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a b s t r a c t

Purpose: The left ventricle and the myocardium are two of the most important parts of the heart used for
cardiac evaluation. In this work a novel framework that combines two methods to isolate and display
functional characteristics of the heart using sequences of cardiac computed tomography (CT) is proposed.
A shape extraction method, which includes a new segmentation correction scheme, is performed jointly
with a motion estimation approach.

Methods: For the segmentation task we built a Spatiotemporal Point Distribution Model (STPDM) that
encodes spatial and temporal variability of the heart structures. Intensity and gradient information guide
the STPDM. We present a novel method to correct segmentation errors obtained with the STPDM. It
consists of a deformable scheme that combines three types of image features: local histograms, gradients
and binary patterns. A bio-inspired image representation model based on the Hermite transform is used
for motion estimation. The segmentation allows isolating the structure of interest while the motion
estimation can be used to characterize the movement of the complete heart muscle.

Results: The work is evaluated with several sequences of cardiac CT. The left ventricle was used for
evaluation. Several metrics were used to validate the proposed framework. The efficiency of our method
is also demonstrated by comparing with other techniques.

Conclusion: The implemented tool can enable physicians to better identify mechanical problems. The
new correction scheme substantially improves the segmentation performance. Reported results
demonstrate that this work is a promising technique for heart mechanical assessment.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Cardiac CT is currently one of the main types of radiological
images used for heart analysis. Image slices showing the structural
composition of the heart can be obtained with CT scanners [1]. The
continued improvement of multidetector CT scanners has
increased the potential of cardiac CT as clinical tool for heart
imaging [2]. Since heart failure is one of the main health problems
in developed and developing countries [3], tasks focused on car-
diac analysis are of main concern for physicians. Several benefits of
CT systems have been recognized to evaluate heart functions.
Quantification of the ejection fraction, left and right ventricular
functions, and wall motion evaluation are examples of typical uses
of cardiac CT data [4].

The natural movement of the heart implies that its mechanical
behavior must be evaluated as well. The spatiotemporal data
obtained from cardiac CT studies can be used in computer-aided
systems to evaluate the cardiac function, which has become essen-
tial over the past few years allowing faster assessments in the
diagnosis process [5]. Since the left ventricle is vital for the proper
functioning of the heart, it has become of major interest when
analyzing cardiac images. In cardiac CT heart is commonly scanned
at increments of 10% of the cardiac cycle providing a 4D dataset.

Shape extraction for volume measurement and motion esti-
mation are the most typical tasks for heart evaluation where
computer-based algorithms are extensively used [6–9]. In this
sense, development of new and most efficient algorithms,
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methods and mathematical models to analyze cardiac structures
in CT data are activities of great interest for researchers.

In a general sense, basic processes like segmentation and
optical flow estimation are primary steps before applying higher
processes like image interpretation. Cardiac CT sequences con-
stitute great challenges for segmentation and motion estimation
algorithms. A typical problem when working with medical images
is that they may vary considerably from one patient to another,
from an image processing point of view. These variations are
perceived as changes of contrast, size and geometrical shape.
Cardiac CT images do not scape from these kinds of problems.
Even though development of segmentation and optical flow esti-
mation algorithms imposes issues that researches have tried to
solve for several decades, the problem remains open. Recent
thorough reviews of segmentation techniques applied to cardiac
images [10,11] conclude that shape extraction in heart images
remains a very challenging task.

Active Shape Models (ASM) [12] have gained enormous popu-
larity during the last twenty years and have been extensively used
for modeling 2D and 3D data in cardiac imaging [13–15]. We opted
for this approach due to its ability to represent specific shapes of
an image. Problems regarding the contrast and shape variability
can be easily overcome with ASM-based algorithms. Related lit-
erature deals with active shape models as methods to analyze
cardiac images [14,16]. ASM have also been combined with other
methods with the aim of segmenting heart images [6]. Modifica-
tions of the original approach become necessary for improving the
segmentation performance in some cases when the training
samples are scarce [14]. However, issues of ASM are evident when
the number of training samples is small. It is therefore necessary
to design new strategies to overcome these problems.

The dynamic nature of the heart has motivated researchers to
design image tracking algorithms to process cardiac images
[17,9,18]. Tracking heart structures like the left ventricle or the
myocardial wall can be performed using optical flow estimation
methods which also allow computing the displacements of the
cardiac structures in a sequence of images. For this purpose we
used a differential approach defined in the Hermite transform (HT)
space. The HT is a bio-inspired human vision model that decom-
poses an image with a set of orthogonal functions defined by the
Hermite polynomials. Image patterns and structures relevant to
human vision perception such as oriented edges and textures can
be efficiently represented with the HT. The proposed optical flow
estimation approach using the HT allows defining local image
constraints and a multiresolution strategy within differential
scheme and are relevant in a perceptual sense as described in [8].

Our main goal is to build a tool that may help physicians evaluate
heart mechanical functions. In order to achieve our objective, we
implemented a framework with two main processes: (1) A seg-
mentation stage based on a statistical shape model and a new cor-
rection scheme, and (2) An optical flow estimation approach based
on the Hermite transform. For the first process we have designed a
novel correction method that substantially improves the segmen-
tation performance. The goal of the new correction method is to
refine the segmentation previously achieved with the statistical
shape model. It consists of a deformable scheme that combines
three image parameters: histogram, gradient and a binary pattern.
These parameters are locally computed for each point of the contour
of the segmentation. This work is entirely focused on analyzing
sequences of cardiac CT images (2D þ time). The algorithms are
specifically applied to the left ventricle because it is responsible for
some of the most vital functions of the heart. Cardiac CT studies are
analyzed using the original axial view. Nevertheless, the method can
be extended without major problems to other views. Although short
and long axis are the most accepted views used for cardiac analysis,
the original axial view is also very important for this task [19].
Combined results of both algorithms are presented. Vectors indi-
cating the motion of the left ventricle are jointly used with contours
of the segmentation. Results are evaluated with several image
sequences using quantitative and qualitative analysis.

The rest of the paper is organized as follows. Material used in this
work is described in Section 2. Methods are depicted in Section 3.
Here, segmentation and optical flow approaches are included.
Results and discussions are finally presented in Sections 4 and 5
respectively.
2. Materials

Our dataset consists of 40 sequences of cardiac CT images.
Selected sequences used for evaluation show the left ventricle at
half of the heart. The tomographic studies were acquired with a
SIEMENS 16-slice CT system at 120 kVp of tube voltage and
900 mA. The scanner is composed of 128 detectors and is syn-
chronized with the ECG signal. Each image has a size of 512�512
pixels, quantized to 12 bits per pixel. A contrast agent was also
applied to each patient. Each sequence is composed by 10 frames
showing the heart variation throughout the entire cardiac cycle
from diastole to systole.
3. Methods

3.1. Statistical model of shape

Active shape models are one of the most powerful segmenta-
tion tools for medical image analysis. They consist of a statistical
model that can be deformed within a specific range defined by a
training set [12]. Here, shapes are represented using discrete
points in the spatial domain. These points are commonly called
landmarks when they are used to depict anatomical structures.
Two main stages must be implemented in ASM algorithms:
(1) Training of the statistical model, and (2) Segmentation of new
images using the statistical model. An appearance model for each
landmark is also required.

The trained model encodes the principal modes of variation of
the landmarks. When these landmarks represent biological
structures, they can be categorized as anatomical, mathematical
and pseudo-landmarks [20]. In our model we used four mathe-
matical landmarks and several pseudo-landmarks (see Fig. 1).

3.1.1. Spatiotemporal point distribution model
We adopted the method in [21] to build the statistical model. N

samples, each one represented by r points, are used for training.
Each sample corresponds to an image sequence. Landmarks of all
the frames are concatenated in one shape vector. Let Si be the
vector describing shape i of the training set; it can then be
obtained by concatenating the Pij landmarks of the analyzed
object: Si ¼ Pi0; Pi1;…; Pi;r�1

� �> with i¼ 1;2;…;N and j¼ 0;1;…;

r�1. > is the transpose of the vector.
A training set previously marked is needed in order to build the

statistical model. For the manual segmentation, we created an
interactive graphic interface that enables the experts to mark the
contour of the left ventricle in the images. The application allows
selecting specific image sequences from the 4D cardiac CT to go
through with the annotation process.

A sequence of cardiac CT images includes temporal and spatial
information. In this method both types of information are repre-
sented using a unique shape vector. This shape representation is
commonly called spatiotemporal [18]. All the landmarks are con-
catenated beginning with the first frame of the sequence



Fig. 1. Landmarks of the shape. (a) Four mathematical landmarks, (b) Pseudo-landmarks (white points).
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(represented by the time t0) and ending with the last one (denoted
by the time variable t9). Each shape vector is then computed as:

Si ¼
�
xi0t0 ; yi0t0 ; xi1t0 ; yi1t0…; xiðn�1Þt0 ; yiðn�1Þt0 :…; xi0t9 ; yi0t9 ; xi19 ; yi1t9…;

xiðn�1Þt9 ; yiðn�1Þt9
�>where

�
xijtf ; yijtf

�
is the set of landmark coor-

dinates; tf (f ¼ 0;1;…9) indicates a frame of the sequence; i¼ 1;2;
…;N indicates a spatiotemporal shape, n is the number of points for
each frame of the sequence, and N is the number of sequences of the
training set. The statistical model used in this work is referred to as
Spatiotemporal Point Distribution Model (STPDM) [21] and its con-
struction can be achieved with the approach described in [12,22,21],
which will be shortly explained in this section.

The training set is firstly aligned. The Generalized Procrustes
Analysis GPA [20] is very efficient for this task. A final mean shape
S is computed using the aligned shapes Xi:

S ¼ 1
N

X
i

Xi ð2Þ

Principal Component Analysis (PCA) must be performed in
order to assemble the STPDM. The set of eigenvectors ek corre-
sponding to the highest eigenvalues λk are obtained with the aim
of coding the principal modes of variation for each landmark.
Hence, the STPDM is computed as:

S¼ SþMb ð3Þ
where M is the eigenvectors matrix and b is the shape parameter.
New shapes can be generated by varying the values of b. An
appearance model must also be built for each landmark during
training and is used to guide the STPDM in the segmentation
process. In order to strengthen the edge-based adaptation of the
algorithm, intensity and gradient profiles for each landmark are
used. Once the statistical model and the appearance parameters
have been calculated, new sequences can be segmented. With the
STPDM we code the position of one landmark not only with
respect to similar landmarks in the same frame, but also with
respect to the rest of the landmarks of the other frames. The
configuration of the spatiotemporal shape vector imposes an
additional constraints in the deformation process. The algorithm
followed in this work can be reviewed with more details in [22].

3.2. Segmentation correction algorithm

One of the main problems of ASM arises from the limited
number of training samples used to build the statistical model.
Ideally, the number of pre-segmented sequences needed to build a
very efficient PDM must be at least the number of landmarks used
to describe the shape sequence. The quantity of significant
eigenvalues obtained with PCA depends on the number of shape
samples (for N training samples, it is possible to obtain at least
N�1 significant eigenvalues). This causes that small details of the
analyzed object can not be segmented because the deformation
capabilities of the STPDM are poor. Davatzikos et al. [23] proposed
a hierarchical model to overcome the problem of lack of data in
the training set. They used a wavelet representation of the shape
vectors to build the statistical model at the level of sub-bands.
Substantively, the number of training samples is increased by
using this framework. Following with the same idea, Nain et al.
[24] extended the method to 3D data by using spherical wavelets.
Despite these approaches are efficient in managing the set of
training data, the performance depends on the number of
decomposition levels used for the model construction.

Instead of improving the ASM formulation, in this work we
focused our effort in correcting the segmentation errors by using a
simple but an effective method to find better local positions of the
shape landmarks and making them to be deformed independently
of the general shape parameters. We assume that the segmenta-
tion with the ASM algorithm has reached a stable condition, it
means that the active search has converged to a final solution in
which global characteristics of the object were found. Small details
of the object have to be segmented with our correction method. In
Fig. 2 we graphically outline the deformation process to be fol-
lowed after the ASM stage. Three image parameters are taken into
account for the final adaptation.

Our correction algorithm aims to adjust the discrete contour to
the boundaries of the object of interest. From Fig. 2 we can see that
there are several object boundaries in which the blue contour can
be deformed, however the correct one has to be identified.
Intensity and gradient information, as well as a binary pattern are
used as image features to adjust each landmark. In order to
maintain a smooth contour, these parameters are embedded into a
parametric active contour functional. The computation of these
parameters is explained below. Moreover, better positions for the
landmarks are found along the normal direction. Because we
characterize the left ventricle boundaries using local edge and gray
level features, we applied a Gaussian filter to each input image of
the complete sequence. It allows improving the process of feature
extraction by describing the boundaries of the analyzed object.

3.2.1. Binary pattern
The first parameter used for edge characterization is a binary

pattern that codes local information around each landmark. The
goal is to find the relationship between a point and its neighbor-
hood. Intensity points are sampled and compared with the ana-
lyzed landmark. For landmark j of frame tf, we define the binary



Fig. 2. Illustration of the deformation process carried out after the ASM segmentation. The blue line is the contour which is adapted to find the edges of the object (black
lines). Since ASM algorithms lack of strong capacity of deformation when the STPDM is built with few training samples, small details are difficult to segment (see left image).
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 3. Example of the binary pattern BP for a specific configuration. Red points are located at a distance m and angle β with respect to the tangent line from the blue point u
which is the analyzed landmark. Q and I are the intensities of the red and blue points respectively. Depending on the intensity level, the difference Q� I can be either positive
or negative. For this example, we consider that intensity of the white region is higher than the dark one. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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pattern as:

BPj;tf ¼ Hd Qj;tf m;β
� �� Ij;tf

� �n o
ð4Þ

with 0r Q ; Ið ÞrGmax;mAR;0rβr2π. Here, Hd(y) is the Heavi-
side function, Gmax is the maximum image intensity, Ij;tf is the
intensity of the analyzed landmark, and Qj;tf ðm;βÞ is the intensity
at a distance m and angle β of the analyzed landmark. The pattern
is therefore a set of binary elements obtained with a specific
configuration given by the parameters m and β. Fig. 3 illustrates an
example of a particular configuration used to obtain the binary
pattern.

A reference binary pattern BPr for each landmark is also nee-
ded. This must be previously trained. Because the objective is to
find better positions for the landmarks, the BP is computed for
several points in the normal direction and afterwards compared
with the corresponding trained reference. A similarity metric
designed for binary data is used for comparison purposes. We
selected the Jaccard distance JD since it constitutes an efficient
method to compare binary data [25]. Let BPr and BPXn be two sets
of binary patterns where each element corresponds to an indivi-
dual outcome. The Jaccard distance between them is computed as:

JDXn
¼ 1� DJ11

DJ01þDJ10þDJ11

� 	
j;tj

ð5Þ

where DJ01 is the number of elements being 0 in BPr and 1 in BPXn .
DJ10 is the number of elements being 1 in BPr and 0 in BPXn . DJ11 is
the number of elements being 1 in BPr and 1 in BPXn .

Here, BPXn is the binary pattern computed for a point X in the
normal direction of the landmark ðj; tf Þ. This metric ranges within
the interval ½0;1�, being 0 the value obtained when both patterns
are equal. The binary pattern helps identify the side of the object
which a particular landmark belongs to.

3.2.2. Intensity parameter
The intensity parameter corresponds to the second image fea-

ture used to characterize the boundaries of the analyzed object.
Here, a local histogram LH is associated with each landmark.
Similarly, we need to train a local histogramwhich is subsequently
used as reference in the final deformation process. Then, for each
point in the normal direction of the landmark ðj; tf Þ we compute
the local histogram LHXn and is compared with the reference LHr.
As metric of comparison we used a vector space distance [26]
defined as:

HDXn ¼
P

iLHXn ðiÞLHrðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iLHXn ðiÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iLHrðiÞ

p
 !

j;tf

ð6Þ

where i indicates a bin of the histogram. When both histograms
are very similar the distance HD approximates to 1. This parameter
maintains the landmarks in the boundary of the left ventricle,
preventing the deformation to other close boundaries.

3.2.3. Gradient parameter
Because the gradient is the standard operator to find edges

inside an image, it is included as the third parameter in our seg-
mentation correction algorithm. Therefore, the image gradient is
locally computed and normalized for each landmark of the dis-
crete contour. It is referred to as GI.
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3.2.4. Embedding the parameters into an active contour
In order to provide a transparent way to deform the landmarks,

we embedded the parameters as image energies into a parametric
active contour functional. This also allows controlling the defor-
mation through the internal energy of the active contour. We
implemented a Greedy algorithm [27] which is more suitable for
discrete approximations. The energy of the active contour is
written as:

E Xð Þ ¼ μEint Xð ÞþEima Xð Þ ¼ μEint Xð ÞþλJD Xð Þþα 1�HD Xð Þð Þþβ 1�GI Xð Þð Þ
ð7Þ

where μ; λ;α and β are weight values that control the contribution
of the parameters; Eint and Eima correspond to the contour and
image energies respectively; XAR2.

3.3. Differential optical flow estimation methods

The optical flow estimation is calculated in those situations
where the displacement or correspondence of pixels between two
images is required, e.g., image registration and reconstruction
applications, video compression, motion–based segmentation, and
medical imaging.

The optical flow is frequently considered as the distribution of
“apparent velocities” that an object may experiment in an image
sequence [28]. In most cases, the optical flow is computed by
quantifying the changes of intensity of the objects in the scene.
Besides, the representation of the optical flow is through a vector
field that measures pixel displacements.

The classical differential optical flow methods assume that the
intensity values of the objects keep unchanged in two consecutive
frames of an image sequence LðX; tÞ. This assumption was intro-
duced in [29] and is commonly known as the Constant Intensity
Constraint:

LðXþW ; tþ1Þ�LðX; tÞ ¼ 0 ð8Þ
where X ¼ ðx; y;1Þ> is the position of the pixel, W≔ u; v;1ð Þ>
represents the horizontal and vertical pixel displacements
respectively between two images at instants t and ðtþ1Þ.

A Taylor expansion is used if small displacements are assumed.
Then, the Optical Flow Constraint is calculated as:

uLxþvLyþLt ¼ 0 ð9Þ
where Lx, Ly, Lt are the derivatives of the intensity image L(X) w.r.t
x, y directions and the time variable t.

It is not possible to determine the displacement components u
and v if only the Constant Intensity Constraint is used. This is
commonly known as the Aperture Problem where only the normal
components of the motion can be obtained [29]. Therefore, we
need other constraints to fully calculate the optical flow. Recent
differential optical flow methods have proposed to incorporate
other types of constraints to overcome the aperture problem and
increase accuracy of the obtained displacements. Here, several
strategies such as using multiresolution algorithms, considering
spatial coherence and including local restrictions are among the
most accepted solutions [30].

Horn and Schunck [29] proposed the Smoothness Constraint
which considers that the flow is smooth. Thereby, the optical flow
in this type of methods can be estimated through an iterative
process that minimizes the following energy functional:

EHSðWÞ ¼
Z
Ω

W > ∇3L∇3L
>� �

Wþαj∇W j 2� �
dX ð10Þ

where ∇3L ≔ Lx; Ly; Lt
� �> , Ω is the image domain and α is a

smoothness parameter.
The main disadvantage of the uniform smoothness in Eq. (10) is

that it excessively smoothes the edges in the flow. A flow-driven
smoothing approach can be used to avoid this problem in texture
images [31]:

EIF ðWÞ ¼
Z
Ω

W > ∇3L∇3L
>� �

WþαΨ j∇uj 2þj∇vj 2� �� �
dX ð11Þ

where Ψ s2
� �

is a smooth function convex in s. In most cases the
constant intensity constraint and the small displacement
assumption of Eqs. (8) and (9) are not satisfied, as in the case of CT
image sequences. Therefore, an additional term independent to
intensity changes is required, e.g., the image gradient. None-
theless, multiresolution schemes can be adopted with the aim of
processing large displacements.

A method (OF–Warp) that takes into account the variability of
intensities and the large displacements of the objects was pre-
sented in [32]. The technique is described with the following
functional:

EWarpðWÞ ¼
Z
Ω�½0;t�

Ψ j LðXþWÞ�LðXÞj 2þ�
γ j∇LðXþWÞ

�∇LðXÞj 2� dXþα
Z
Ω�½0;t�

Ψ j∇3uj 2þj∇3vj 2
� �

dX ð12Þ

where ∇LðXÞ is the image gradient, γ is a weight parameter and
Ψ s2
� �

is the modified ℓ1n–norm [33,30]:

Ψ s2
� �¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2þϵ2Þ
q

ð13Þ

The values of ϵ are in the order of 1� 10�3 such that Ψ s2
� �

is
differentiable in s¼0 [32].

Another interesting approach to calculate the optical flow in a
sequence considers the property of mass conservation [34,35].
Eq. (14) holds that the mass of a fluid per unit time with density ρ
that leaves a volume V with velocity v is equal to the mass of the
surface that encloses the volume:

∂ρ
∂t

þdivðρvÞ ¼ 0 ð14Þ

In a 3D sequence, the density of fluid ρ is related to the
intensity value Lðx; y; zÞ and the velocity v of the fluid to the dis-
placement of the voxels ðu; v;wÞ. The equation of mass-
conservation optical flow is then written as:

∂L
∂t

þdivðuLþvLþwLÞ ¼ 0 ð15Þ

From Eq. (15), if only displacement components u and v are
considered, we obtain an extended version of the optical flow
constraint equation (Eq. (9)), commonly known as the Extended
Optical Flow Constraint which can be applied to areas that satisfy a
total intensity invariance [36]. This method has been previously
applied to cardiac PET volumes [35] with promising results.

3.3.1. Optical flow estimation using the steered HT (OF-SHT)
The optical flow method described by Eq. (12) incorporates

constant constraints based on local image features such as inten-
sity and gradient. One of the purposes of this work is to find an
efficient method to represent the image features. We have opted
for a bio-inspired model based on the Hermite transform (HT),
which can perform a polynomial decomposition using a multi-
resolution scheme [37,38]. The importance of this image model is
that it can emulate the behavior of receptive fields of the human
visual system [39,40]. The HT can be easily obtained by convolving
the input image Lðx; yÞ with the analysis filters Dm;n�m [40], and
then subsampling at positions ðx0; y0Þ. The HT is defined as:

Lm;n�mðx0; y0Þ ¼
Z 1

�1

Z 1

�1
Lðx; yÞDm;n�mðx0�x; y0�yÞ dx dy

n¼ 0;1;…;1 m¼ 0;1;…;n ð16Þ
where Lm;n�mðx; yÞ are the cartesian Hermite coefficients, m and
ðn�mÞ are the analysis order in the directions x and y, ðx0; y0Þ
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represents an image position and Dm;n�mðx; yÞ ¼ Gm;n�mð�x;

�yÞv2ð�x; �yÞ. Here, vðx; yÞ ¼ 1
σ
ffiffiffi
π

p exp � x2 þy2ð Þ
2σ2

� �
is a Gaussian

window, Gm;n�mðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nm!ðn�mÞ!

p Hm
x
σ

� �
Hn�m

y
σ

� �
represents the

polynomials used for the decomposition and Hn
x
σ

� �
corresponds to

the generalized Hermite polynomials:

Hn
x
σ

� �
¼ ð�1Þnexp � x2

σ2

� 	
dn

dxn
exp � x2

σ2

� 	
ð17Þ

A steered version of the HT can be obtained by rotating the
cartesian Hermite coefficients Lm;n�mðx; yÞ using the angular
functions gm;n�mðθÞ:

lm;n�m;θðx0; y0Þ ¼
Xn
k ¼ 0

Lk;n�kðx0; y0Þ
� �

gk;n�kðθÞ
� � ð18Þ

where gm;n�mðθÞ is the directional selectivity of the filters [38]:

gm;n�mðθÞ ¼
ffiffiffiffiffiffiffiffiffiffi
n
m

� �r
cosm θ

� �� �
sin n�m θ

� �� � ð19Þ

The steered Hermite coefficients lm;n�m;θðx; yÞ allows adapting
the analysis process to the local content of the image, e.g., using
directional Gaussian derivatives filters [41].

The local orientation angle θ is estimated using the criterion of
maximum energy. Once the cartesian Hermite coefficients are
rotated, we obtain the steered Hermite transform (SHT).

In order to illustrate the steering property of the HT, Fig. 4
(b) shows the SHT obtained from the HT of Fig. 4(a).

In this work, we used the coefficients of SHT for the local
constraints of the optical flow functional (see [8] for more details).
The proposed functional includes in the data term a constant
intensity constraint using the zero order coefficient L0;0 and the
steered Hermite coefficients ln;θ up to order N as constant high
order local constraints [32]. The last term allows dealing with
intensity changes in the image sequence where the constant
intensity constraint fails. For the smoothness term, which allows
recovering the flow in homogeneous areas of the image, a flow-
driven regularizer [31] was used. Thereby, a bio-inspired energy
functional that uses the SHT to extract relevant perceptive features
Fig. 4. (a) Cartesian Hermite coefficients and (b) the steered Hermite coefficients for N¼
is defined as follows:

ESHT ðWÞ ¼
Z
Ω
Ψ L0ðXþWÞ�L0ðXÞ
�� ��2þ�

γ
XN
n ¼ 1

ln;θðXþWÞ� ln;θðXÞ
�� ��2 !!

dXþα
Z
Ω
Ψ j∇uj 2þj∇vj 2� �

dX ð20Þ

where γ determines the participation of the constant intensity and
high order features constraints, N is the maximum order of the
polynomial expansion, Ψ is the modified ℓ1n–norm of Eq. (13) and
α is a smoothness weight which affects the flow smoothing given
a smoother flow for large values.

The Euler–Lagrange equations are obtained by minimizing
Eq. (20). An outer fixed point iteration process and a successive
over-relaxation (SOR) iteration approach are performed to com-
pute the solution of the equations. The non-linear terms are solved
by using a 1st order Taylor expansion after the minimization of the
functional.

Finally, a multiresolution strategy is carried out in coarse levels
to compute small displacements. Then, the solution is propagated
to the finer levels using a Gaussian pyramid.
4. Experiments and results

4.1. Segmentation

In this section we present results of the segmentation stage. To
carry out the experiments we configured the algorithms as fol-
lows. A total of 50 points were used to represent the left ventricle
in each frame of the sequence. It means that the spatiotemporal
shape was built with 500 landmarks. A maximum of 25 iterations
were enough to reach a stable solution in the ASM stage. Similarly,
5 iterations were used for the correction algorithm. The algorithm
was initialized using the mean spatiotemporal shape. It was
manually put very close to the object of interest. The first frame of
the sequence was taken as reference to initialize the algorithm.
With the aim of maintaining a standard experiment, we used the
same initialization for each proof. The STPDM was trained using
2 (n¼ 0;1;…;N and m¼ 0;1;…;n) of a cardiac CT image at 20% of the cardiac cycle.
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35 samples. The complete dataset was validated using the leave-
one out method.

The correction algorithm is executed when the ASM algorithm
has converged. It was applied to each frame separately. The seg-
mentation correction algorithm uses several weight parameters
that need to be configured. Energies of the correction scheme were
normalized to ½0;1�. Although the weight parameters are difficult
to select and depends on the particular image sequence, we
experimentally found that good segmentation results for our
dataset are achieved with μ¼ 0:3; λ¼ 0:3;α¼ 0:2 and β¼ 0:2.

One of the main advantages of statistical shape models is that
they can perform efficient segmentations with noisy data. Since
PDM can only deform in the range specified by the training set, it
Fig. 5. Segmentation results for three frames at different cardiac phases: 0%, 30% and 60
(f) correspond to sequence 2. The red contour is the manual segmentation, the green con
is the result using the classical ASM method. (For interpretation of the references to co

Fig. 6. Dice Similarity Coefficient (DSC) for 16 sequences. The coefficients are shown for 3
image 3 is at 80%.
can achieve acceptable results even in the presence of noise.
Nonetheless, the correction algorithm can be affected by noise in
the image because it freely deforms the contour points without
taking into account the shape of the object. In order to reduce the
effect of the image noise we previously applied a Gaussian filter to
the sequence of images.

Qualitative and quantitative analysis are exposed in this sec-
tion. The assessment is addressed by comparing with the manual
segmentation. With the aim of verifying the efficiency of the
proposed approach, we compared the obtained results with the
classical ASM [12] which was applied frame by frame.

Fig. 5 illustrates results of the segmentation obtained for
6 frames extracted from 2 different sequences of the dataset. For
%. Results are illustrated for two sequences: (a)–(c) correspond to sequence 1. (d)–
tour is the segmentation obtained with the proposed method, and the blue contour
lor in this figure caption, the reader is referred to the web version of this paper.)

frames of each sequence. Image 1 is at 0% of the cardiac cycle, image 2 is at 40% and



Table 1
Point-to-curve distance averaged for all the sequences. Results are presented for
the complete cardiac cycle. The proposed correction algorithmwas configured with
the following weight values for the parameters: μ¼ 0:3; λ¼ 0:3; α¼ 0:2 and β¼ 0:2.

Frame Correction algorithm STPDM Classical ASM
(Cardiac phase) mean7std (mm)

Frame 1 (0%) 1.932870.5300 2.43670.572 2.91270.669
Frame 2 (10%) 2.139770.4655 2.68470.574 3.33970.835
Frame 3 (20%) 2.300370.7580 2.97270.878 3.75071.153
Frame 4 (30%) 2.052970.5877 2.96570.714 3.90770.928
Frame 5 (40%) 2.081470.5864 2.92770.713 4.29271.199
Frame 6 (50%) 2.161370.7988 2.86471.049 3.88471.070
Frame 7 (60%) 1.920870.4868 2.47170.769 3.32670.983
Frame 8 (70%) 1.922170.4621 2.38270.592 3.11570.719
Frame 9 (80%) 1.952870.3579 2.48670.748 3.25170.702
Frame 10 (90%) 1.849370.3201 2.45270.679 3.23670.973
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visualization purposes, we used linear interpolation to draw con-
tinuous contours. Images in Fig. 5(a), 5(b) and 5(c) were taken at
0%, 30% and 60% of the cardiac cycle respectively.

Red, green and blue contours correspond to manual annotation,
segmentation with the proposed method and segmentation with
the classical ASM method respectively. As can be seen, the best
results were reached with our method. This behavior is similar for
the rest of the sequences of our dataset.

Two metrics were used to provide quantitative results of the
segmentation: the Dice Similarity Coefficient (DSC) and the aver-
age point-to-curve distance. These metrics were calculated for
each frame of the sequences. Fig. 6 presents the DSC obtained for
16 sequences using our segmentation approach. Results for three
frames of each sequence at different cardiac phases are visualized.
The performance reached for the proposed segmentation scheme
is over 90% in most cases. This behavior is repeated for the rest of
the sequences. A maximum DSC of 0.9855 and a minimum of
0.8141 were obtained, which represent the best and worst result
respectively. Fig. 7 visualizes the areas of the best and worst result
obtained. These areas correspond to regions enclosed by the
contours. In the binary images, the white region is the object of
analysis (left ventricle) and the black part is the background. The
error region obtained by comparing the segmentation of the
proposed method against the manual one is shown as well. This is
the result of computing the difference between both binary ima-
ges: Ierr ¼ absðIm� IaÞ, where Im and Ia are the corresponding binary
images obtained through with the manual segmentation and the
proposed method respectively, Ierr represents difference where the
black part is the overlapped region and the white region is
the error.

We are also interested in evaluating how the correction algo-
rithm improves the results of the STPDM. We then compared both
stages of the segmentation method. In Table 1 the point-to-curve
distance values are reported for the proposed correction method,
Fig. 7. Areas of the segmentation obtained for the best and worst
the STPDM and the classical ASM. Results are presented for all 10
frames of the spatiotemporal shape and averaged for all the
sequences. It can be seen that the correction method improves the
segmentation with respect to the STPDM in all cases.

Fig. 8 visualizes the final improvement carried out by the cor-
rection algorithm. Two images at different cardiac phases are
evaluated. It can be seen that small details are subsequently seg-
mented with our correction algorithm.

4.2. Optical flow estimation

Fig. 9 shows the optical flow results for a frame of the Dime-
trodon sequence to test the performance of the OF-SHT Method.
This test sequence is available from the web site http://vision.
middlebury.edu/flow/data/ and it is part of a database used for
evaluation of current optical flow methods.

Because of the presence of high order features constraints in Eq.
(20), we tested the performance of the proposed OF-SHT method in a
result, considering individual frames of the complete dataset.

http://vision.middlebury.edu/flow/data/
http://vision.middlebury.edu/flow/data/


Fig. 8. Correction scheme applied to two images at phases 40% and 90% of the cardiac cycle. (a) and (b) Results for image 1, and (c) and (d) Results for image 2.

Table 2
Average angular errors (AAE) computed for the Dimetrodon
sequence with several standard deviations σn of
Gaussian noise.

Gaussian noise OF-SHT
σn AAE7std(°)

0 2.72877 5.8332
10 7.4991710.3342
20 9.8038714.1690
40 25.8927732.4171
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first experiment using the Dimetrodon sequence. Zero mean Gaussian
noise with different standard deviations (σn) has been added. We
simulated the noisy image using a normal pseudorandom number
generator which was subsequently added to the original image. For
gray level images, σn represents intensity values. In our experiment it
was set to 0, 10, 20 and 40. In Table 2 we compared the average
angular error (AAE) of the OF-SHT method for different noise levels
using optimized parameters γ, α and N. We can see that the OF-SHT
method presents good results in images with Gaussian noise with
standard deviations smaller than 40.

The angular error (AE) was computed as in Barron et al. [42]:

AE¼ arccos u!� v!
� �

ð21Þ

where � is the dot product, u!¼ ðu0;u1Þ and v!¼ ðv0; v1Þ denote
the true flow and the estimated flow, respectively.

In the second experiment, we evaluated the robustness of the
OF-SHT method w.r.t the parameter variations using the Dime-
trodon sequence. We computed the AAE after varying the max-
imum order N of the Hermite expansion, the smoothness para-
meter α, and the weight parameter γ.

In the solution of the energy functional, α is the weight value of
the smoothness term. It allows filling the areas in uniform regions
using averages from structures with spatial high frequencies (i.e.
edges). Large values of α lead to a smoother field flow and small
values of α penalize the correct optical flow solution.

We computed the optical flow for several values of N, α and γ to
analyze the behavior of the AAE. We then used the following values:
N¼ 4;5;6;7;8;9, α¼ 50;100;150;200 and γ ¼ 300;600;900;1200.
Fig. 10 shows a 4D plot with N, α and γ corresponding to x, y and z axis
respectively. The AAE is coded using colored elements which repre-
sent different parameter combinations.

From Fig. 10 we can observe that the best results for the AAE
were obtained for values of N¼ 5;6, α between 100 and 150 and
values of γ from 600 to 900. The smallest value was obtained for
N¼5, α¼ 100 and γ ¼ 600. In sequences of cardiac CT, the inten-
sity of motion varies from patient to patient and it is also different
for each time of the cardiac cycle. The maximummotion is reached
in the systole with the contraction of atria and ventricles (0% to
30%). The minimum heart motion is observed at the end of the
systole and at the mid-to-end of the diastole phase [43].

In this section, we also present the resulting optical flow esti-
mation for two cardiac CT sequences (see Fig. 11). The first
sequence was analyzed at 20% and 30% of the cardiac cycle (sys-
tole) to view the strongest cardiac movement. The second
sequence was processed at 50% and 60% to view the movement of
relaxation during diastole. In order to compare our algorithm, two
optical flow results are shown. The first one was obtained by
applying the method of Papenberg et al. [32] and the second using
the proposed OF-SHT method (Eq. (20)).

In order to evaluate the optical flow estimation performance,
we used an image reconstruction approach. Given an image and its
vector field at time t, we compute the image at time tþ1 using a
forward reconstruction algorithm [44]. Then, the Root Mean
Squared (RMS) error for both methods was calculated using the
original image at time tþ1 and the reconstructed image. The RMS
is defined as:

RMS error¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x
P

y Lðx; y; tþ1Þ� L̂ðx; y; tþ1Þ
� �2

M�N

vuut
ð22Þ

where Lðx; y; tþ1Þ and L̂ðx; y; tþ1Þ are the original and recon-
structed images of size M�N at time tþ1.

In Fig. 12 we show the forward reconstruction results at 20% and
30% of the cardiac cycle for one sequence, and at 50% and 60% for a
second sequence respectively. The first row corresponds to the
slices at 20%, 30%, 50% and 60% of the cardiac cycle, and the vector
field representing the motion of the left ventricle. The second row
shows the forward reconstruction using the two optical flow esti-
mation methods. The third row shows the absolute error between
the true second image and the reconstructed image using the
displacement vectors of the second row.

For a deeper analysis, the RMS error throughout the cardiac
cycle for 10 sequences was performed. The RMS error was calcu-
lated in a region near to the manual annotated left ventricle. In
Fig. 13 we show a comparison of the reconstruction performance
using both methods. Here, we note that the RMS error is smaller
using the OF-SHT approach.

For the cardiac CT images we computed the absolute error
between the reconstructed and reference images using the same
parameter variations employed in the experiment depicted in
Fig. 10 and we also obtained satisfactory results.



Fig. 10. Graphical representation of the AAE using the OF-SHT approach with variations of N, α and γ.

Fig. 9. (a) Frame 10 of the Dimetrodon sequence. (b) Ground truth of the optical flow field. (c) Obtained optical flow field using the OF-SHT method. (d) Reference
color wheel.
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4.3. Combining segmentation and motion estimation of the left
ventricle

The objective of this work is to develop a method for the
analysis of cardiac CT image sequences. This application can help
physicians evaluate qualitatively several left ventricle parameters
such as volume, myocardial deformation, ejection fraction and
others [3]. Although the main effort is made on the left ventricle,
the rest of cavities are also very important for the cardiac eva-
luation. In this application the segmentation is the first step and is
used to isolate the left ventricle for further analysis. Optical flow
vectors are only shown on the contour of the segmentation. This
constitutes an efficient way to assist physicians to identify some
failures of the cardiac function.

Fig. 14 illustrates the vector field for two sequences of the
dataset. Four frames of each sequence are shown. The frames show
the heart at 0%, 30%, 60% and 80% of the cardiac cycle. Vectors of
the four frames were computed using images of the phases 0–10%,
30–40%, 60–70% and 80–90% respectively. The set of vectors in the
first image pointing inwards the left ventricle indicates the
beginning of the contraction or systolic cycle, meanwhile the last
image outlines the end diastolic or relaxation period with the
vector field pointing outwards. A complete visualization and a
subsequent analysis of the whole cardiac cycle can be carried out
by using this technique in the complete dataset. This method can
then be used as a tool to assess the heart mechanical function.

4.4. Technical implementation and run-time

Both algorithms, segmentation and optical flow estimation,
were implemented in Matlab using a 2.1 GHz machine composed
of 12 processors. The machine has 16 GB of memory. Each image



Fig. 11. Optical flow results for two sequences computed at phases 20–30% and 50–60% using [32] (OF) and the proposed method ðOF�SHTnÞ. (a) and (b), and (e) and
(f) correspond to sequence 1 at 20–30%. (c) and (d), and (g) and (h) correspond to sequence 2 at 50–60%.
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sequence was selected from a 4D cardiac CT study with 10 volumes
which describes the complete heart cycle. Sequences are then
composed of 10 images with a size of 512�512 pixels.

The segmentation algorithm was configured to run until
reaching 25 iterations for the ASM and 5 iterations for the cor-
rection stage. The run-time for each iteration in the segmentation
algorithm was about 2.8 s for the ASM stage and 15.5 s for the
correction method.

The proposed OF-SHT algorithm uses a convolution operator to
compute the Hermite coefficients. The run-time was 40 s using 10
levels of decompositions, 5 outer fixed point iterations and 10 SOR
iterations. To improve performing time, a fast HT (FHT) can be
used [38] as future work.
5. Discussion and conclusions

We implemented a framework for the analysis of cardiac CT
sequences using a shape extraction method and an optical flow
estimation approach. The left ventricle was used as object of
interest. We firstly performed the corresponding segmentation
using a STPDM which consists of a trained statistical model that
codes spatial and temporal information of the sequences. Errors of
the segmentation were subsequently corrected using an algorithm
that incorporates three image parameters for edge characteriza-
tion. These parameters were embedded as image energies into an
active contour model. Afterwards, an optical flow estimation
method was calculated using a bio-inspired differential approach.
Combining the boundaries of the segmented object and the dis-
placements vector field obtained from the optical flow estimation
technique enables physicians to carry out a better identification of
mechanical problems. The proposed framework was validated
with several sequences of cardiac CT images and compared with
other techniques.
Results were individually evaluated for each frame of the
sequence using several metrics. In general, the lowest perfor-
mance achieved in our segmentation method was obtained for
frames at half the cardiac cycle. These frames are acquired at the
end of the contraction phase, i.e., when the heart is bombing flood
to the body. The bar diagram (Fig. 6) with the DSC analysis and the
metric distance reflect this interesting behavior. The poor defini-
tion of edges, the low contrast and the irregular shape of the left
ventricle are causes for this result. Moreover, this can also be a
consequence of the presence of the left atrium in the images at
this cardiac phase when working with the original axial view of
tomographic studies. The high irregularity of the structures found
in this part of the cardiac cycle makes the segmentation task more
complicated.

In Table 1 we present comparative results of the two stages of
the segmentation: STPDM and correction algorithm. As can be
seen, the segmentation is substantially improved with our cor-
rection scheme. In all reported cases, the segmentation error is
reduced when applying the correction method. Because the cor-
rection method follows the segmentation of the statistical model,
the level of correction naturally depends on the performance
initially achieved with the STPDM. From Fig. 8 and Table 1, it can
be noted that bigger corrections are reached at the contraction
phase of the cardiac cycle. It is a logical finding because the per-
formance of the STPDM is lower at this phase. Therefore, fine
details of the object boundaries are efficiently segmented with the
proposed correction scheme, reducing the segmentation errors
previously obtained with STPDM. Selection of optimal weight
parameters is a difficult task. Since each image sequence presents
different characteristics of contrast and noise, values of the para-
meters may require a specific configuration for each example. In
this work we set the weight parameters experimentally. However,
finding automatic ways to select them could be an interesting
future contribution. In cases when the contrast of the images is
poor and the noise is very high, it is more convenient to set higher



Fig. 12. Forward reconstruction (FR) results for sequences 1 and 2 at phases 20–30% and 50–60% of the cardiac cycle. First row: Images at 20–30% and 50–60%, and vector field
obtained using the OF-SHT approach (OF-SHTn). Second row: forward reconstruction using the optical flow approach of [32] (FR) and the OF-SHT method FRn . Third row:
Absolute error between the reconstructed image and the true second image using both methods. (a) and (b), (e) and (f), and (i) and (j) correspond to sequence 1. (c) and (d),
(g) and (h), and (k) and (l) correspond to sequence 2.

Fig. 13. RMS error (axis y) of the forward reconstruction using [32] (blue dashed line) and the OF-SHT method (red solid line) for 10 sequences of the dataset. Axis x indicates a
cardiac phase. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

L. Barba-J et al. / Computers in Biology and Medicine 69 (2016) 189–202200



Fig. 14. Combined results obtained with the segmentation and optical flow estimation methods for two sequences at 0%, 30%, 60% and 80% of the cardiac cycle. (a)–
(d) correspond to sequence 2. (e)–(h) correspond to sequence 33.
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values to the parameter that attempts to preserve the shape, as
well as to the local intensity parameter. In the correction seg-
mentation algorithm, these weight parameters correspond to μ
and α respectively. When edges and contrast are well defined, it is
preferable to give more relevance to the energies that act upon the
edge features directly (λ and β).

The vector field was obtained using a differential approach
incorporated into the HT domain. Several local restrictions based
on the SHT, non-linear constraints and a multiresolution approach
for large displacements were adopted. Quantitative analysis was
used to evaluate the performance. The forward reconstruction
error obtained for the frames of the sequences shows better gen-
eral performance with the proposed method. From Fig. 13 is clear
that the best results (lowest error) were achieved during the
relaxation phase of the cardiac cycle. This part of the cardiac phase
presents smaller and more regular changes of the left ventricle
motion. The worst result was consequently obtained in frames at
the beginning of the systolic cycle.

The vector field in the optical flow estimation method is
computed using the steered Hermite coefficients. Since the coef-
ficients have been steered using the direction of maximum energy,
the image noise is automatically filtered with this operation. It
means, the steering property of the HT is indirectly filtering the
image noise.

The proposed application, in which the vector field is visualized
on the contour that encloses the left ventricle, is a promising
technique for mechanical assessment of cardiac structures. Even
though this technique was applied to the left ventricle, in future
works it can be extended to others objects and others
anatomical axes.
Since heart is a volumetric organ whose natural movement
occurs in a 3D space, the logical task should be performing 3D
evaluations using both segmentation and motion analysis. In the
case of the segmentation, volumetric analysis can be provided by
running the proposed algorithm slice by slice on each cardiac
volume and then building the 3D model from the segmented sli-
ces. In the case of motion estimation, the task is more complex
since it implies to analyze more variables in order to achieve
accurate 3D vector field estimations. On the other hand, even
though the heart is a structure that moves in a 3D space, most
physicians are still evaluating the heart mechanical function using
image sequences. Nevertheless, the future trend aims at providing
3D cardiac motion analysis [3] which also implies training physi-
cians to diagnose based on moving volume and surface models. As
future work, we propose to extend this framework to provide 3D
evaluations.
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