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Abstract

Purpose: The left ventricle and the myocardium are two of the most important parts of the heart used for cardiac
evaluation. In this work a novel framework that combines two methods to isolate and display functional characteristics
of the heart using sequences of cardiac computed tomography (CT) is proposed. A shape extraction method, which
includes a new segmentation correction scheme, is performed jointly with a motion estimation approach.

Methods: For the segmentation task we built a Spatiotemporal Point Distribution Model (STPDM) that encodes
spatial and temporal variability of the heart structures. Intensity and gradient information guide the STPDM. We
present a novel method to correct segmentation errors obtained with the STPDM. It consists of a deformable scheme
that combines three types of image features: local histograms, gradients and binary patterns. A bio-inspired image
representation model based on the Hermite transform is used for motion estimation. The segmentation allows isolating
the structure of interest while the motion estimation can be used to characterize the movement of the complete heart
muscle.

Results: The work is evaluated with several sequences of cardiac CT. The left ventricle was used as object of evaluation.
Several metrics were used to validate the proposed framework. The efficiency of our method is also demonstrated by
comparing with other techniques.

Conclusion: The implemented tool can enable physicians to better identify mechanical problems. The new correction
scheme substantially improves the segmentation performance. Reported results demonstrate that this work is a promising
technique for heart mechanical assessment.

Keywords: Segmentation, Spatiotemporal point distribution model, Local image features, Optical flow, Hermite
transform, Cardiac CT sequences

1. Introduction

Cardiac CT is currently one of the main types of ra-
diological images used for heart analysis. Image slices
showing the structural composition of the heart can be ob-
tained with CT scanners [1]. The continued improvement
of multidetector CT scanners has increased the potential
of cardiac CT as clinical tool for heart imaging [2]. Since
heart failure is one of the main health problems in devel-
oped and developing countries [3], tasks focused on cardiac
analysis are of main concern for physicians. Several bene-
fits of CT systems have been recognized to evaluate heart
functions. Quantification of the ejection fraction, left and
right ventricular functions, and wall motion evaluation are
examples of typical uses of cardiac CT data [4].
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The natural movement of the heart implies that its me-
chanical behavior must be evaluated as well. The spa-
tiotemporal data obtained from cardiac CT studies can be
used in computer-aided systems to evaluate the cardiac
function, which has become essential over the past few
years allowing faster assessments in the diagnosis process
[5]. Since the left ventricle is vital for the proper func-
tioning of the heart, it has become of major interest when
analyzing cardiac images. In cardiac CT heart is com-
monly scanned at increments of 10 % of the cardiac cycle
providing a 4D dataset.

Shape extraction for volume measurement and motion
estimation are the most typical tasks for heart evaluation
where computer-based algorithms are extensively used
[6, 7, 8, 9]. In this sense, development of new and most effi-
cient algorithms, methods and mathematical models to an-
alyze cardiac structures in CT data are activities of great
interest for researchers.

In a general sense, basic processes like segmentation and
optical flow estimation are primary steps before applying
higher processes like image interpretation. Cardiac CT se-
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quences constitute great challenges for segmentation and
motion estimation algorithms. A typical problem when
working with medical images is that they may vary con-
siderably from one patient to another, from an image pro-
cessing point of view. These variations are perceived as
changes of contrast, size and geometrical shape. Cardiac
CT images do not scape from these kinds of problems.
Even though development of segmentation and optical flow
estimation algorithms imposes issues that researches have
tried to solve for several decades, the problem remains
open. Recent thorough reviews of segmentation techniques
applied to cardiac images [10, 11] conclude that shape ex-
traction in heart images remains a very challenging task.

Active Shape Models (ASM) [12] have gained enormous
popularity during the last twenty years and have been ex-
tensively used for modeling 2D and 3D data in cardiac
imaging [13, 14, 15]. We opted for this approach due to its
ability to represent specific shapes of an image. Problems
regarding the contrast and shape variability can be easily
overcome with ASM-based algorithms. Related literature
deals with active shape models as methods to analyze car-
diac images [14, 16]. ASM have also been combined with
other methods with the aim of segmenting heart images
[6]. Modifications of the original approach become neces-
sary for improving the segmentation performance in some
cases when the training samples are scarce [14]. However,
issues of ASM are evident when the number of training
samples is small. It is therefore necessary to design new
strategies to overcome these problems.

The dynamic nature of the heart has motivated re-
searchers to design image tracking algorithms to process
cardiac images [17, 9, 18]. Tracking heart structures like
the left ventricle or the myocardial wall can be performed
using optical flow estimation methods which also allow
computing the displacements of the cardiac structures in
a sequence of images. For this purpose we used a differen-
tial approach defined in the Hermite transform (HT) space.
The HT is a bio-inspired human vision model that decom-
poses an image with a set of orthogonal functions defined
by the Hermite polynomials. Image patterns and struc-
tures relevant to human vision perception such as oriented
edges and textures can be efficiently represented with the
HT. The proposed optical flow estimation approach us-
ing the HT allows defining local image constraints and a
multiresolution strategy within differential scheme and are
relevant in a perceptual sense as described in [8].

Our main goal is to build a tool that may help physicians
evaluate heart mechanical functions. In order to achieve
our objective, we implemented a framework with two main
processes: 1) A segmentation stage based on a statistical
shape model and a new correction scheme, and 2) An opti-
cal flow estimation approach based on the Hermite trans-
form. For the first process we have designed a novel correc-
tion method that substantially improves the segmentation
performance. The goal of the new correction method is to
refine the segmentation previously achieved with the sta-
tistical shape model. It consists of a deformable scheme

that combines three image parameters: histogram, gradi-
ent and a binary pattern. These parameters are locally
computed for each point of the contour of the segmenta-
tion. This work is entirely focused on analyzing sequences
of cardiac CT images (2D + time). The algorithms are
specifically applied to the left ventricle because it is re-
sponsible for some of the most vital functions of the heart.
Cardiac CT studies are analyzed using the original axial
view. Nevertheless, the method can be extended without
major problems to other views. Although short and long
axis are the most accepted views used for cardiac analy-
sis, the original axial view is also very important for this
task [19]. Combined results of both algorithms are pre-
sented. Vectors indicating the motion of the left ventricle
are jointly used with contours of the segmentation. Results
are evaluated with several image sequences using quanti-
tative and qualitative analysis.

The rest of the paper is organized as follows. Mate-
rial used in this work is described in Section 2. Methods
are depicted in Section 3. Here, segmentation and optical
flow approaches are included. Results and discussions are
finally presented in Sections 4 and 5 respectively.

2. Materials

Our dataset consists of 40 sequences of cardiac CT im-
ages. Selected sequences used for evaluation show the left
ventricle at half of the heart. The tomographic studies
were acquired with a SIEMENS 16-slice CT system at 120
kVp of tube voltage and 900 mA. The scanner is composed
of 128 detectors and is synchronized with the ECG signal.
Each image has a size of 512 x 512 pixels, quantized to 12
bits per pixel. A contrast agent was also applied to each
patient. Each sequence is composed by 10 frames show-
ing the heart variation throughout the entire cardiac cycle
from diastole to systole.

3. Methods

3.1. Statistical model of shape

Active shape models are one of the most powerful seg-
mentation tools for medical image analysis. They consist
of a statistical model that can be deformed within a spe-
cific range defined by a training set [12]. Here, shapes are
represented using discrete points in the spatial domain.
These points are commonly called landmarks when they
are used to depict anatomical structures. Two main stages
must be implemented in ASM algorithms: 1) Training of
the statistical model, and 2) Segmentation of new images
using the statistical model. An appearance model for each
landmark is also required.

The trained model encodes the principal modes of varia-
tion of the landmarks. When these landmarks represent bi-
ological structures, they can be categorized as anatomical,
mathematical and pseudo-landmarks [20]. In our model
we used four mathematical landmarks and several pseudo-
landmarks (see Fig. 1).
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Fig. 1 Landmarks of the shape. (a) Four mathematical landmarks,
(b) Pseudo-landmarks (white points).

3.1.1. Spatiotemporal point distribution model

We adopted the method in [21] to build the statisti-
cal model. N samples, each one represented by r points,
are used for training. Each sample corresponds to an im-
age sequence. Landmarks of all the frames are concate-
nated in one shape vector. Let Si be the vector describ-
ing shape i of the training set; it can then be obtained
by concatenating the Pij landmarks of the analyzed ob-

ject: Si = (Pi0, Pi1, . . . , Pi,r−1)
⊤

with i = 1, 2, . . . , N and
j = 0, 1, . . . , r − 1. ⊤ is the transpose of the vector.

A training set previously marked is needed in order to
build the statistical model. For this task we created an
interactive graphic interface that enables manual segmen-
tation.

A sequence of cardiac CT images includes temporal and
spatial information. In this method both types of infor-
mation are represented using a unique shape vector. This
shape representation is commonly called spatiotemporal
[18]. All the landmarks are concatenated beginning with
the first frame of the sequence (represented by the time t0)
and ending with the last one (denoted by the time variable
t9). Each shape vector is then computed as:

Si =
{
xi0t0 , yi0t0 , xi1t0 , yi1t0 . . . , xi(n−1)t0 , yi(n−1)t0

. . . , xi0t9 , yi0t9 , xi19 , yi1t9 . . . , xi(n−1)t9 , yi(n−1)t9

}⊤
(1)

where
{
xijtf , yijtf

}
is the set of landmark coordinates;

tf (f = 0, 1, . . . 9) indicates a frame of the sequence;
i = 1, 2, ..., N indicates a spatiotemporal shape, n is the
number of points for each frame of the sequence, and N is
the number of sequences of the training set. The statisti-
cal model used in this work is referred to as Spatiotempo-
ral Point Distribution Model (STPDM) [21] and its con-
struction can be achieved with the approach described in
[12, 22, 21], which will be shortly explained in this section.

The training set is firstly aligned. The Generalized Pro-
crustes Analysis GPA [20] is very efficient for this task. A
final mean shape S̄ is computed using the aligned shapes
Xi:

S̄ =
1

N

∑
i

Xi (2)

Principal Component Analysis (PCA) must be per-
formed in order to assemble the STPDM. The set of eigen-
vectors ek corresponding to the highest eigenvalues λk are
obtained with the aim of coding the principal modes of
variation for each landmark. Hence, the STPDM is com-
puted as:

S = S̄ +Mb (3)

where M is the eigenvectors matrix and b is the shape
parameter. New shapes can be generated by varying the
values of b. An appearance model must also be built
for each landmark during training and is used to guide
the STPDM in the segmentation process. In order to
strengthen the edge-based adaptation of the algorithm, in-
tensity and gradient profiles for each landmark are used.
Once the statistical model and the appearance parameters
have been calculated, new sequences can be segmented.
With the STPDM we code the position of one landmark
not only with respect to similar landmarks in the same
frame, but also with respect to the rest of the landmarks
of the other frames. The configuration of the spatiotempo-
ral shape vector imposes an additional constraints in the
deformation process. The algorithm followed in this work
can be reviewed with more details in [22].

3.2. Segmentation correction algorithm

One of the main problems of ASM arises from the lim-
ited number of training samples used to build the statis-
tical model. Ideally, the number of pre-segmented se-
quences needed to build a very efficient PDM must be
at least the number of landmarks used to describe the
shape sequence. The quantity of significant eigenval-
ues obtained with PCA depends on the number of shape
samples (for N training samples, it is possible to obtain
at least N − 1 significant eigenvalues). This causes that
small details of the analyzed object can not be segmented
because the deformation capabilities of the STPDM are
poor. Davatzikos et al. [23] proposed a hierarchical model
to overcome the problem of lack of data in the training
set. They used a wavelet representation of the shape vec-
tors to build the statistical model at the level of sub-bands.
Substantively, the number of training samples is increased
by using this framework. Following with the same idea,
Nain et al. [24] extended the method to 3D data by using
spherical wavelets. Despite these approaches are efficient
in managing the set of training data, the performance de-
pends on the number of decomposition levels used for the
model construction.

Instead of improving the ASM formulation, in this work
we focused our effort in correcting the segmentation er-
rors by using a simple but an effective method to find
better local positions of the shape landmarks and making
them to be deformed independently of the general shape
parameters. We assume that the segmentation with the
ASM algorithm has reached a stable condition, it means
that the active search has converged to a final solution
in which global characteristics of the object were found.
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Fig. 2 Illustration of the deformation process carried out after the
ASM segmentation. The blue line is the contour which is adapted to
find the edges of the object (black lines). Since ASM algorithms lack
of strong capacity of deformation when the STPDM is built with
few training samples, small details are difficult to segment (see left
image).

Small details of the object have to be segmented with our
correction method. In figure 2 we graphically outline the
deformation process to be followed after the ASM stage.
Three image parameters are taken into account for the
final adaptation.

Our correction algorithm aims to adjust the discrete
contour to the boundaries of the object of interest. From
figure 2 we can see that there are several object bound-
aries in which the blue contour can be deformed, however
the correct one has to be identified. Intensity and gradi-
ent information, as well as a binary pattern are used as
image features to adjust each landmark. In order to main-
tain a smooth contour, these parameters are embedded
into a parametric active contour functional. The compu-
tation of these parameters is explained below. Moreover,
better positions for the landmarks are found along the nor-
mal direction. Because we characterize the left ventricle
boundaries using local edge and gray level features, we ap-
plied a Gaussian filter to each input image of the complete
sequence. It allows improving the process of feature ex-
traction to better describe the boundaries of the analyzed
object.

3.2.1. Binary pattern

The first parameter used for edge characterization is a
binary pattern that codes local information around each
landmark. The goal is to find the relationship between a
point and its neighborhood. Intensity points are sampled
and compared with the analyzed landmark. For landmark
j of frame tf , we define the binary pattern as:

BPj,tf =
{
Hd

(
Qj,tf (m,β)− Ij,tf

)}
(4)

with 0 ≤ (Q, I) ≤ Gmax;m ∈ R; 0 ≤ β ≤ 2π. Here,
Hd(y) is the Heaviside function, Gmax is the maximum
image intensity, Ij,tf is the intensity of the analyzed land-
mark, and Qj,tf (m,β) is the intensity at a distance m and
angle β of the analyzed landmark. The pattern is therefore
a set of binary elements obtained with a specific configura-
tion given by the parameters m and β. Figure 3 illustrates

Fig. 3 Example of the binary pattern BP for a specific configuration.
Red points are located at a distancem and angle β with respect to the
tangent line from the blue point u which is the analyzed landmark.
Q and I are the intensities of the red and blue points respectively.
Depending on the intensity level, the difference Q− I can be either
positive or negative. For this example, we consider that intensity of
the white region is higher than the dark one.

an example of a particular configuration used to obtain the
binary pattern.

A reference binary pattern BPr for each landmark is
also needed. This must be previously trained. Because
the objective is to find better positions for the landmarks,
the BP is computed for several points in the normal di-
rection and afterwards compared with the corresponding
trained reference. A similarity metric designed for binary
data is used for comparison purposes. We selected the Jac-
card distance JD since it constitutes an efficient method
to compare binary data [25]. Let BPr and BPXn be two
sets of binary patterns where each element corresponds
to an individual outcome. The Jaccard distance between
them is computed as:

JDXn =

(
1− DJ11

DJ01 +DJ10 +DJ11

)
j,tj

(5)

where,
DJ01 is the number of elements being 0 in BPr and 1

in BPXn .
DJ10 is the number of elements being 1 in BPr and 0

in BPXn .
DJ11 is the number of elements being 1 in BPr and 1

in BPXn .
Here, BPXn is the binary pattern computed for a point

X in the normal direction of the landmark (j, tf ). This
metric ranges within the interval [0, 1], being 0 the value
obtained when both patterns are equal. The binary pat-
tern helps identify the side of the object which a particular
landmark belongs to.

3.2.2. Intensity parameter

The intensity parameter corresponds to the second im-
age feature used to characterize the boundaries of the an-
alyzed object. Here, a local histogram LH is associated
with each landmark. Similarly, we need to train a local
histogram which is subsequently used as reference in the
final deformation process. Then, for each point in the nor-
mal direction of the landmark (j, tf ) we compute the local
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histogram LHXn and is compared with the reference LHr.
As metric of comparison we used a vector space distance
[26] defined as:

HDXn =

( ∑
i LHXn(i)LHr(i)√∑

i LHXn(i)
√∑

i LHr(i)

)
j,tf

(6)

where i indicates a bin of the histogram. When both his-
tograms are very similar the distance HD approximates to
1. This parameter maintains the landmarks in the bound-
ary of the left ventricle, preventing the deformation to
other close boundaries.

3.2.3. Gradient parameter

Because the gradient is the standard operator to find
edges inside an image, it is included as the third param-
eter in our segmentation correction algorithm. Therefore,
the image gradient is locally computed and normalized for
each landmark of the discrete contour. It is referred to as
GI.

3.2.4. Embedding the parameters into an active contour

In order to provide a transparent way to deform the
landmarks, we embedded the parameters as image ener-
gies into a parametric active contour functional. This also
allows controlling the deformation through the internal en-
ergy of the active contour. We implemented a Greedy
algorithm [27] which is more suitable for discrete approx-
imations. The energy of the active contour is written as:

E (X) = µEint (X) + Eima (X)

= µEint (X) + λJD (X) + α (1−HD (X))

+ β (1−GI (X))

(7)

where µ, λ, α and β are weight values that control the
contribution of the parameters; Eint and Eima correspond
to the contour and image energies respectively; X ∈ R2.

3.3. Differential optical flow estimation methods

The optical flow estimation is calculated in those situ-
ations where the displacement or corresponding of pixels
into two images is required, e.g., image registration and
reconstruction applications, video compression, motion–
based segmentation, medical imaging, etc.

In [28] Gibson defined the optical flow (OF ) as a 2D
distribution of ”apparent velocities” of the objects in the
scene, that in most cases are associated with intensity vari-
ations of the objects into a image sequence. It is repre-
sented by a vector field that represents the displacement
of pixels.

The classical differential optical flow methods assumes
that the intensity value of the objects remain constant in
two consecutive time instants of a image sequence L(X, t).
This assumption was proposed by Horn and Schunck in

1981 [29] and is known as the Constant Intensity Con-
straint :

L(X +W, t+ 1)− L(X, t) = 0 (8)

where X = (x, y, 1)⊤ is the pixel location, W := (u, v, 1)
⊤

represents the horizontal and vertical pixel displacements
respectively between two images at time t and (t+ 1).

If small displacements is assumed a Taylor expansion
is considered and the Optical Flow Constraint equation is
obtained:

W⊤ (∇3L) = 0 (9)

where ∇3L := (Lx, Ly, Lt)
⊤
and Lx, Ly, Lt are the deriva-

tives of the intensity image L(X) in x, y directions and
time.

If only the Constant Intensity Constraint is used it is not
possible to determine the two components of displacement
u and v, and we are deal with an ill–posed problem known
as Aperture Problem where only the normal component
of the motion can be obtained [29]. Therefore, we need
additional constraints to fully calculate the optical flow.
Recent differential optical flow methods have proposed ad-
ditional constraints to overcome the aperture problem and
to improve accuracy of the displacement obtained, where
add local image constraints, include spatial coherence, use
statistical robust optimization functions and multiscale ap-
proaches have been suggested [30].

Horn and Schunck [29] proposed the Smoothness Con-
straint wich assumed that the flow is smooth, i.e., pixels
within a neighborhood have similar magnitude and orien-
tation. Thereby, the optical flow estimation method of
Horn can be found minimizing, by an iterative approach,
the following energy functional:∫

Ω

(
W⊤ (∇3L∇3L

⊤)W + α|∇W |2
)
dX (10)

where Ω is the image domain and α is a smoothness pa-
rameter.

The main disadvantage of the uniform smoothness in
Eq. 10 is that it results in an excessive smoothing of edges
in the flow. To avoid this problem a flow–driven smooth-
ing approach can been used mainly in images strongly tex-
tured [31]:∫

Ω

(
W⊤ (∇3L∇3L

⊤)W +αΨ
(
|∇u|2+ |∇v|2

))
dX (11)

where Ψ
(
s2
)
is a smooth function convex in s.

In most cases the constant intensity constraint and the
small displacements assumption of Eqs. (8) and (9) are
not fulfilled, as in the CT images case. Therefore, to over-
come the problem that the intensity does not is constant
in the image sequence, an additional term independent
to intensity change is required, e.g., the image gradient.
Secondly, to handle large displacements novel differential
methods propose adopted multiresolution strategies and
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use the original constancy assumptions in their non–linear
form leaving the minimization for the numerical solution.

Papenberg et al. [32] proposes a method (OF–Warp)
that takes into account the variability in intensity and the
large displacements present in the images:∫

Ω×[0,t]

Ψ
(
|L(X +W )− L(X)|2+

γ|∇L(X +W )−∇L(X)|2
)
dX

+ α

∫
Ω×[0,t]

Ψ
(
|∇3u|2 + |∇3v|2

)
dX (12)

where ∇L(X) is the image gradient, γ is a weight param-

eter and Ψ
(
s2
)
is the modified ℓ1 ∗–norm [33, 30]:

Ψ
(
s2
)
=
√

(s2 + ϵ2) (13)

the values of ϵ are set in the order of 1x10−3 such that
Ψ
(
s2
)
is differentiable in s = 0 [32].

Another approach to calculate the optical flow in an
image sequence is by defining a property of conservation,
e.g., the intensity, similarly to a physical processes. In [34]
and [35] an analogy between the mass conservation of a
fluid within a volume and the intensity of voxels in a 3D
stack of images was presented.

The decrease in mass per time of a fluid with density ρ
out of the volume V can be given as

−
∫
V

∂ρ

∂t
dV (14)

where the mass inside the volume is defined by m =∫
V
ρdV .
Furthermore, the flow leaving the volume per unit time

to a velocity v in a surface S is give by
∫
S
ρvdS . Using the

divergence operator the last equation can be rewritten as
a integral over the volume as follows:∫

V

div(ρv)dV (15)

Eq. (14) holds that the mass that leave the volume is
equal to the mass in a surface S enclosing the volume (Eq.
15):

∂ρ

∂t
+ div(ρv) = 0 (16)

In the image sequence the density of fluid ρ is related
with the intensity value L and the velocity v of the fluid
with the displacement of the voxels W∗ := (u, v, w)

⊤
.

Therefore, the equation of mass conservation based optical
flow is:

Lt + div(LW∗) = 0 (17)

In [35] they defined a energy functional using a non-
quadratic penalization as Eq. 12 and the uniform smooth-
ness of Eq. 10 is as follows:∫
V

Ψ1

((
Lt + div(LW⊤

∗ )
)2)

dV + α

∫
V

Ψ2

(
|∇3W∗

2

)
dV

(18)

where Ψi is the Charbonnier optimization function [36]:

Ψi(s
2) = 2β2

i

√√√√(1 + s2

β2
i

)
; i = 1, 2 (19)

and β is a scaling parameter.
For a 2D approach of Eq. (20) the energy functional is∫

Ω

Ψ1

((
L(X)t+∇(L(X)W⊤)

)2)
dX+α

∫
Ω

Ψ2

(
|∇W⊤|2

)
dX

(20)

Optical flow estimation using the steered HT (OF–SHT)

The Eq. (12) include local characteristics of image, such
as intensity and gradient as constant constraints. A way
to represent important visual characteristics is using bio–
inspired models. Some human visual system based model
based are the Difference of Gaussians, Gabor filters and
the Hermite transform.

The Hermite transform is an image model based in a
polynomial decomposition from a perceptual standpoint
into a multiresolution scheme [37, 38]. This image model
emulate the local processing and the response of receptive
fields, e.g., the Gaussian derivative model, of the human
vision system [39, 40].

The Hermite transform is computed by a convolution of
the image L(x, y) with the analysis filters Dm,n−m [40]:

Lm,n−m(x0, y0) =∫ ∞

−∞

∫ ∞

−∞
L(x, y)Dm,n−m(x0 − x, y0 − y)dxdy

n = 0, 1, . . . ,∞
m = 0, 1, · · · , n

(21)

where Lm,n−m(x, y) are the cartesian Hermite coefficients,
m and (n − m) are the analysis order in the orthogonal
directions x and y, T is a subsamplig factor and (x0, y0)
represents the position of the sampling lattice S.

The filter functions Dm,n−m(x, y) are defined by the
analysis window v2(x, y) and the polynomials orthogonal
to this window Gm,n−m(x, y) by

Dm,n−m(x, y) = Gm,n−m(−x,−y)v2(−x,−y) (22)

For a Gaussian window v(x, y) = 1
σ
√
π
exp

(
− (x2+y2)

2σ2

)
with unitary energy for v2(x, y) the polynomials of the
expansion are:

Gm,n−m(x, y) =
1√

2nm!(n−m)!
Hm

(x
σ

)
Hn−m

( y
σ

)
(23)

where Hn

(
x
σ

)
are the generalized Hermite polynomials by

a Gaussian window with variance σ2 and are given by Ro-
drigues’ formula:

Hn

(x
σ

)
= (−1)n exp

(
−x2

σ2

)
dn

dxn exp

(
−x2

σ2

)
(24)
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As the Gaussian window is isotropic the Hermite filters
Dm,n−m(x, y) = Dm(x)Dn−m(y) are separable and can be
obtained by

Dn(x) =
(−1)n√
2nn!

1

σ
√
π
Hn

(x
σ

)
exp

(
−x2

σ2

)
(25)

A steerable version of the Hermite transform can be
defined by rotating the cartesian Hermite coefficients
Lm,n−m(x, y) by the angular functions gm,n−m(θ) by

lm,n−m,θ(x0, y0) =

n∑
k=0

(
Lk,n−k(x0, y0)

)(
gk,n−k(θ)

)
(26)

where gm,n−m(θ) express the directional selectivity of the
filter [38]:

gm,n−m(θ) =

√( n

m

)(
cosm (θ)

)(
sinn−m (θ)

)
(27)

The steered Hermite coefficients lm,n−m,θ(x, y) allows
adapt the analysis process to the local content of the im-
age, e.g., using directional Gaussian derivatives filters [41].

The local orientation angle θ can be estimated by a cri-
terion of maximum energy direction, where the cartesian
coefficients L01 and L10 are a good approximation of the
gradient of the image and they can give the orientation of
the edges as follow:

θ(x, y) = arctan
L0,1(x, y)

L1,0(x, y)
(28)

To illustrate the steering property of the Hermite trans-
form in Fig. 4b we show the steered Hermite coefficients
of the corresponding cartesian Hermite coefficients of Fig.
4a according to the gradient orientation.

The Hermite transform can be used to defined a energy
functional using perceptive features as constant local con-
straints (see [8] to more detail). The proposed functional
include in the data term a constant intensity constraint us-
ing the zero order coefficient L0 and the steered Hermite
coefficients ln,θ up to order N as a constant high order
constraint of local features [32], the last term allow deal-
ing with intensity changes in the image sequence where
the constant intensity constraint fails. For the smoothness
term, that allows us to recover the flow in homogeneous ar-
eas of the image, a flow–driven regularizer [31] was used.
Thereby, a bio–inspired energy functional that uses the
Hermite transform to extract relevant perceptive features
is defined as follow:∫

Ω

Ψ

(∣∣∣L0(X +W )− L0(X)
∣∣∣2+

γ
( N∑
n=1

∣∣∣ln,θ(X +W )− ln,θ(X)
∣∣∣2))dX

+ α

∫
Ω

Ψ
(
|∇u|2 + |∇v|2

)
dX

(29)

where γ determines participation of the constant intensity
and high order features constraints, N is the maximum or-
der of polynomial expansion, Ψ is the modified ℓ1 ∗–norm
of Eq. (13) and α is a smoothness weight which affects the
flow smoothing given a smoother flow for large values.

For find the minimum of Eq. (29) the Euler–Lagrange
equations are obtained and an outer fixed point iteration
process and successive over-relaxation (SOR) iteration ap-
proach is performed to compute the solution of the equa-
tions. The non–linear terms are overcome by using a 1st
order Taylor expansion after the minimization of the func-
tional.

Finally a multiresolution strategy is carried out in coarse
levels by calculating small displacements, and thus not vi-
olate the Taylor expansion. Then the solution is propagate
to the finer levels using a Gaussian pyramid.

4. Experiments and results

4.1. Segmentation

In this section we present results of the segmentation
stage. To carry out the experiments we configured the
algorithms as follows. A total of 50 points were used to
represent the left ventricle in each frame of the sequence.
It means that the spatiotemporal shape was built with 500
landmarks. A maximum of 25 iterations were enough to
reach a stable solution in the ASM stage. Similarly, 5 it-
erations were used for the correction algorithm. The algo-
rithm was initialized using the mean spatiotemporal shape.
It was manually put very close to the object of interest.
The first frame of the sequence was taken as reference to
initialize the algorithm. With the aim of maintaining a
standard experiment, we used the same initialization for
each proof. The STPDM was trained using 35 samples.
The complete dataset was validated using the leave-one
out method.

The correction algorithm is executed when the ASM al-
gorithm has converged. It was applied to each frame sepa-
rately. The segmentation correction algorithm uses several
weight parameters that need to be configured. Energies of
the correction scheme were normalized to [0, 1]. Although
the weight parameters are difficult to select and depends
on the particular image sequence, we experimentally found
that good segmentation results for our dataset are achieved
with µ = 0.3, λ = 0.3, α = 0.2 and β = 0.2.

One of the main advantages of statistical shape models
is that they can perform efficient segmentations with noisy
data. Since the PDM can only deform in the range spec-
ified by the training set, it can achieve acceptable results
even in the presence of noise. Unlike, the correction algo-
rithm can be affected by the image noise because it freely
deforms the contour points without taking into account
the shape of the object. We then reduce the effect of the
image noise by previously applying a Gaussian filter to the
sequence of images.

Qualitative and quantitative analysis are exposed in this
section. The assessment is addressed by comparing with
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(a) (b)

Fig. 4 a Cartesian Hermite coefficients and b the steered Hermite coefficients for N = 2 (n = 0, 1, . . . , N and m = 0, 1, · · · , n) of a cardiac
CT image at 20% of the cardiac cycle

the manual segmentation. With the aim of verifying the
efficiency of the proposed approach, we compared the ob-
tained results with the classical ASM [12] which was ap-
plied frame by frame.

Fig. 5 illustrates results of the segmentation obtained
for 6 frames extracted from 2 different sequences of the
dataset. For visualization purposes, we used linear inter-
polation to draw continuous contours. Images in Fig. 5a,
5b and 5c were taken at 0%, 30% and 60% of the cardiac
cycle respectively.

Red, green and blue contours correspond to manual an-
notation, segmentation with the proposed method and seg-
mentation with the classical ASM method respectively. As
can be seen, the best results were reached with our method.
This behavior is similar for the rest of the sequences of our
dataset.

Two metrics were used to provide quantitative results of
the segmentation: the Dice Similarity Coefficient (DSC)
and the average point-to-curve distance. These metrics
were calculated for each frame of the sequences. Fig. 6
presents the DSC obtained for 16 sequences using our seg-
mentation approach. Results for three frames of each se-
quence at different cardiac phases are visualized. The per-
formance reached for the proposed segmentation scheme
is over 90% in most cases. This behavior is repeated for
the rest of the sequences. A maximum DSC of 0.9855 and
a minimum of 0.8141 were obtained, which represent the
best and worst result respectively. Fig. 7 visualizes the
areas of the best and worst result obtained. These areas
correspond to regions enclosed by the contours. In the
binary images, the white region is the object of analysis
(left ventricle) and the black part is the background. The
error region obtained by comparing the segmentation of

the proposed method against the manual one is shown as
well. This is the result of computing the difference be-
tween both binary images: Ierr = abs(Im − Ia), where
Im and Ia are the corresponding binary images obtained
through with the manual segmentation and the proposed
method respectively, Ierr represents difference where the
black part is the overlapped region and the white region is
the error.

We are also interested in evaluating how the correction
algorithm improves the results of the STPDM. We then
compared both stages of the segmentation method. In
table 1 the point-to-curve distance values are reported for
the proposed correction method, the STPDM and the clas-
sical ASM. Results are presented for all 10 frames of the
spatiotemporal shape and averaged for all the sequences.
It can be seen that the correction method improves the
segmentation with respect to the STPDM in all cases.

Fig. 8 visualizes the final improvement carried out by
the correction algorithm. Two images at different cardiac
phases are evaluated. It can be seen that small details are
subsequently segmented with our correction algorithm.

4.2. Optical flow estimation

Due to the very complex 3D motion pattern of the
heart, the intensity of movement varies for different cardiac
anatomies and within the cardiac cycle. In cardiac CT se-
quences, we can see that the strongest cardiac movement
takes place during contraction of the atria and ventricles
in systole, approximately between 0% and 30% of the car-
diac cycle [42]. The short end–systolic rest phase is fol-
lowed by a continuous filling phase of the ventricles during
diastole that slows down towards mid- and end–diastole.
The movement of relaxation during diastole can be seen
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(a) Seq. 1 - 0% (b) Seq. 1 - 30% (c) Seq. 1 - 60%

(d) Seq. 2 - 0% (e) Seq. 2 - 30% (f) Seq. 2 - 60%

Fig. 5 Segmentation results for three frames at different cardiac phases: 0%, 30% and 60%. Results are illustrated for two sequences:
(a)-(c) correspond to sequence 1. (d)-(f) correspond to sequence 2. The red contour is the manual segmentation, the green contour is the
segmentation obtained with the proposed method, and the blue contour is the result using the classical ASM method.

between 40% and 60% of the cardiac cycle. According to
Ohnesorge and Flohr [42] the least amount of movement
is observed in end-systole and mid- to end-diastole of the
cardiac cycle.

We show the resulting optical flow estimation for two se-
quences in Fig. 9. The first sequence was analyzed at 20%
and 30% of the cardiac cycle (systole) to view the strongest
cardiac movement. The second sequence was processed at
50% and 60% to view the movement of relaxation during
diastole. In order to compare our algorithm, two optical
flow results are shown. The first one was obtained apply-
ing the method of Papenberg et al. [32] and the second
using the Steered Hermite transform (Eq. (29)).

In order to evaluate the optical flow estimation perfor-
mance, we used an image reconstruction approach which
consists of reconstructing sequential images from their ad-
jacent images and their motion vectors, i.e., the computed
optical flow for a particular image in a sequence is used to
estimate the next image in that sequence.

For the reconstruction algorithm we used the forward
reconstruction [43]. Let us consider two adjacent images

in the CT sequence L(x, y, t) and L(x, y, t + 1), and the
optical flow (u, v) between them. Given the pixel values of
the first image, we can calculate the gray value at (x, y) in
the second image using spline interpolation. With the re-
constructed sequential images we then measured the Root
Mean Squared (RMS ) error of the prediction. We calcu-
lated the RMS error using the two optical flow methods.
The RMS is defined as:

RMS error =

√√√√∑x

∑
y

(
L(x, y, t)− L̂(x, y, t)

)2
M×N

(30)

where L(x, y, t) and L̂(x, y, t) are the true and recon-
structed images of size M×N at time t.

In Fig. 10 we show the forward reconstruction results at
20% and 30% of the cardiac cycle for one sequence, and at
50% and 60% for a second sequence respectively. The first
row corresponds to the slices at 20%, 30%, 50% and 60%
of the cardiac cycle, and the vector field representing the
motion of the left ventricle. The second row shows the for-
ward reconstruction using the two optical flow estimation
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Fig. 6 Dice Similarity Coefficient
(DSC) for 16 sequences. The coeffi-
cients are shown for 3 frames of each
sequence. Image 1 is at 0% of the car-
diac cycle, image 2 is at 40% and image
3 is at 80%.

Table 1 Point-to-curve distance averaged for all the sequences. Results are presented for the complete cardiac cycle.

Frame Correction Algorithm STPDM Classical ASM
(Cardiac Phase) mean ± std (mm)
Frame 1 (0%) 1.9328 ± 0.5300 2.436 ± 0.572 2.912 ± 0.669
Frame 2 (10%) 2.1397 ± 0.4655 2.684 ± 0.574 3.339 ± 0.835
Frame 3 (20%) 2.3003 ± 0.7580 2.972 ± 0.878 3.750 ± 1.153
Frame 4 (30%) 2.0529 ± 0.5877 2.965 ± 0.714 3.907 ± 0.928
Frame 5 (40%) 2.0814 ± 0.5864 2.927 ± 0.713 4.292 ± 1.199
Frame 6 (50%) 2.1613 ± 0.7988 2.864 ± 1.049 3.884 ± 1.070
Frame 7 (60%) 1.9208 ± 0.4868 2.471 ± 0.769 3.326 ± 0.983
Frame 8 (70%) 1.9221 ± 0.4621 2.382 ± 0.592 3.115 ± 0.719
Frame 9 (80%) 1.9528 ± 0.3579 2.486 ± 0.748 3.251 ± 0.702
Frame 10 (90%) 1.8493 ± 0.3201 2.452 ± 0.679 3.236 ± 0.973

Fig. 7 Areas of the segmentation obtained for the best and worst
result, considering individual frames of the complete dataset.

methods. The third row shows the absolute error between
the true second image and the reconstructed image using
the displacement vectors of the second row.

For a deeper analysis, the RMS error throughout the
cardiac cycle for 10 sequences was performed. The RMS
error was calculated in a region near to the manual anno-
tated left ventricle. In Fig. 11 we show a comparison of the
reconstruction performance using both methods. Here, we
note that the RMS error is smaller using the SHT-based
optical flow estimation approach.

Fig. 12 shows the optical flow result for a frame of the
Dimetrodon sequence to test the performance of the OF–
SHT Method. This test sequence is available from the web
site http://vision.middlebury.edu/flow/data/ and it
forms part of a database for evaluation of current optical
flow methods.

Because of the presence of constant gradient and high or-
der features constraints in Eqs. (12) and (29) we tested the
performance of OF–SHT and OF-Warp methods in a first
experiment. We added Gaussian noise of mean zero and
different standard deviations. In table 2 we compare the
average angular error of OF–Warp and OF–SHT methods
for different noise levels and using optimised parameters
γ, α and N .

The angular error (AE) was computed as was proposed
by Barron et. al in [44]:

AE = arccos (−→u · −→v ) (31)

where · is the the dot product, and −→u = (u0, u1) and
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(a) STPDM Segmentation -
Im1

(b) Segmentation Correc-
tion - Im1

(c) STPDM Segmentation -
Im2

(d) Segmentation Correc-
tion - Im2

Fig. 8 Correction scheme applied to two images at phases 40% and 90% of the cardiac cycle. (a)-(b) Results for image 1, and (c)-(d) Results
for image 2.

Table 2 Average angular errors (AAE) computed for the
Dimetrodon sequence with varying standard deviations σn of Gaus-
sian noise.

Gaussian noise OF–SHT OF–Warp
σn AAE±std ( ◦) AAE±std ( ◦)
0 2.7287 ± 5.8332 3.0387 ± 5.9236
10 7.4991 ± 10.3342 6.1124 ± 7.8844
20 9.8038 ± 14.169 7.5504 ± 9.1794
40 25.8927 ± 32.4171 8.5613 ± 10.283

Table 3 Average angular errors computed for the Dimetrodon se-
quence with parameter variation for OF–SHT method.

N α γ AAE±std ( ◦)
5 100 600 2.7287 ± 5.8332
4 100 600 3.0587 ± 5.9176
9 100 600 3.3247 ± 6.9388
5 50 600 3.1488 ± 7.0611
5 200 600 3.7013 ± 7.4547
5 100 300 2.909 ± 6.0738
5 100 1200 2.8359 ± 5.9213

−→v = (v0, v1) denotes the correct flow and the estimated
flow, respectively.

In the second experiment we evaluated the robustness
of the parameters in the OF–SHT method: the maximum
order N of the Hermite expansion, the smoothness param-
eter α, and the weight parameter γ between the intensity
value and the high order features assumption. The results
shown in table 3 shows that the OF–SHT approach is ro-
bust under parameter variations.

4.3. Combining segmentation and motion estimation of
the left ventricle

The objective of this work is to develop a method for the
analysis of cardiac CT image sequences. This application

can help physicians evaluate qualitatively several left ven-
tricle parameters such as volume, myocardial deformation,
ejection fraction and others [3]. Although the main effort
is made on the left ventricle, the rest of cavities are also
very important for the cardiac evaluation. In this applica-
tion the segmentation is the first step and is used to isolate
the left ventricle for further analysis. Optical flow vectors
are only shown on the contour of the segmentation. This
constitutes an efficient way to assist physicians to identify
some failures of the cardiac function.

Fig. 13 illustrates the vector field for two sequences of
the dataset. Four frames of each sequence are shown. The
frames show the heart at 0%, 30%, 60% and 80% of the
cardiac cycle. Vectors of the four frames were computed
using images of the phases 0-10%, 30-40%, 60-70% and
80-90% respectively. The set of vectors in the first image
pointing inwards the left ventricle indicates the beginning
of the contraction or systolic cycle, meanwhile the last im-
age outlines the end diastolic or relaxation period with
the vector field pointing outwards. A complete visualiza-
tion and a subsequent analysis of the whole cardiac cycle
can be carried out by using this technique in the complete
dataset. This method can then be used as a tool to assess
the heart mechanical function.

4.4. Technical implementation and run-time

Both algorithms, segmentation and optical flow estima-
tion, were implemented in Matlab R2013b using a 2.1 GHz
machine composed by 12 processors. The machine also has
a 16 GB memory. Each image sequence were selected from
a 4D cardiac CT study with 10 volumes which describes
the complete heart cycle. Sequences are then composed
by 10 images with a size resolution of 512 x 512 pixels.

For the manual segmentation, we created an interac-
tive graphic interface that enables the experts to mark the
contour of the left ventricle in the images. The applica-
tion allows selecting specific image sequences from the 4D
cardiac CT to go through with the annotation process.

The segmentation algorithm was configured to stop until
reaching 25 iterations for the ASM stage and 5 iterations
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(a) Seq. 1 – 20% (b) Seq. 1 – 30% (c) Seq. 2 – 50% (d) Seq. 2 – 60%

(e) OF 20–30% (f) OF* 20–30% (g) OF 50–60% (h) OF* 50–60%

Fig. 9 Optical flow results for two sequences computed at phases 20–30% and 50–60% using [32] (OF ) and the SHT-based method (OF* ).
(a)-(b) and (e)-(f) correspond to sequence 1 at 20–30%. (c)-(d) and (g)-(h) correspond to sequence 2 at 50–60%.

for the correction one. The run-time for each iteration in
the segmentation algorithm was about 2.8s for the ASM
stage and 15.5s for the correction method.

The optical flow estimation using the Hermite transform
algorithm uses a non optimized implementation using the
convolution operator for compute the Hermite coefficients
and the multiresolution resolution process of the Euler–
Lagrange equations is not optimized. The process time
was 40 seconds for two images of the sequence using 10
levels of decomposition, 5 outer fixed point iterations and
10 SOR iterations.

It’s important to mention the the optical flow method
does not focus on fast computation but if on high accu-
racy, thus, to improve time performance a fast Hermite
transform (FHT) can be used [38], where only sums and
butterfly operations are computed similarly to the used by
the fast Fourier transform, additionally an efficient imple-
mentation of iterative processes is required to define a fast
method.

5. Discussion and conclusions

We implemented a framework for the analysis of car-
diac CT sequences using a shape extraction method and
an optical flow estimation approach. The left ventricle
was used as object of interest. We firstly performed the
corresponding segmentation using a STPDM which con-
sists of a trained statistical model that codes spatial and
temporal information of the sequences. Errors of the seg-
mentation were subsequently corrected using an algorithm

that incorporates three image parameters for edge charac-
terization. These parameters were embedded as image en-
ergies into an active contour model. Afterwards, an optical
flow estimation method was calculated using a bio-inspired
differential approach. Combining the boundaries of the
segmented object and the displacements vector field ob-
tained from the optical flow estimation technique enables
physicians to carry out a better identification of mechani-
cal problems. The proposed framework was validated with
several sequences of cardiac CT images and compared with
other techniques.

Results were individually evaluated for each frame of
the sequence using several metrics. In general, the lowest
performance achieved in our segmentation method was ob-
tained for frames at half the cardiac cycle. These frames
are acquired at the end of the contraction phase, i.e., when
the heart is bombing flood to the body. The bar diagram
(Fig. 6) with the DSC analysis and the metric distance
reflect this interesting behavior. The poor definition of
edges, the low contrast and the irregular shape of the left
ventricle are causes for this result. Moreover, this can
also be a consequence of the presence of the left atrium in
the images at this cardiac phase when working with the
original axial view of tomographic studies. The high irreg-
ularity of the structures found in this part of the cardiac
cycle makes the segmentation task more complicated.

In table 1 we present comparative results of the two
stages of the segmentation: STPDM and correction al-
gorithm. As can be seen, the segmentation is substan-
tially improved with our correction scheme. In all reported
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(a) OF* 20% (P1) (b) Seq. 1–30% (P1) (c) OF* 50% (P2) (d) Seq. 2–60% (P2)

(e) FR Seq. 1–30% (f) FR* Seq. 1–30% (g) FR Seq. 2–60% (h) FR* Seq. 2–60%

(i) Difference (FR) (j) Difference (FR* ) (k) Difference (FR) (l) Difference (FR* )

Fig. 10 Forward reconstruction (FR) results for sequences 1 and 2 at phases 20–30% and 50–60% of the cardiac cycle. First row: Images at
20 – 30% and 50 – 60%, and vector field obtained using the SHT approach (OF* ). Second row: forward reconstruction using the optical flow
approach of [32] (FR) and the SHT-based method FR*. Third row: Absolute error between the reconstructed image and the true second
image using both methods. (a)-(b), (e)-(f) and (i)-(j) correspond to sequence 1. (c)-(d), (g)-(h) and (k)-(l) correspond to sequence 2.
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Fig. 11 RMS error (axis y) of the forward reconstruction using [32] (blue dashed line) and the SHT-based method (red solid line) for 10
sequences of the dataset. Axis x indicates a cardiac phase.
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(a) (b)

(c) (d)

Fig. 12 (a) Frame 10 of the Dimetrodon sequence. (b) Ground truth optical flow field. (c) Computed optic flow field using the OF–SHT
method. (d) Reference color wheel.

(a) 0% (b) 30% (c) 60% (d) 80%

(e) 0% (f) 30% (g) 60% (h) 80%

Fig. 13 Combined results obtained with the segmentation and optical flow estimation methods for two sequences at 0%, 30%, 60% and 80%
of the cardiac cycle. (a)-(d) correspond to sequence 2. (e)-(h) correspond to sequence 33.
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cases, the segmentation error is reduced when applying the
correction method. Because the correction method fol-
lows the segmentation of the statistical model, the level of
correction naturally depends on the performance initially
achieved with the STPDM. From Fig. 8 and table 1, it can
be noted that bigger corrections are reached at the con-
traction phase of the cardiac cycle. It is a logical finding
because the performance of the STPDM is lower at this
phase. Therefore, fine details of the object boundaries are
efficiently segmented with the proposed correction scheme,
reducing the segmentation errors previously obtained with
STPDM. Selection of optimal weight parameters is really
a difficult task and there is not a standard way to do that.
Since each image sequence presents different characteris-
tics of contrast and noise, values of the parameters may
require a specific configuration for each example. In this
work we have found the weight parameters experimentally.
However, it can be very interesting to design an automatic
mechanism to select them as a future contribution. In
cases when the contrast of the images is poor and the noise
is very high, it is more convenient to set higher values to
the parameter that attends to preserve the shape, as well
as to the local intensity parameter. In the correction seg-
mentation algorithm, these weight parameters correspond
to µ and α respectively. When edges and contrast are
well defined, it is preferable to give more relevance to the
energies that act on the edge features directly (λ and β).

The vector field was obtained using a differential ap-
proach incorporated into the HT domain. Several local
restrictions based on the SHT, non–linear constraints and
a multiresolution approach for large displacements were
adopted. Quantitative analysis was used to evaluate the
performance. The forward reconstruction error obtained
for the frames of the sequences shows better general per-
formance with the proposed method. From Fig. 11 is clear
that the best results (lowest error) were achieved during
the relaxation phase of the cardiac cycle. This part of the
cardiac phase presents smaller and more regular changes
of the left ventricle motion. The worst result was conse-
quently obtained in frames at the beginning of the systolic
cycle.

The field vector in the optical flow estimation method
is computed using the steered Hermite coefficients. Since
the coefficients have been steered using the direction of
maximal energy, the image noise is automatically filtered
with this operation. It means, the steering property of the
HT is indirectly filtering the image noise.

The proposed application, in which the vector field is
visualized on the contour that encloses the left ventricle, is
a promising technique for mechanical assessment of cardiac
structures. Even though this technique was applied to the
left ventricle, in future works it can be extended to others
objects and others anatomical axes.

Since heart is a volumetric organ whose natural move-
ment occurs in a 3D space, the logical task should be
performing 3D evaluations using both segmentation and
motion analysis. In the case of the segmentation, volu-

metric analysis can be provided by running the proposed
algorithm slice by slice on each cardiac volume and then
building the 3D model from the segmented slices. For
the motion estimation, the task is a little more complex
and implies to analyze more variables in order to achieve
good 3D optical flow estimations. On the other hand, even
though the heart is a structure that moves in a tridimen-
sional space, most physicians are still evaluating the heart
mechanical function using image sequences. Nevertheless,
the future trend aim at providing 3D cardiac motion anal-
ysis [3] which also implies training physicians to diagnose
based on moving volume and surface models. As future
work, we will present an extension of the proposed frame-
work to provide 3D evaluations.

Acknowledgements

This work has been sponsored by the following UNAM
grant: PAPIIT IG100814. Leiner Barba-J thanks CONA-
CYT for financial support, as well as Colciencias. Ernesto
Moya-Albor and Jorge Brieva would like to thank the
Faculty of Engineering of Universidad Panamericana
(UP) for all support in this work.

Conflict of interest

None declared.

References

[1] J. M. Budoff, J. S. Shinbane, Cardiac CT Imaging, Diagnosis
of Cardiovascular Disease, Springer-Verlag, London, 2006.

[2] J. P. OBrien, M. B. Srichai, E. M. Hecht, D. C. Kim, J. E.
Jacobs, Anatomy of the heart at multidetector ct: What the
radiologist needs to know, RadioGraphics 27 (6) (2007) 1569–
1582.

[3] C. YF., The role of 3D wall motion tracking in heart failure,
Nature Reviews Cardiology 9 (2012) 644–657.

[4] A. Mahnken, G. Mhlenbruch, R. Gnther, J. Wildberger, Cardiac
ct: coronary arteries and beyond, European Radiology 17 (4)
(2007) 994–1008.

[5] M. S. Krishnam, A. Tomasian, M. Iv, S. G. Ruehm, R. Saleh,
C. Panknin, J. G. Goldin, Left ventricular ejection fraction using
64-slice ct coronary angiography and new evaluation software:
initial experience, The British Journal of Radiology 81 (966)
(2008) 450–455.

[6] O. Ecabert, J. Peters, H. Schramm, C. Lorenz, J. Von Berg,
M. Walker, M. Vembar, M. Olszewski, K. Subramanyan,
G. Lavi, J. Weese, Automatic Model-Based Segmentation of
the Heart in CT images, IEEE Transactions on Medical Imag-
ing 27 (9) (2008) 1189–1201.

[7] S. Faghih Roohi, R. Aghaeizadeh Zoroofi, 4d statistical shape
modeling of the left ventricle in cardiac mr images, Interna-
tional Journal of Computer Assisted Radiology and Surgery
8 (3) (2012) 335–351.

[8] E. Moya-Albor, B. Escalante-Ramı́rez, E. Vallejo, Optical flow
estimation in cardiac CT images using the steered Hermite
transform, Signal Processing: Image Communication 28 (3)
(2013) 267–291.

[9] J. Schaerer, C. Casta, J. Pousin, P. Clarysse, A dynamic elastic
model for segmentation and tracking of the heart in MR image
sequences,, Medical Image Analysis 14 (6) (2010) 738–749.

15



[10] D. Kang, J. Woo, P. J. Slomka, D. Dey, G. Germano, C.-C. Jay
Kuo, Heart chambers and whole heart segmentation techniques:
review, Journal of Electronic Imaging 21 (1).

[11] C. Petitjean, J.-N. Dacher, A review of segmentation methods
in short axis cardiac MR images, Medical Image Analysis 15 (2)
(2001) 169–184.

[12] T. Cootes, C. Taylor, D. Cooper, J. Graham, Active Shape
Models-Their Training and Application, Computer Vision and
Image Understanding 61 (1) (1995) 38–59.

[13] S. Mitchell, J. Bosch, B. P. F. Lelieveldt, R. van der Geest,
J. Reiber, M. Sonka, 3-D active appearance models: segmenta-
tion of cardiac MR and ultrasound images, IEEE Transactions
on Medical Imaging 21 (9) (2002) 1167–1178.

[14] H. C. Van Assen, M. G. Danilouchkine, A. F. Frangi, S. Ordás,
J. J. Westenberg, J. H. Reiber, B. P. Lelieveldt, SPASM: A 3D-
ASM for segmentation of sparse and arbitrarily oriented cardiac
MRI data, Medical Image Analysis 10 (2) (2006) 286–303.

[15] T. Heimann, H.-P. Meinzer, Statistical shape models for 3d
medical image segmentation: A review, Medical Image Anal-
ysis 13 (4) (2009) 543–563.

[16] H. C. Van Assen, M. G. Danilouchkine, F. Behloul, H. J. Lamb,
R. van der Geest, J. H. C. Reiber, B. P. Lelieveldt, Cardiac LV
Segmentation Using a 3D Active Shape Model Driven by Fuzzy
Inference, in: R. E. Ellis, T. M. Peters (Eds.), Medical Im-
age Computing and Computer-Assisted Intervention - MICCAI
2003, 6th International Conference, Montréal, Canada, Novem-
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