentiation with
respect to scale, here expressed in terms of discrete differences

(64)

is easily verified in the -domain. The particular case with
and is recognized as the discrete counterpart of the heat
diffusion equation on the binomial kernel [46]. If we consider
the case with and , the following recursive form
results:

Then, by recursive replacement of its right side for times, the
following finite expansion is obtained

(65)

This finite expansion resembles the continuous Taylor expan-
sion of a Gaussian derivative. In fact, the same limiting process
that turns the discrete operators into the Gaussian derivatives
turns (65) into the Taylor expansion of a Gaussian derivative.

C. Discrete Multiscale Hermite Transform

In order to arrive at a signal decomposition similar to that
encountered for continuous signals, we first make the link to
the continuous theory explicit. Let us define the scale sequence
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for , with integer. The
scaling constant is maintained as in the continuous case. Then,
from (65) and for we can write

(66)
which is the discrete approximation of the function and
it is referred to as difference of binomial function (or for
short). The asymptotical approximation of the filters by
the functions holds as grows indefinitely. Specifically,
since

it should be clear that

as

Therefore, (66) turns into (6) with as grows
indefinitely.

As for continuous signals, we can decompose discrete signals
in terms of a finite number of DoB channels; unfortunately, this
approach has some limitations. The splitting of the even-order
functions to produce the same filters for the analysis and syn-
thesis stages is no longer possible. Indeed, an integer subsam-
pling rate has to be used as the approximation for the coordinate
normalization because the discrete space can not be arbitrarily
scaled as the continuous space. An exact reconstruction is pos-
sible only if a weighting function is introduced in the interpo-
lating filters as in [21]. Also, the size of the filters grows ex-
ponentially making their implementation impractical. In order
to overcome these limitations, we use an alternative approach
based on the pyramidal implementation of Section II-E.

By approximation of the continuous transform, the discrete
counterpart of the MHT is defined in terms of the discrete filters

and as follows.
First, compute the coefficients of the first layer as

(67)

for and . Then, compute the upper layers
through

(68)

for and . Since these dis-
crete coefficients approach the continuous ones within an order
of approximation given by the resolution level, one may insert
these coefficients into any of the expressions derived for the con-
tinuous coefficients and expect an approximate behavior. For
instance, the second-order gauge condition given by (45) was
combined with (39), (55), and (27) to compute different mul-
tiscale decompositions of the well-known HOUSE image. The
original image and the different representations are displayed in
Fig. 6 for illustration purposes. Notice that the highly oriented
patterns dominating the image lead to a good energy compact-
ness along the rotated coordinate as predicted for continuous

signals [Fig. 6(c)]. In this case, the coefficient for
every resolution level. Although no significant differences are
observed in the expansions of Fig. 6(c) and (d), it should be
noted that they are indeed the same for the first order and differ
more as the order increases.

Analogous to the continuous case, the inverse transform is
defined by the following interpolation process:

(69)

for and

(70)

for the signal reconstruction. The reconstruction is perfect pro-
vided that

for and .

D. Practical Issues and Applications

So far, we have focused mainly on the theoretical derivations
of the transform and its properties. Providing an extensive de-
scription of every application of the model presented here is be-
yond the scope of this article. We rather discuss some practical
issues and suggest how this transform might be applied to dig-
ital image processing.

A very natural question to ask is what is the effect of limiting
the maximum order of derivation in the signal reconstruction?
Or, how significant are the errors introduced due to such ap-
proximation? Of course, the answer will depend on the kind of
signal and its purpose. For image representation, we can use the
pseudo signal-to-noise ratio (PSNR) as a measure of the approx-
imation. The PSNR of several reconstructed images are plotted
against the maximum order in Fig. 7. The exact reconstruction
can be achieved only when all the coefficients are used, e.g., 16
in the 2-D space. A reasonable PSNR (say above 30 dB) is most
likely to be achieved for a maximum order of 8. This number
can be lower for the upper layers and even lower if based on
purely subjective criteria since the blurred effect introduced by
this transform is more tolerable by human viewers than other
effects, e.g., the ringing produced by a wavelet decomposition.

As we noticed for the continuous case, the MHT represen-
tation requires the low-pass coefficient only at layer

, for the signal reconstruction. Fortunately, at this res-
olution level, the signal rate is reduced by a factor of with
respect to the input rate. In general, a single coefficient at level

has a size reduced by a factor of with respect to the input
signal so that the whole representation will have a size increased
by a factor of with respect to the input signal.
This factor reaches its minimum value for the case
(single-scale case) and for larger values of , it approaches 7.
This redundancy could be a major inconvenience for some ap-
plications such as coding. In that case, one can predict approx-
imately the coefficients from the coarser resolution level based
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Fig. 6. (a) HOUSE image. (b)–(f) Discrete multiscale decompositions up to third order andK = 4. The coefficients are arranged in increasing order from left to
right in x and from top to bottom in y. The orientations used in (c), (d), and (f) were determined from the second-order gauge condition (47). The full expansion was
used in (e) and (f) for the prediction of coarser levels (see the text). (a) input; (b) original coefficients; (c) rotated coefficients; (d) multidirectional; (e) prediction
errors; and (f) rotated errors.

Fig. 7. Effect of limiting the maximum derivation order of the 2-D expansion
(with K = 4) on the PSNR of several reconstructed images.

on (27); then, the residual can be further rotated and encoded
accordingly. Fig. 6(e) and (f) illustrates the residual errors ob-
tained for the image HOUSE without and with local rotation,
respectively. In both cases, prediction errors tend to be higher
for higher order coefficients; however, the rotated version tends
to compact the errors along the first dimension.

In Section III-B, we introduced a method to perform the
anisotropic Gaussian diffusion of images. It requires estimating
the orientation and scales along each orthogonal direction
defined by the orientation angle at every position in the image.
To illustrate how it works, we consider a single scale decom-
position and classify the patterns at each sampling location
as 0-D, 1-D, and 2-D patterns as in [29]. The scales for 0-D
patterns should equal scale of the representation (therefore,

) and the angle can be arbitrarily selected as it
does not play a role. For 1-D patterns, the orientation is taken
as the gradient angle. The scale along the gradient direction is
preserved as in the input signal , while the scale along
the orthogonal direction is taken as the scale of the represen-
tation . For 2-D patterns, both scales are preserved

and the orientation can be arbitrarily selected.
Fig. 8 shows the results obtained with several images. A similar
setting can be applied to image coding (cf. [47]).

VI. CONCLUSION

We have introduced the multiscale hermite transform and pre-
sented new theoretical results on local orientation analysis based
on this transform. The major properties of the signal decomposi-
tion were studied in 1-D for simplicity, but they are straightfor-
wardly generalized to a multidimensional separable transform.
Moreover, since orientation analysis makes sense only for data
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Fig. 8. (a) Input images, (b) enlarged portion of original images, (c) enlarged portion of diffused images, and (d) plots of (dots) 0-D patterns, (line segments)
1-D patterns, and (circles) 2-D patterns. A single-scale decomposition was used. The angle was set to the gradient orientation. The smoothing parameters ( ,  )
were set to (0,0), (1,0) and (1,1) for 0-D, 1-D, and 2-D patterns, respectively (see the text).

in two and higher dimensions, the major results in this matter
where performed in 2-D and indications for its application to
3-D data sets, such as video sequences, were provided.

The basic operators of this representation are Gaussian
derivatives, which have been largely studied in the literature
both from the point of view of their utility in computer vision
[18], [48], [49] and for their relevance in the modeling of the
human visual system [10], [12], [13], [50], [51]. The Hermite
transform was originally introduced as a broader theoretical
framework for these approaches [21], [23], [25]. In our case, the
multiscale decomposition resulted from the explicit choice of
certain channels resembling the ones found in the human visual
system, namely, the difference of Gaussians [26], [27]. These
channels were further decomposed into Gaussian derivatives
which are also relevant in the modeling of the human visual
system and have many symmetry properties facilitating the
multiscale and multiorientation analyses.

The major contribution of this paper relative to previous work
is two-fold. First, we took advantage of the multiscale prop-
erties of the basis functions to build an efficient implementa-
tion through a pyramidal approach. In the continuous setting,
the transform is steerable in both scale and orientation domains,
i.e., one can reconstruct the coefficients at any orientation and
scale from discrete samples of these domains [6], [7]. As an al-
ternative, one can predict finer levels from coarser levels of the
pyramid. The other contribution is respect to the implementa-
tion of the steering coefficients required to rotate the Gaussian
derivatives. We identified these coefficients as a generalized bi-
nomial family and derived several properties on them. The ro-
tation is then performed efficiently by means of these discrete

sequences in a cascaded fashion. The application to local ori-
entation analysis was also discussed. We demonstrated how the
Cartesian coefficients can be mapped from or to multidirectional
coefficients.

The discrete MHT exhibits many advantages for adaptive
image processing.

1) It is efficiently computed. The binomial filters can be
performed with a time complexity in the order of

per sample [41].
2) It approximates the behavior of the continuous transform.

The binomial filters are a complete family perse [16] with
the unique property of being linked to the Gaussian family
through the scale parameter. The degree of approximation
is directly related to this parameter.

3) It allows to approximate the rotated MHT in a very effi-
cient way. The GBF defines a self-inverting discrete trans-
form on the partial derivation order that can be applied to
the discrete coefficients without explicitly rotating the bi-
nomial filters. A perfect reconstruction of the original co-
efficients is possible. The multidirectional case is not per-
fectly invertible, however, the reconstruction errors may
be neglected for some applications.

4) It can be inserted in a predictive scheme. The higher res-
olution coefficients, particularly the ones of low order
(e.g., ,2,3,4), can be approximately recovered from
the next coarser resolution level. This may be useful for
coding applications.

5) It can be applied to broad variety of image processing.
For instance, it can be efficiently applied to optic flow
estimation, where filtering plays an important role [52].
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Spatiotemporal filtering can be particularly time- and
memory consuming if done with inseparable filters. We
have demonstrated how directional derivatives along
rotated 3-D coordinates can be efficiently computed
through the GBF.

6) It may be linked to other efficient representations such as
quadrature mirror filters and wavelets [53].

APPENDIX I
TRANSFORM OF THE GBF

After developing the binomials in (36) we can write

with and . Then, replacing by while
fixing the sums limits we have

where the th forward difference operator is applied over
the index . From the -transform definition, it is clear that the
sequence after corresponds to the impulse response of the
GBF.

APPENDIX II
GBF FOR A DIFFERENCE ANGLE

We use the notation and for the sine and cosine functions
respectively and denote the argument by a subscript. Then, after
inserting the sine and cosine of the difference of two angles into
(36), we can write

where the last binomials in the right term are similar to those
appearing in the GBF transfer function and therefore they must
develop into

according to Appendix I. Therefore, we can write

where, once again, the binomials are expanded into the transfer
function of the GBF with the appropriate index. Therefore

(71)

follows from the transform definition. Furthermore, if we set
, the orthogonality property

(72)

results.

APPENDIX III
RELATION OF GBF TO TRIGONOMETRIC FUNCTIONS

The angular function defined by the GBF are readily related
to trigonometric functions. First, from the Euler identity and the
binomial expansion, we can write

where we have used the property (37a) in this last equality. Then,
by separation of the real and complex parts results in

(73a)



1252 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 5, MAY 2006

for , or

(73b)

for , from the real part, and

(74a)

for , or

(74b)

for , from the complex part.
On the other hand, if we replace the identities

into (36), we can simplify and take the inverse -transform to
find

where defines the symmetric bino-
mial family (SBF). Furthermore, since we can set
for non integer values of and the change of index from

to is feasible. Then, we can write this expansion
in the form of the finite Fourier series

(75a)

with the Fourier coefficients given by

(75b)

for .
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