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Abstract 
This research presents a novel way of labelling human activities from the skeleton output com-
puted from RGB-D data from vision-based motion capture systems. The activities are labelled by 
means of a Compound Hidden Markov Model. The linkage of several Linear Hidden Markov Models 
to common states, makes a Compound Hidden Markov Model. Each separate Linear Hidden Mar-
kov Model has motion information of a human activity. The sequence of most likely states, from a 
sequence of observations, indicates which activities are performed by a person in an interval of 
time. The purpose of this research is to provide a service robot with the capability of human activ-
ity awareness, which can be used for action planning with implicit and indirect Human-Robot In-
teraction. The proposed Compound Hidden Markov Model, made of Linear Hidden Markov Models 
per activity, labels activities from unknown subjects with an average accuracy of 59.37%, which is 
higher than the average labelling accuracy for activities of unknown subjects of an Ergodic Hidden 
Markov Model (6.25%), and a Compound Hidden Markov Model with activities modelled by a sin-
gle state (18.75%). 
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1. Introduction 
In daily life, human beings perform activities to accomplish diverse tasks at different times throughout the day. 
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These activities are made of one or several simpler actions which are performed at different times, and these 
simple activities have a chronological relationship to each other. 

The motivation for this work is to analyse human behaviour by labelling the activities which are performed by 
a person. Human activity has the properties of being both complex and dynamic, since a person can be 
performing any action, which can be a pose or a motion, and change to another action. 

The scope of this work is about presenting a method for labelling human activity. The pattern classification 
algorithm for the skeleton data uses an euclidean measure. The learning model uses a single large Hidden 
Markov Model, or Compound Hidden Markov Model, to tell the activities of a person from the output of the 
motion analysis. 

The contribution of this work consists of two parts. Firstly, we present a novel way of computing features of a 
skeleton using distances between certain joints of both upper body and lower body. Secondly, we propose a 
Compound Hidden Markov Model for labelling cyclic and non-cyclic human activities; the Compound Hidden 
Markov Model is made of smaller Hidden Markov Models which connect to common states. 

1.1. Activity Recognition   
The taxonomy of human activities depend on the complexity of the activity [1]. A gesture is an elementary 
movement of a body part. Some examples of gestures are “waving an arm” or “flexing a leg”. Gestures are the 
building blocks for meaningful description of the motion of a person. An action is an activity performed by a 
single person, which is made of several gestures with chronological structure. The actions may involve 
interaction with objects. Some examples of actions are “walk” or “drink coffee”. An interaction is a human 
activity involving two or more persons and/or objects. For example, “two persons dance waltz” is an interaction 
between two persons, or “one person delivers a briefcase to other person” is an interaction between two persons 
and an object. A group activity is an activity performed by conceptual groups, composed of multiple persons 
and/or objects. 

Some applications of the activity recognition are [1]: Domestic Robotics, where is used for interacting with a 
robot; in areas of Surveillance is used for detecting suspicious activity, analysing the activities performed in an 
room; the Gaming applications aim to achieve interaction with a video game without physical input devices; the 
Health Care area, where the activity recognition can be coupled to systems for emergency response or can be 
used for physical rehabilitation. 

A particular use case for activity labelling on Domestic Robotics could be: for example, a robot helps in 
cooking. A person is preparing food in the kitchen. The vision system of the robot captures motion data of the 
person. The Activity Recognition System analyses the motion to get the activities performed. The output of the 
Activity Recognition System provides information to the Action Planning System, which has information of the 
world and the robot. The Action Planning System picks a plan of action, such as getting closer to the person and 
ask to help out. 

There is a number of challenges on each stage of the activity recognition. When motion data is acquired, there 
is noise on the sensor, both from internal and external sources,which alters the captured values of the motion; 
the occlusion of the sensor by other objects or persons produces inaccurate or incomplete data. There are some 
issues which are exclusive of the Computer Vision-based systems: the orientation of the body towards the sensor 
can obscure some body parts, generating inaccurate or incomplete data; bad lighting conditions, if they are not 
compensated, reduce the accuracy of the capture. The challenges on classifying motion data are: the raw motion 
data can be high-dimensional, so picking the features which provide the best description is necessary; the 
position of the person in the motion data is not absolute, that is solved by making the motion data relative to a 
reference frame. The challenges when recognizing activities is that they can involve interaction with other 
persons or objects, this is solved by segmenting the data into separate entities and tracking them; several 
activities can have the same motion, which is solved by segmenting the motion data before training a classifica- 
tion model which provides the input for the recognition model. 

1.2. Approaches to Activity Recognition  
There are two approaches for activity recognition, according to how the motion data is represented and 
recognized [1]. The single-layered approach represents and recognizes human activities directly from sequences 
of images. This approach is suitable for gesture recognition and actions with sequential characteristics. In 
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contrast, the hierarchical approach represents high-level human activities with a description in terms of simpler 
activities. This approach is suitable for analysing complex activities, such as interactions and group activities. 

The taxonomy of the single-layered approach depends on the way of modelling human activities: space-time 
approach and sequential approach [1]. 

The space-time approach views an input video as a three-dimensional (XYT) volume. This approach can be 
categorized further depending on the features used for the XYT volume: volumes of images [2]-[4], volumes of 
trajectories [5]-[7], or volumes of local interest point descriptors [8]-[10]. 

The sequential approach uses sequences of features from a human motion source. An activity has occurred if 
a particular sequence of features which is observed after analysing the features. There are two main types of 
sequential approaches: exemplary-based and state model-based [1]. This work uses the state model-based 
approach to human activity recognition. 

In the exemplary-based approach, human activities are defined as sequences of features which have been 
trained directly. A human activity is recognized by computing the similarity of a new sequence of features 
against a set of reference sequences of features, if a similarity is high enough, the system deduces that the new 
sequence belong to a certain activity. Humans do not perform the same activity at the same rate or style, so the 
similarity measuring algorithm must account for those details. 

An approach to account for those changes is Dynamic Time Warping [1] [11], a dynamic programming 
algorithm which stretches a pattern of motion over the time, to align and match it against a reference pattern of 
motion. The algorithm returns the cumulative distance between two patterns of motion. When comparing a 
pattern of motion against a set of reference patterns of motion, the reference pattern which has the highest 
similarity indicates the most likely activity [12]-[14]. 

In the state model-based approach, human activities are defined as statistical models with a set of states 
which generate corresponding sequences of feature vectors. The models generate those sequences with a certain 
probability. This approach accounts for rate and style changes. One of the most used mathematical models for 
recognizing activities is the Hidden Markov Model [15]. 

2. Hidden Markov Models  
Hidden Markov Models, are statistical Markov Models in which the signal or process to model is assumed to be 
a Markov Process with unobserved states [15]. A stochastic process is a collection of random variables which 
represent the evolution of a random values over time, such as the spectra of a sound signal, or the probability of 
drawing a ball of a certain colour from a set of urns, which have coloured balls in varying amounts [15]. 

The states in a stochastic process have the distribution probabilities for the collection of random variables, and 
the transitions from a state to other depend on probabilities (non-determinism). 

The Markov property indicates that the probability distribution of future states depends upon the present state; 
in other words, it does not keep record of past time or future states (memoryless). 

The unobserved states in a Hidden Markov Model indicate that the states are not visible directly, but output 
depends probabilistically on the state (Figure 1). 

The most common applications of a Hidden Markov Model are temporal pattern recognition, such as speech 
recognition, handwriting recognition, gesture recognition, speech tagging, following of musical scores, and 
DNA sequencing. 

The output values for the random variables in a Hidden Markov Model can be discrete, originated from a 
categorical distribution, or continuous, originated from a Gaussian Distribution. 

The elements of a Hidden Markov Model (λ) are: { }, , , ,N M A Bλ π= , where N, is the amount of states of 
the Markov process; M, is the amount of discrete output symbols for the Markov process; A, is the transition 
probability matrix between states of the Markov process; B, is the emission probability for output symbols per 
state of the Markov process; and π , is the probability of starting at a certain state of the Markov process. 

For a Hidden Markov Model to be useful in real world applications, three basic problems must be solved [15]: 
 Evaluation Problem: Given a sequence of observations 1 2 TO O O O=   and a model ( ), ,A Bλ π= , how to 

efficiently compute the probability of the sequence of observations, given the model ( )P O λ ?  
 Optimal State Sequence Problem: Given a sequence of observations 1 2 TO O O O=   and a model 

( ), ,A Bλ π= , how to choose the most likely sequence of states 1 2 TQ Q Q Q=   which describes best the 
sequence of observations?  
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Figure 1. Hidden markov model.                                                                    

 
 Training Problem: How to adjust the parameters of the model ( ), ,A Bλ π=  to maximize ( )P O λ , the 

probability of a sequence of observations, 1 2 TO O O O=  , given the model?  

2.1. Solution to the Evaluation Problem 
The Forward Procedure solves the Evaluation Problem. The forward variable ( )t iα  defined as  

( ) ( )1 2 ,t t t ii P O O O q Sα λ= =                               (1) 

indicates the probability of the partial observation sequence, 1 2 tO O O , (until time t), and state iS  at time t, 
given the model λ . 

The inductive solution of ( )t iα  is the following:   
1) Initialization: 

( ) ( )1 , 1i i ii b O i Nα π= ≤ ≤                                  (2) 

2) Induction: 

( ) ( ) ( )1 1 , 1 1, 1t i t ij j tj i a b O t T j Nα α+ + = Σ ≤ ≤ − ≤ ≤                     (3) 

3) Termination: 

( ) ( )
1

N

T
i

P O iλ α
=

= ∑                                       (4) 

The initialization step sets the forward probabilities as the joint probability of state iS  and initial observation 
1O . The induction step computes the partial probability at the state jS , at time 1t +  with the accompanying 

partial observations. And, the termination step computes the final forward probability by summing all the 
terminal forward variables ( )T iα . 

2.2. Solution to the Most Likely Sequence of States Problem  
The evaluation problem is solved by the Viterbi Algorithm, which computes the most likely sequence of 
connected states 1 2 TQ Q Q Q=   which generates a sequence of observations 1 2 TO O O , given a model λ . 

The Viterbi Algorithm uses the variable δ , which contains the highest probability of a single path, at the 
time t.  

( )
1 2 1

1 2 1 1 2,
max , , ,

t
t t tq q q

i P q q q i O O Oδ λ
−

−=  =  


                        (5) 

The highest probability along a single path, at time 1t + , is computed as:  
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( ) ( ) ( )1 1maxt t ij j ti
j i a b Oδ δ+ +

 =   
                               (6) 

The most likely path is the sequence of these maximized variables, for each time t and each state j. The array 
( )t jψ  tracks all the maximized variables ( )t jδ . The most likely state sequence is retrieved by backtracking 

the variable ( )t jψ . 
1) Initialization: 

( ) ( )1 1 , 1i ii b O i Nδ π= ≤ ≤                                  (7a) 

( )1 0.iψ =                                         (7b) 

2) Recursion: 

( ) ( ) ( )1max , 2 , 1t t ij j ti
j i a b O t T j Nδ δ − = ≤ ≤ ≤ ≤                      (8a) 

( ) ( )1arg max , 2 , 1 .t t iji
j i a t T j Nψ δ − = ≤ ≤ ≤ ≤                        (8b) 

3) Termination: 

( )*

1
max Ti N

P iδ
≤ ≤

=                                          (9a) 

( )*

1
arg max .t Ti N

q iδ
≤ ≤

=                                        (9b) 

4) Backtracking: 

( )* *
1 1 , 1, 2, ,1t t tq q t T Tψ + += = − −                                (10) 

2.3. Solution to the Training Problem  
An approach for solving the Training Problem is the Viterbi Learning algorithm [16], which uses the Viterbi 
Algorithm to estimate the parameters of a Hidden Markov Model. The algorithm can estimate the parameters 
from a set of multiple sequences of observations. That property makes it different of the Baum-Welch algorithm 
[15], which requires all the training observation samples to be merged in a single sequence. 

The initialization of the transition matrix is done with random values. The random values on each row are 
normalized, so its sum is equal to one. A bit mask matrix describing the transitions of a specific graph topology 
can be used to set the probabilities. The transition probabilities under a bit mask value equal to zero get a very 
small value, while the transition probabilities under a bit mask value equal to one get a random value. 

The initialization step for the emission matrix uses one of these approaches: random values or segmented 
observation sequences. When initializing with random values, all the values must be larger than zero and each 
row must be normalized, so the sum of each row is equal to one. In the segmented observations sequences 
approach, the sequence is split by the number of states of the Hidden Markov Model. If the length of the 
sequence is not a multiple of the number of states, the last state gets less observations. For each state, the 
emission probability of each symbol is equal to the count of that symbol divided by the total amount of symbols 
assigned to that state. 

The initial probability vector can be initialized either to uniform probabilities or by assigning the larger 
probability to an state or a number of states. The probabilities are normalized so its sum is equal to one.  

In the induction step, for each sequence of observations for training, the Most Likely State Path is computed 
with the Viterbi Algorithm on the initial Hidden Markov Model, and the Likelihood Probability is computed 
either with the Viterbi Algorithm or the Forward Algorithm on the initial Hidden Markov Model. The Most 
Likely State Path of each sequence is stored for computing the parameters of an updated Hidden Markov Model. 
The Forward Probability of each sequence is accumulated in the variable oldprob  for computing the condition 
of termination. 

The values of the updated transition matrix A are computed by counting the transitions from the state tQ , to 
the next state 1tQ + , on the Most Likely State Paths associated to each sequence of observations for training. At 
the end, the values of each row on the transition matrix are normalized, so its sum is equal to one. 

The values of the updated emission matrix B are the frequencies of each observation symbol in the observation 
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sequence, tO , per state in the Most Likely State Path, tQ , at the time t, i.e., ( )( ) ( )( ) 1t t t tB Q O B Q O= + . The values 
of each row on the emission matrix are normalized, so its sum is equal to one. 

The initial probability vector π  is updated by counting the states assigned to the first elements of each Most 
Likely State Path 1Q . 

A new Hidden Markov Model is built from the updated model parameters , ,A Bλ π= . To check if the model 
maximizes ( )P O λ , the Forward Probability of each sequence of observations for training is computed with 
the model, and accumulated in the variable newprob . 

The conditions for terminating the algorithm are: either the absolute of the difference of newprob  and 
oldprob  is smaller than a threshold, or a certain number of iterations has been reached. If any of those 

conditions is false, the updated Hidden Markov Model is passed to the next iteration of the induction step, 
otherwise, the algorithm returns the updated Hidden Markov Model. 

2.4. Logarithmic Scaling 
Both Forward Probability Algorithm and Viterbi Algorithm store the result of floating-point operations in a 
single variable. The accumulated product of fractional values is a value so small that might fall below the 
minimum precision of the floating-point variable which stores the result. That variable can be represented in 
logarithmic scale, where multiplication and division operations are represented as addition and subtraction 
respectively. The range of values in logarithmic scale goes from −∞ +∞ , where negative logarithmic values 
represent fractional values and positive logarithmic values represent integral values larger or equal than one. In 
the case of the elements of a Hidden Markov Model, the values of A, B, and π  are converted to negative 
logarithmic values. 

The logarithmic scale in the Forward Algorithm applies at each iteration in the Induction step, a scale variable 
accumulates the value of the forward variable α , for each state. The forward probability is the sum of the 
logarithms of the scale for each state. 

For the Viterbi Algorithm, the elements of the model , ,A Bλ π=  are converted to logarithmic scale. In the 
case of the emission matrix B, the emissions probabilities per states of each observation 1 2 TO O O O=   are 
converted to logarithmic scale. The value of the variable δ  is updated by cumulative addition. 

Hidden Markov Model Topologies  
Depending on the process that generates a signal, the contents of the signal can have a stationary structure, or a 
chronological structure. The structure of the contents of the signal indicates which is the most suitable Hidden 
Markov Model [17]. 

The classical case of the set of bowls containing different proportions of coloured balls is an example of a 
stationary process: any ball is drawn from any bowl at any time. For this case, the most suitable topology for the 
Hidden Markov Model is the ergodic model (Figure 2(a)), where all the states are fully connected [17]. 

In automated motion recognition and activity recognition applications, the input data to be processed has a 
chronological or linear structure [17]. 

The simplest topology for linear processes is the linear model (Figure 2(b)), where each states connects to 
itself (self-transitions) and to the next state. The self-transitions account for variations in the duration of the 
patterns in a state [17]. 

The flexibility in the modelling of the duration can increase if it is possible to skip individual states in the 
sequence. One of the most used topology variations for automated speech and handwriting recognition is the 
Bakis model (Figure 2(c)). The Bakis model has a transition that skips two states ahead the current state, while 
the state is not the last state or the next-to-last state [17]. 

The largest variations in the chronological structure are achieved by allowing a state to have transitions to any 
posterior states in the chronological sequence. The only forbidden transition is going from a state iS  to a state 

jS  where j i< . This model is called Left-to-Right model (Figure 2(d)) [17]. 
Any of the Hidden Markov Models for signals with chronological structure—Linear, Bakis, Left-to-Right— 

can model cyclic signals by adding a transition from the last state to the first state (Figures 2(e)-(f)) [18]. 

2.5. Related Work 
The Hidden Markov Model is one of the most commonly used statistical models in the state model-based  
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Figure 2. Hidden markov model topologies. (a) Ergodic HMM; (b) Linear HMM; (c) 
Bakis HMM; (d) Left-to-right HMM; (e) Cyclic linear HMM; (f) Cyclic bakis HMM; 
(g) Cyclic left-to-right HMM.                                                            

 
approach to Activity Recognition. There are two approaches for recognizing activities with Hidden Markov 
Models: Maximum Likelihood Probability (MLP) [19]-[23] and Most Likely State Path (MLSP) [24]-[28]. Next 
we list the main features, advantages and disadvantages of the two approaches. 

2.5.1. Maximum Likelihood Probability Activity Recognition  
• Features:   
-Each Activity has a Hidden Markov Model.  
-Each Hidden Markov Model computes the Forward Probability of a sequence of observation symbols.  
-The Hidden Markov Model with the largest Forward Probability identifies the activity.  
• Advantages:   
-New activities can be added easily by training another Hidden Markov Model.  
-The evaluation of a sequence of observation symbols can be performed by parallel tasks.  
• Disadvantages:   
-Motion segmentation is required when recognizing connected activities.  

2.5.2. Most Likely State Path Activity Recognition  
• Features:   
-All the activities are embedded in a single large Hidden Markov Model.  
-Each activity is represented by a subset of states.  
-A sequence of observation symbols is processed to obtain the sequence of most likely states which generates 

it.  
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• Advantages:   
-The evaluation of connected activities is possible without motion segmentation.  
-Reconstruction of activities from the sequence of most likely states.  
• Disadvantages:   
-Adding a new activity is complicated: the Hidden Markov Model for the new activity is trained separately, 

the Hidden Markov Model is merged with the single large Hidden Markov Model and the single large Hidden 
Markov Model must be retrained to update the probabilities of emission and transition.  

-The computation of likelihood probability with Viterbi Algorithm is slower than with Forward Algorithm,  
-Reconstruction of activities requires an index which associates each activity with a subset of states.  

2.6. Variants of Hidden Markov Models  
A limitation of the Hidden Markov Models is that they do not allow for complex activities, interactions between 
persons and objects, and group interactions. To enhance the probability of recognizing activities with Hidden 
Markov Models, variations to the model have been studied in previous works. 

In the Conditioned Hidden Markov Model [29] [30], the selection of the states is influenced by an external 
cause. Such cause can be the symbols generated by an external classifier. The probability of those symbols in- 
creases the probability of a sequence. This model allows using two streams of different features from the same data. 

The Coupled Hidden Markov Model [20] [31] [32] is formed by a collection of Hidden Markov Models. Each 
Hidden Markov Model handles a data stream. The observations cannot be merged using the Cartesian product of 
the amount of the symbols of each data stream. The nodes at the time t are conditioned by the nodes at the time 

1t −  of all the related Hidden Markov Models. This model is suitable for recognizing activities using data from 
multiple sources. 

The states of a Hidden Semi-Markov Model [33]-[35] emits a sequence of observations. The next state is 
predicted based on how long it has remained in the past state. This model relaxes the memoryless property of a 
Markov Chain. 

The Maximum Entropy Markov Model represents [21] [36] the dependence between each state and the full 
observation system explicitly. The model completely ignores modelling the probability of the state ( )P X . The 
learning objective function is consistent with the predictive function ( )P Y X . The observation Y sees all the 
states X, instead of the observation being dependent on the state. 

The Compound Hidden Markov Model [17] [37]-[40] is formed by the concatenation of sub-word units 
Hidden Markov Models. The sub-word units form a lexicon of words. Parallel connections link all the individual 
sub-word units. The recognized words are subsets of connected states in the most likely state path. The 
representation of the model can be simplified by the addition of non-emitting states. 

The Dynamic Multiple Link Hidden Markov Model [41] is built by connecting multiple Hidden Markov 
Models. Each Hidden Markov Model models the activities of a single entity. The relevant states between 
multiple Hidden Markov Models are linked. This model is suitable for group activities. 

The Two-Stage Linear Hidden Markov Model [42] is formed by two stages of Linear Hidden Markov Models. 
The first stage recognizes low-level motions or gestures to generate a sequence of gestures. The sequence of 
gestures becomes the input for the Hidden Markov Model at the second stage. The second stage recognizes 
complex activities from the sequences of gestures. 

The Layered Hidden Markov Model [28] [43] is a model in which several Hidden Markov Models in layers of 
increasing activity levels. The layers at the lowest level recognizes simple activities. The simple activities form 
high-level activities at upper levels. The upper levels use the simple activities to recognize complex activities. 

The Hidden Markov Model topology chosen for this work is the Compound Hidden Markov Model, because 
the purpose of this work is labelling activities performed by a person, during a period of time.  

3. Proposed Approach  
The method for activity recognition proposed in this work uses a representation of skeleton data based in 
Euclidean distance between body parts, and a Compound Hidden Markov Model for activity labelling. 

3.1. Skeleton Features 
The features of the skeleton are a variation of those presented in Glodek et al. [30]. The features are made of set 
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of Euclidean distances between joints. The work of Glodek et al., 2012 [30] represents poses from the upper 
body, as a set of Euclidean distances between these pairs of joints (Figure 3(a)): left hand-head, left hand-left 
shoulder, left hand-left hip, left elbow-torso, right hand-head, right hand-right shoulder, right hand-right hip, and 
right elbow-torso. This work uses a variation of the features described Glodek et al., 2012 to represent poses of 
the whole body, as a set of Euclidean distances between these pairs of joints (Figure 3(b)): left hand-head, left 
hand-neck, left hand-left shoulder, left elbow-torso, left foot-hip, left foot-neck, left foot-head, left knee-torso, 
right hand-head, right hand-neck, right hand-right shoulder, right elbow-torso, right foot-hip, right foot-neck, 
right foot-head, and right knee-torso. 

3.2. Observations for the Hidden Markov Model  
The observations for the Hidden Markov Model are computed from the Euclidean Distance between the features 
of two skeletons. To get the observations of a new sequence of motion data, the skeletons of each frame have 
their features computed. A set of similarities is computed for each frame of the new sequence of motion data. 
Those similarities come from the Euclidean Distance of the features of a frame of motion data and the features 
of each element of the codebook of key frames. The index of the key frame with the smallest Euclidean Distance 
becomes the observation of each frame. 

3.3. Compound Hidden Markov Model 
The model proposed for activity labelling is a Compound Hidden Markov Model [37]-[40], which is a Hidden 
Markov Model where a subset of states represent a pattern, each subset of states is connected to a common 
initial state and a common final state, and the common final state always connects to the common initial state. 
The recognized patterns are extracted from the sequence of most likely states, obtained from applying the 
Viterbi Algorithm to a sequence of observations. 

The Compound Hidden Markov Model is formed by several simpler Hidden Markov Models, whose 
topologies are configured according to the type of activity to model: the stationary activities, like sit still and 
stand still, have a single state; the non-periodic activities, like stand up and sit down, are modelled with Linear 
Hidden Markov Models; and, the periodic activities, such as walk, are modelled by a Cyclical Linear Hidden 
Markov Model. 

 

 
(a)                               (b) 

Figure 3. Skeleton Features for pose description. (a) The work of Glodek et al., 2012 [30] 
represents poses from the upper body, as a set of Euclidean distances between the pairs of joints, 
which indicated by the black dashed lines; (b) This work uses a variation of the features 
described Glodek et al., 2012 to represent poses of the whole body, as a set of Euclidean 
distances between pairs of joints. The black dashed lines indicate the pairs of joints for the upper 
body, and the grey dashed lines indicate the pairs of joints for the lower body.                                    
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The activities are connected using context information. For example, the sit still activity connects to the first 
state of the stand up activity, and receives a connection from the last state of the sit down activity. The stand still 
activity connects to the first state of the sit down activity, and receives a connection from the last state of the 
stand up activity. Also, the stand still activity connects to the first state of the walk activity and receives a 
connection from the last state of the walk activity (Figure 4). 

The stationary activities (sit still, stand still) are modelled with a Hidden Markov Model formed by a single 
state. The emission probabilities of each Hidden Markov Model are initialized to the averaged frequency of the 
observations for the corresponding idle activity. 

The non-periodic activities (stand up, sit down) and the periodic activities, (walk), are trained using the 
following procedure: the observations from motion data of each activity are segmented into three sections: the 
anticipation (Figure 5(a)), which contains the poses which indicate that a motion is about to start; the action 
(Figure 5(b)), which contains the poses which describe a motion; and the reaction (Figure 5(c)), which contains 
the poses which indicate the recovery from an action to a neutral position. These three sections, anticipation- 
action-reaction (AAR), come from the theory of animation [44] [45]. 

 

 
Figure 4. Compound hidden markov model for activity labelling.                                                    

 

 
Figure 5. An activity has three sections: the motion preceding the activity (anticipation), the motion of the 
activity (action) and the motion after the activity is performed (reaction). Source: Animal Locomotion, Vol. 1, 
Plate 154, by Eadweard Muybridge, 1887.                                                                     
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The Hidden Markov Models for stationary activities, non-periodic activities, and periodic activities are 
merged in a Compound Hidden Markov Model, as specified in the Section 3.3, and its parameters are re- 
estimated using Viterbi Learning with all the elements of the training set. 

4. Experiments  
In order to assess the labelling accuracy of both the Compound Hidden Markov Model and some reference 
Hidden Markov Models, they was tested with a data set of human activities. 

4.1. Data Source 
The tests were performed using the Microsoft Research Daily Activity 3D Data set (MSRDaily) [46], which was 
captured by using a Microsoft Kinect device. 

The data set is composed by 16 activities, a) drink; b) eat; c) read book; d) call cellphone; e) write on a paper; 
f) use laptop; g) use vacuum cleaner; h) cheer up; i) remain still; j) toss paper; k) play game; l) lay down on sofa; 
m) walk; n) play guitar; o) stand up; and p) sit down which are performed by 10 persons, who execute each 
activity twice, once in standing position, and once in sitting position. There is a sofa in the scene. Three channels 
are recorded: depth maps (.bin), skeleton joint positions (.txt), and RGB video (.avi). There are 16 10 2 320× × =  
files for each channel. The whole set is formed by 320 3 960× =  files. The position of the joints of the skeleton 
are computed from the depth map [47]. 

For the purpose of this work, only the skeleton joint positions were used as input for labelling the actions, as 
well as a subset of activities: a) remain still (sitting pose) (Figure 6(a)); b) remain still (standing pose) (Figure 
6(b)); c) walk (Figure 6(c) and Figure 6(d)); d) stand up (Figure 6(e) and Figure 6(f)); and e) sit down (Figure 
6(g) and Figure 6(h)). Those activities are selected because there is a clear start in the sitting pose or the 
standing pose , or there are transitions between the sitting pose and the standing pose. 

At the training step, the Hidden Markov Model is generated using a training set of motion data. The training 
set is made of the motion data from the first 6 subjects of the MSRDaily data set, while the motion data of the 
last 4 subjects constitute the testing set. 

4.1.1. Computing the Codebook 
The Microsoft Kinect sensor captures the depth map D



 of a motion sequence of an activity performed by a 
person. The depth map is processed to extract a skeleton { } { }1 2 15, , , , , ,S j j j j x y z= =



  [47]. During the  
capture, a skeleton represents a single frame of the motion, therefore, a whole motion sequence contains several 
skeletons. The training set of an activity is formed by captures of motion sequences of the same activity 
performed by several people. 

First of all, the skeletons have their features extracted, using the algorithm described in the Section 3.1. All 
the features from the skeletons of the training set are clustered with the k-means algorithm. The centroids of the 
clusters become the codebook of key frames. 

The amount of symbols used in this work is 255, because that is the amount of symbols which provided the 
best labelling accuracy on the testing set, after performing tests on different amounts of symbols for the 
codebook, which were 31, 63, 127, 255, 511, 1023, 2047, and 4095 centroids1. 

4.1.2. Building the Compound Hidden Markov Model  
The Hidden Markov Model for a non-stationary activity has the following structure for its states: the amount of 
states is N, where 3N ≥ , so the states can contain all the states of a motion; the state 1S  is for the random 
variables of the anticipation of the motion (Anticipation State), the state NS  is for the random variables of the 
reaction of the motion (Reaction State), and the states 2 1NS S −  are for the random variables of the action of 
the motion (Action States). 

The transition probabilities from the Anticipation State to the Action States are initialized to uniform values. 
There are no transitions from the Action States to the Anticipation State. The transition probabilities from the  

 

 

1The reason for those sizes for the codebooks was that for the experiments, the initial amount of symbols were powers of two—32, 64, 128, 
256, 512, 1024, 2048, and 4096—but one of the centroids computed by the k-means algorithm had undefined values (NaN values) and had 
to be removed from the codebook, to avoid arithmetical errors when computing the Euclidean distance between any data object and a cen-
troid with undefined values. 
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Figure 6. Subset of activities from Microsoft Research Daily Activity 3D used in this work. (a) 
Idle, sitting position; (b) Idle, standing position; (c) Walk in front of a sofa; (d) Walk behind a 
sofa; (e) Stand up, frontal orientation; (f) Stand up, three-quarters orientation; (g) Sit down, 
frontal orientation; (h) Sit Down, three-quarters orientation.                                              

 
Action States to the Reaction State are initialized to uniform values. And, the transition probabilities from the 
Reaction State to the Anticipation State are set to uniform values. 

The observations from the anticipation section are used for initialize the emission probabilities of the 
Anticipation State. The observations from the reaction section are used to initialize the emission probabilities of 
the Reaction State. The emission probabilities of the Action States are initialized to random values. 

Both the transition probabilities and the emission probabilities for all the States will be refined after applying 
Viterbi Learning [16] to the Model. 

4.2. Testing Activity Labelling.  
The assessment of the quality of a labelled activity is done on the results of computing the Most Likely State 
Sequence from the observations of an activity. 

The joints of the skeleton S


 are converted to vector of features c  (Section 3.1). The features c  are 
classified against a codebook of key frames { }1 2, , , kF f f f=  , using Euclidean Distance. 

The key frame with the minimum distance becomes an observation o, which is appended to a sequence of 
observations { }1 2, , , tO o o o=



 . 

Assessing Labelling Accuracy  
The first Hidden Markov Model to test is an Ergodic Hidden Markov Model where each state represent a single 
activity, giving a total of 5 states (Figure 7(a)). 
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(a)                                                (b) 

Figure 7. Hidden markov models for activity labelling (reference). (a) Ergodic hidden markov model; (b) 
Graph-like hidden markov model.                                                                        

 
For the second Hidden Markov Model, the proposal is a Hidden Markov Model organized like a Finite State 

Machine. Each activity is represented by a single state, giving a total of 5 states. The connections between the 
states of each activity use a language model. 

The third Hidden Markov Model is a variation of the second Hidden Markov Model, where its parameters are 
retrained with Viterbi Learning. The connections between the states of each activity use a language model. 

Both the second and the third Hidden Markov Model have a Graph-like structure (Figure 7(b)). 
The fourth Hidden Markov Model is the Compound Hidden Markov Model proposed in the Section 2.3 

(Figure 8). The connections between the states at the ends of each activity use a language model. 
The language model for connecting coherent activities is the following:  
•Sit Still → Sit Still.  
•Sit Still → Stand Up → Stand Still.  
•Stand Still → Stand Still.  
•Stand Still → Sit Down → Sit Still.  
•Stand Still → Walk → Stand Still. 
The sequence of observations O



 is the input for the Compound Hidden Markov Model. The Viterbi 
algorithm decodes the sequence of observations to a sequence of most likely states Q



. The states show an 
activity executed at an instant of time. 

The criteria for determining the accuracy of the sequence of most likely states Q


 is sequence accuracy. A 
sequence of states is accurate if the rate between the count of the states which follow the expected sequence of 
motions and the length of the sequence of states is greater or equal than a threshold of 90%. The language model 
for connecting coherent activities specifies the expected sequence of motions for an activity. Repeated states are 
allowed as long as they stay on a expected motion. The sequence accuracy criterion depends on the assessed 
activity (Table 1). 

5. Results 
The tests were performed on the four different Hidden Markov Models specified in the section 23. Each Hidden 
Markov Model was tested with the following amount of symbols 31, 63, 127, 255, 511, 1023, 2047, and 4095 , 
while keeping the amount of states of each Hidden Markov Model topology. The tables show the Hidden Markov 
Model with the amount of symbols that provided the highest labelling accuracy. 

The assessed data was the sequence of most likely states Q


 computed with the Viterbi Algorithm on the 
observations of the motion data. If all the states match the expected sequence of motions, the activity labelling is 
correct. 

Table 2(a) and Table 2(b) show the average labelling accuracy of three codebook sizes for each topology of 
Hidden Markov Models which gave the highest labelling accuracy for all the activities. Tables 3(a)-(d) show 
the results of the tests on the 6 subjects of the training set from the MSRDaily data set. The first column shows 
the topology of the Hidden Markov Model, the columns 2-4 show the three sizes of codebooks which gave high 
accuracy for a first activity, and the columns 5-7 show three sizes of codebooks which gave high accuracy for a 
second activity. 
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Figure 8. Hidden markov models for activity labelling (proposed). compound hidden markov model.                             

 
Table 1. Criteria for sequence accuracy per activity.                                                                    

Activity Expected sequence of motions 

Sit still {Sit still} 

Stand still {Stand still} 

Stand up {Sit still, stand up, stand still} 

Sit down {Stand still, sit down, sit still} 

Walk {Stand still, walk, stand still (optional)} 

 
Table 2. Average labelling accuracy for the hidden markov models with highest accuracy. (a) Training set, inter-joint 
distance features; (b) Testing set, inter-joint distance features.                                                            

(a) 

 Codebook size 

Model (#states) 255 symbols 511 symbols 2047 symbols 

Ergodic (5) 25.00% 37.50% 58.33% 

Graph-like (5) 41.66% 43.75% 54.16% 

Graph-like retrained (5) 41.66% 43.75% 68.75% 

Compound (14) 54.16% 54.16% 77.08% 

(b) 

 Codebook size 

Model (#states) 255 symbols 511 symbols 2047 symbols 

Ergodic (5) 6.25% 15.62% 18.75% 

Graph-like (5) 18.75% 12.50% 6.25% 

Graph-like retrained (5) 18.75% 18.75% 53.12% 

Compound (14) 59.37% 56.25% 53.12% 
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Table 3. Results on activity labelling accuracy for inter-joint distance features (training set). (a) Number of subjects, out of 6, 
with correct labelling on “sit” and “stand”; (b) Number of subjects, out of 6, with correct labelling on “walk” and “walk 
occluded”; (c) Number of subjects, out of 6, with correct labelling on “stand up 1” and “stand up 2”; (d) Number of subjects, 
out of 6, with correct labelling on “sit down 1” and “sit down 2”.                                                          

(a) 

Subjects tested 6 

Activity Sit Stand 

Model (#states, #symbols) 255 511 2047 255 511 2047 

Ergodic (5) 4 6 6 2 3 6 

Graph-like (5) 6 6 6 0 0 0 

Graph-like retrained (5) 6 6 6 0 0 0 

Compound (14) 6 6 6 0 0 0 

(b) 

Subjects tested 6 

Activity Walk Walk occluded 

Model (#states, #symbols) 255 511 2047 255 511 2047 

Ergodic (5) 1 4 6 0 0 0 

Graph-like (5) 6 6 5 0 0 0 

Graph-like retrained (5) 6 6 6 0 0 2 

Compound (14) 6 6 6 4 4 3 

(c) 

Subjects tested 6 

Activity Stand up 1 Stand up 2 

Model (#states, #symbols) 255 511 2047 255 511 2047 

Ergodic (5) 3 4 6 0 0 0 

Graph-like (5) 5 5 5 0 0 0 

Graph-like retrained (5) 5 5 6 0 0 4 

Compound (14) 5 6 6 1 0 4 

(d) 

Subjects tested 6 

Activity Sit down 1 Sit down 2 

Model (#states, #symbols) 255 511 2047 255 511 2047 

Ergodic (5) 2 1 4 0 0 0 

Graph-like (5) 3 3 6 0 1 4 

Graph-like retrained (5) 3 3 5 0 1 4 

Compound (14) 3 3 6 1 1 6 
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Tables 4(a)-(d) show the results of the tests on the 4 subjects of the testing set from the MSRDaily data set. 
The first column shows the topology of the Hidden Markov Model, the columns 2-4 show the three sizes of 
codebooks which gave high accuracy for a first activity, and the columns 5-7 show three sizes of codebooks 
which gave high accuracy for a second activity. 

 
Table 4. Results on activity labelling accuracy for inter-joint distance features (testing set). (a) Number of subjects, out of 4, 
with correct labelling on “sit” and “stand”; (b) Number of subjects, out of 4, with correct labelling on “walk”' and “walk 
occluded”; (c) Number of subjects, out of 4, with correct labelling on “stand up 1” and “stand up 2”; (d) Number of subjects, 
out of 4, with correct labelling on “sit down 1” and “sit down 2”.                                                         

(a) 

Subjects tested 4 

Activity Sit Stand 

Model (#states, #symbols) 255 511 2047 255 511 2047 

Ergodic (5) 0 0 0 1 2 2 

Graph-like (5) 0 0 0 1 1 0 

Graph-like retrained (5) 0 1 2 1 1 1 

Compound (14) 2 2 2 3 2 2 

(b) 

Subjects tested 4 

Activity Walk Walk occluded 

Model (#states, #symbols) 255 511 2047 255 511 2047 

Ergodic (5) 1 2 4 0 0 0 

Graph-like (5) 4 1 1 0 1 0 

Graph-like retrained (5) 4 2 4 1 1 3 

Compound (14) 4 4 4 2 2 2 

(c) 

Subjects tested 4 

Activity Stand up 1 Stand up 2 

Model (#states, #symbols) 255 511 2047 255 511 2047 

Ergodic (5) 0 1 0 0 0 0 

Graph-like (5) 0 1 1 0 0 0 

Graph-like retrained (5) 0 1 2 0 0 2 

Compound (14) 3 2 2 2 2 3 

(d) 

Subjects tested 4 

Activity Sit down 1 Sit down 2 

Model (#states, #symbols) 255 511 2047 255 511 2047 

Ergodic (5) 0 0 0 0 0 0 

Graph-like (5) 0 0 0 1 0 0 

Graph-like retrained (5) 0 0 2 0 0 1 

Compound (14) 1 1 2 2 3 0 
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The results for both the training set and the testing set show that the Compound Hidden Markov Model labels 
correctly a sequence of motion more often than an Ergodic Hidden Markov Model or the Graph-like Hidden 
Markov Models, when the amount of symbols is lesser than 2047 (Table 2(a) and Table 2(b)). The Compound 
Hidden Markov Model which had the highest labelling accuracy on the testing set has a codebook of 255 
symbols. 

In the Hidden Markov Models whose codebooks are of { }2047,4095  symbols, the Retrained Graph-like 
Hidden Markov Model had a labelling accuracy similar to the Compound Hidden Markov Model (Table 2(a) 
and Table 2(b)). 

It must be noted that the “Walk Occluded” activity is labelled incorrectly by all the Hidden Markov Models. 
The reason for such failure is that the skeleton data is incorrect or noisy because a sofa occludes the person who 
is walking. The algorithm which computes the skeleton [47] only works when the body is completely visible. 

6. Conclusion  
We present results for labelling human activity from skeleton data of a single Microsoft Kinect sensor. We 
present a novel way of computing features of a skeleton using distances between certain joints of both upper 
body and lower body. And, we propose a Compound Hidden Markov Model for labelling cyclic and non-cyclic 
human activities, which perform better than the reference Hidden Markov Models, an Ergodic Hidden Markov 
Model and a Graph-like Hidden Markov Model. The results for labelling 5 activities from 4 non-trained subjects 
show that the Compound Hidden Markov Model, with a codebook of 255 symbols, labels correctly a sequence 
of motion with an average accuracy of 59.37%, which is higher than the average labelling accuracy for activities 
of unknown subjects of an Ergodic Hidden Markov Model (6.25%), and a Compound Hidden Markov Model 
with activities modelled by a single state (18.75%), both with a codebook of 255 symbols. The contributions of 
this work are the representation of a full body pose with Euclidean distances between certain pairs of body joints, 
and the method for training a Compound Hidden Markov Model for activity labelling by segmenting the training 
data with the Anticipation-Action-Reaction sections from theory of animation. The future work involves using a 
new representation for the skeleton, based on Orthogonal Direction Change Chain Codes [48] [49], for both the 
codebook and the input samples.  
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