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a  b  s  t  r  a  c  t

Pollen  identification  is required  in  different  scenarios  such  as prevention  of  allergic  reactions,  climate
analysis  or  apiculture.  However,  it is a time-consuming  task  since  experts  are  required  to  recognize
each  pollen  grain  through  the  microscope.  In  this  study,  we  performed  an  exhaustive  assessment  on
the  utility  of  texture  analysis  for automated  characterization  of  pollen  samples.  A  database  composed  of
1800 brightfield  microscopy  images  of  pollen  grains  from  15  different  taxa  was  used  for  this  purpose.
A  pattern  recognition-based  methodology  was  adopted  to  perform  pollen  classification.  Four  different
methods  were  evaluated  for texture  feature  extraction  from  the pollen  image:  Haralick’s  gray-level  co-
occurrence  matrices  (GLCM),  log-Gabor  filters  (LGF),  local  binary  patterns  (LBP)  and  discrete  Tchebichef
moments  (DTM).  Fisher’s  discriminant  analysis  and k-nearest  neighbour  were  subsequently  applied  to
perform  dimensionality  reduction  and  multivariate  classification,  respectively.  Our results  reveal  that
ocal binary patterns
iscrete Tchebichef moments

LGF  and  DTM,  which  are  based  on  the  spectral  properties  of  the image,  outperformed  GLCM  and  LBP
in  the  proposed  classification  problem.  Furthermore,  we  found  that  the  combination  of  all  the texture
features  resulted  in  the  highest  performance,  yielding  an  accuracy  of  94.83%.  Therefore,  thorough  texture
characterization  could  be  considered  in further  implementations  of  automatic  pollen  recognition  systems
based  on  image  processing  techniques.

© 2014  Published  by  Elsevier  Ltd.

35

36

37

38
. Introduction

Palynology is the study of pollen grains produced by seed
lants and spores (Erdtman et al., 1969). Accurate identification of
Please cite this article in press as: Marcos, J.V., et al., Automated polle
Micron (2014), http://dx.doi.org/10.1016/j.micron.2014.09.002

ollen types is a relevant issue in several scenarios. For instance,
uantifying the concentration of airborne pollen may  help peo-
le suffering from allergic reactions to adopt adequate treatment
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strategies. In archaeology, pollen fossils are analysed to reconstruct
ecological and climate conditions during past periods. For com-
mercial purposes, pollen is involved in the search of oil and gas.
In apiculture, pollen classification is required to identify nectar
sources, which determine the quality of the product and enable
the authentication of its origin (Kaya et al., 2013). Currently, pollen
identification is based on visual inspection of microscopy images.
It is a time-consuming and costly procedure since a trained expert
must manually classify each pollen grain (Mitsumoto et al., 2009).
Furthermore, a subjective result is obtained as it depends on the
expert’s criterion. Thus, automated methods for pollen identifi-
cation are required in order to overcome the limitations of the
n identification using microscopic imaging and texture analysis.

conventional procedure (Stillman and Flenley, 1996).
Slides observed through the microscope contain a variable num-

ber of pollen grains. Therefore, automatic pollen identification
would involve segmentation and classification tasks (Kumar et al.,
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010). Segmentation aims to localize each of the pollen grains in
he slide, separating it from the rest of the content. In classification,
he isolated pollen grain is assigned to one of a predefined set of
ategories (taxa). The present study is focused on the latter. For this
urpose, brightfield microscopy images corresponding to a subset
f honey-bee pollen taxa commonly found in the mediterranean
rea were analysed. Previous studies in the field of automated paly-
ology focused on this specific type of pollen samples (Chica, 2012;
arrión et al., 2004).

A pattern recognition approach was adopted to model the pollen
rain classification problem. Hence, it is assumed that grains from

 given taxon own distinctive characteristics with respect to sam-
les from other taxa (Duda et al., 2012). Pattern recognition mainly

nvolves feature extraction and multivariate pattern classification
Bishop, 1995). The former consists in the definition of a set of quan-
itative measurements, called features or descriptors, capturing
epresentative attributes of the image (pollen grain) to be identi-
ed. As a result, the grain is described by a point in the multivariate
pace defined by the feature set. Subsequently, a multivariate clas-
ifier is then used to define decision boundaries between categories
n the input feature space.

Diverse features have been previously evaluated in automated
lassification of pollen taxa based on image processing techniques.
orphological and geometric descriptors have been the most com-
on  choice for this purpose (Kaya et al., 2013; Mitsumoto et al.,

009; Boucher et al., 2002; Treloar et al., 2004; Chica, 2012). They
nclude measurements such as area, perimeter, concavity, convex-
ty or circularity of the grain. Also, the utility of pore detection has
een evaluated (Chen et al., 2006). However, it was  reported that
imilar pore appearances can be found in samples from different
axa, reducing the discriminative capability of this approach (Chen
t al., 2006). Additionally, texture attributes of the grain’s surface or
xine have been suggested as pollen descriptors. Pollen recognition
rom texture analysis is based on the differences found between the
rnamentation of the exines from distinct taxa. Previously, texture
escriptors provided promising results in pollen identification both
eparately (Kumar et al., 2010; Langford et al., 1990; Li and Flenley,
999; Carrión et al., 2004; Li et al., 2004; Zhang et al., 2005) and
ombined with morphological features (Chen et al., 2006; Zhang
t al., 2004; Rodriguez-Damian et al., 2006; Punyasena et al., 2012).

In particular, texture represents an efficient approach for pollen
dentification as it provides several advantages. As the rest of the
echniques based on image processing, texture methods could be
ntegrated in a software capable of automatically assessing large
mounts of pollen samples. In addition, texture analysis enables
he inspection of broken grains typically found in fossil pollen sam-
les for which morphological descriptors would be inappropriate.
urthermore, in contrast to methods based on pore detection, tex-
ure properties do not depend on the position of the grain in the
lide. Despite the benefits of the texture-based approach, a reduced
umber of texture methods have been applied to pollen characteri-
ation. Commonly, previous studies focused on pollen texture used
onventional first-order and second-order statistical features, with
he latter being computed from Haralick’s co-occurrence analysis
Langford et al., 1990; Li et al., 2004; Chen et al., 2006; Rodriguez-
amian et al., 2006). Occasionally, other techniques included laws
asks (Li and Flenley, 1999; Carrión et al., 2004) and Gabor fil-

ers (Zhang et al., 2004). On the other hand, a small number of
axa, typically lower than 10, was analysed in these preceding
esearch works. Therefore, further analysis including other differ-
nt methods and a higher variety of taxa is required to obtain solid
onclusions about the potential of texture in pollen identification.
Please cite this article in press as: Marcos, J.V., et al., Automated polle
Micron (2014), http://dx.doi.org/10.1016/j.micron.2014.09.002

The purpose of the present study is to perform an exhaustive
nalysis on the correspondence between the texture of a pollen
rain and its taxon. Texture is a property related to the roughness
f a surface and is characterized by the variation of pixel intensity
 PRESS
xxx (2014) xxx–xxx

in the spatial domain (Tuceryan and Jain, 1993). A number of tex-
ture descriptors have been proposed in the literature. Tuceryan
and Jain (1993) grouped them into four types: statistical, geomet-
rical, model-based and signal processing. In our study, we selected
a subset of texture methods in order to capture different properties
of the pollen texture. Haralick’s gray-level co-occurrence matrices
(GLCM) (Haralick et al., 1973) were used as a reference method in
our experiments since it has been adopted by other researchers
(Langford et al., 1990; Li et al., 2004; Chen et al., 2006; Rodriguez-
Damian et al., 2006). In addition, we  evaluated the utility of other
techniques that have not been previously applied to texture-based
pollen classification namely log-Gabor filters (LGF) (Field et al.,
1987), local binary patterns (LBP) (Ojala et al., 2002) and discrete
Tchebichef moments (DTM) (Mukundan et al., 2001). These meth-
ods have provided satisfactory results in other texture and pattern
recognition problems (Soh and Tsatsoulis, 1999; Gao  et al., 2007;
Das et al., 2013; Marcos and Cristóbal, 2013).

This paper is organized as follows. The second section describes
the acquisition of pollen images as well as the database employed
in our research. In the third section, the applied methodol-
ogy is presented. An explanation of the techniques used for
image segmentation and preprocessing, texture feature extraction,
dimensionality reduction and pattern classification is provided. The
fourth section of the paper includes the results achieved in our
experiments as well as an analysis of them. Finally, in the last sec-
tion, the main findings of the study are highlighted and discussed.

2. Materials

2.1. Pollen dataset

Slide images were captured using a NIKON E200 microscope
and a camera NIKON DS-Fi1. Images of isolated pollen grains were
obtained manually. The complete procedure for image acquisition
comprised several steps. Balls of pollen collected by bees were dis-
solved with glycerogelatin drops and prepared in slides sealed with
a coverslip. A 40× magnification was used to acquire images of the
slide containing several pollen grains. The acquisition consisted in
stacks with 31 images of the slide in order to ensure an optimum
focus. The best focused slide was  identified by an expert. Subse-
quently, pollen grains were manually extracted from it by defining a
rectangular region. As a result, the dimensions of the pollen images
varied from one to another. Pollen samples from 15 different taxa
from the mediterranean area were captured: (1) Aster, (2) Brassica,
(3) Campanulaceae, (4) Carduus, (5) Castanea, (6) Cistus,  (7) Cytisus,
(8) Echium, (9) Ericaceae, (10) Helianthus,  (11) Olea, (12) Prunus,
(13) Quercus, (14) Salix and (15) Teucrium. The database analysed
in this study was composed of 120 brightfield microscopy images
per pollen taxon, resulting in a total of 1800 images. Fig. 1 depicts
an example for each taxon included in our research.

3. Methods

In our study, the discriminant capability of texture in auto-
matic pollen identification is evaluated. Hence, pollen grain images
are assigned to one of several categories (taxa) according to
their texture properties. We  propose a pattern recognition-based
methodology to perform such a classification task. It is composed of
four different stages: segmentation and preprocessing, texture fea-
ture extraction, dimensionality reduction and classification. Fig. 2
provides an schematic diagram of the proposed methodology.

3.1. Segmentation and preprocessing
n identification using microscopic imaging and texture analysis.

The texture of a pollen grain is given by the elements character-
izing its surface or exine. In order to perform texture analysis of the
pollen image, segmentation was carried out to separate the target
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Fig. 1. Sample images of the

bject (i.e., the grain) from the background. A binary mask was
btained for each pollen image, indicating those pixels contained
n the texture of interest. Segmentation involved several steps:
Please cite this article in press as: Marcos, J.V., et al., Automated polle
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. Binarization. The image was thresholded using an Otsu-based
method (Otsu, 1975).

. Maximum area. The region with the biggest area was retained.

ig. 2. A scheme of the methodology adopted for automatic identification of the
ollen taxon based on texture analysis. From the input image, four main processing
tages are identified: segmentation and preprocessing, texture feature extraction,
imensionality reduction and classification.
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 taxa analysed in our study.

3. Hole filling. Any hole in the selected region was filled.
4. Opening. The border of the region was  defined using erosion and

dilation operators.
5. Hole filling. Any remaining hole was filled.

Fig. 3 illustrates each step of the segmentation process for one
of the images in our dataset.

In addition to binary segmentation, preprocessing was applied
before texture feature extraction from the pollen image. Prepro-
cessing is intended as a normalization stage that produces a new
version of the image, so that it can be effectively processed by
any of the four considered texture methods (GLCM, LBP, LGF and
DTM). To this end, different requirements had to be addressed in
the preprocessing stage due to the distinct nature of these meth-
ods. First, unlike GLCM and LBP, which involve the evaluation of
each image pixel individually, LGF and DTM perform global anal-
ysis of the image by simultaneously processing the entire set of
pixels (Field et al., 1987; Mukundan et al., 2001). Thus, for a fair
comparison (classification) of the extracted features, all the images
in the database must have the same dimension. Second, square
images are recommended for an effective evaluation using LGF
and DTM. Indeed, this assumption was made for the definition of
the DTM-based texture descriptor employed in our study (Marcos
and Cristóbal, 2013). Moreover, square images enable the use of
the same number of scales for each direction in LGF banks. Third,
LGF analysis is performed in the frequency domain from the spec-
tral representation of both the image and the corresponding bank
of filters. Hence, power-of-two sized images are required to opti-
mize the performance of the method. Fourth, the size of the images
must be properly limited as it influences the computational load of
the evaluated texture methods. This is specially relevant for those
methods based on a pixel-by-pixel analysis of the image like GLCM
n identification using microscopic imaging and texture analysis.

and LBP.
To fulfil these requirements, the first operation of the prepro-

cessing stage consisted in trimming each image in the dataset,
and its corresponding mask, to remove the maximum quantity of
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Fig. 3. Segmentation process for the iden

ackground. Subsequently, the largest image dimension (L0) (either
ows or columns) among the trimmed images was identified. It
etermines the minimum size of a square capable of including any
f the pollen grains in the dataset. Once (L0) has been obtained, the
ollowing steps were successively applied to each of the original
ollen images:

. Trimming. Both the image and its binary mask were trimmed.

. Background removal. The trimmed image was multiplied by its
corresponding mask to set background pixels to 0.

. Mean removal. The mean value of the pixels in the region of
interest was subtracted, resulting in a zero-mean texture.

. Image padding. New background pixels (rows and columns) with
zero value were added in order to obtain an image of size L0 × L0.

. Resizing. The image was resized to L × L pixels, where L is a
power-of-two integer.

We found L0 = 450 pixels while the final dimension L was  set to
28 pixels to achieve an affordable computation time. The same
ownsampling factor was applied to every image in the dataset. As

 result, the preprocessing stage preserved the aspect ratio between
he sizes of different original pollen grains. Finally, it is worth not-
ng that the normalization implemented by preprocessing enables
ach of the four texture methods to process the same version of the
ollen image, ensuring an unbiased comparative analysis between
hem.

.2. Feature extraction

The feature extraction stage aims to characterize the pollen
mage using a set of measurements or features. This set is com-

only referred to as a feature pattern (Duda et al., 2012). In our
tudy, texture features were employed to define representative
ttributes of the pollen taxa in order to perform classification. The
tility of the texture attributes captured by means of four different
ethods was evaluated: GLCM, LGF, LBP and DTM.

.2.1. Gray-level co-occurrence matrices (GLCM)
GLCM analysis is based on the assumption that texture infor-

ation is contained in the spatial relationship between gray levels
Haralick et al., 1973). For the computation of GLCM, suppose that
ach pixel I(x, y) in the image is assigned to one of B gray levels.
ence, the co-occurrence matrix Pij is obtained by assessing all the
ossible combinations between two intensity levels (i, j = 1, . . .,  B).
ere, Pij represents the number of occurrences of two  pixels with
ray levels i and j separated by a distance ı in the direction deter-
ined by the angle �. Note that Pij = Pji, i.e., the occurrence of (j,

) is considered as a match when computing Pij and vice versa.
he resulting matrix is a function of both the distance and the
ngular direction between pixels, so that different matrices can be
Please cite this article in press as: Marcos, J.V., et al., Automated polle
Micron (2014), http://dx.doi.org/10.1016/j.micron.2014.09.002

btained by varying these parameters. Usually, the elements of the
o-occurrence matrix are normalized in order to represent prob-
bilities, providing the relative frequency of occurrence for a pair
f gray levels. The element p(i, j) denotes the probability of finding
on of the pollen grain in the input image.

the pair of levels (i, j) in the image, which is obtained as (Haralick
et al., 1973)

p(i, j) = Pij∑B
i,jPij

(1)

These matrices of probabilities can be used to obtain statisti-
cal features that characterize the texture (Haralick et al., 1973). As
suggested in Soh and Tsatsoulis (1999), we chose a subset of 10 fea-
tures to capture texture properties. These include energy, contrast,
correlation, homogeneity, entropy, autocorrelation, dissimilarity,
cluster shade, cluster prominence, and maximum probability.

In our experiments, the quantization level B was set to 8 as pre-
ceding studies focused on texture analysis using GLCM (Randen
and Husoy, 1999). For the displacement vector, four different val-
ues of the angle � were assessed (0◦, 45◦, 90◦ and 135◦) (Soh and
Tsatsoulis, 1999), while the distance parameter ı was set to 1, 2 or
3. Each of these values represented a distinct scale for texture anal-
ysis. Thus, for a given value of ı, a pattern GLCMı composed of 40
descriptors (10 statistical features for each of the four orientations)
was obtained to characterize the texture of a pollen grain. A multi-
scale feature pattern of dimension 120 (GLCMmsc) was defined by
combining the descriptors derived from the different values of ı.

3.2.2. Log-Gabor filters (LGF)
LGF were proposed by Field et al. (1987) to overcome the limi-

tations of conventional Gabor filters. These are characterized by a
maximum bandwidth restricted to approximately one octave and
a non-zero DC component (Gao et al., 2007). In addition, it has
been proved that LGF are more consistent with measurements of
mammalian visual systems indicating that the cell responses are
symmetric on the log frequency scale (Field et al., 1987; Kovesi,
1999). LGF are defined in the frequency domain as Gaussian func-
tions shifted from the origin due to the singularity of the log(·)
function. They have a null DC component and can be optimized
to produce filters with minimal spatial extent in an octave scale
multiresolution scheme. Mathematically, LGF can be divided into
two components referred to as radial and angular filters (Gao et al.,
2007):

Ĝ
(

�, �
)

= Ĝ�Ĝ� = e−(1/2)[log(�/u0)/ log(˛�/u0)]2
e−(1/2)[(�−�0)/˛� ]2

(2)

where � and � represent the polar coordinates, u0 is the central
frequency, �0 is the orientation angle, and the parameters ˛� and
˛� determine the scale and the angular bandwidth, respectively.
In our experiments, we  set ˛� = 0.75 and ˛theta = �/6 since previous
studies showed that these values result in minimal overlap among
scales one octave apart (Nava et al., 2012). These values resulted in
a bank of 24 filters distributed in four scales and six orientations.
In order to better cover the Fourier plane, even scales were rotated
by a constant factor consisting of the half a distance between filter
n identification using microscopic imaging and texture analysis.

centres (Gross and Koch, 1995).
To characterize the response of the image to the LGF bank, the

first four standard moments of the filtered image at each scale and
orientation were computed (Schwartz et al., 2012). These moments
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nclude mean, variance, skewness and kurtosis. They quantify the
entral tendency, the degree of dispersion, the asymmetry and the
eakedness of the distribution of samples in the filtered image. As

 result, a feature vector composed of 96 elements (four features
or each of the 24 filters) was used to describe the texture of the
ollen grain.

.2.3. Local binary patterns (LBP)
The LBP operator assumes that texture is composed of different

atterns or local spatial structures that are repeated in the image
Ojala et al., 2002). The LBP detects them by acting as a template

ask that is evaluated at each image pixel. An estimate of the prob-
bility of occurrence of these structures is obtained by means of a
istogram, which is used to describe the texture (Ojala et al., 2002).

To compute the LBP of an image, a neighbourhood of P pixels
qually distributed on a circumference of radius R around a central
ixel (gc) is considered. The value of gc is taken as a threshold to
btain the LBP, which is expressed as

BPP,R(gc) =
P−1∑
p=0

H(gp − gc)2p (3)

here gp(p = 0, . . .,  P − 1) are the values of the neighbours and H(·) is
he Heaviside function. The formulation of LBPP,R yields a total of 2P

ifferent patterns. The probability associated with each of them is
stimated by means of its relative frequency, leading to a histogram
ith 2P bins. However, for P high enough, a large number of bins is

btained, resulting in sparse histograms.
It was observed that certain patterns, called as uniform patterns,

resent improved capabilities for texture discrimination (Ojala
t al., 2002). Uniform patterns are characterized for a maximum
f two bit transitions in their binary representation as measured
y the operator U(LBPP,R), which is given by

(LBPP,R(gc)) = |H(gP−1 − gc) − H(g0 − gc)|

+
P−1∑
p=1

|H(gp − gc) − H(gp−1 − gc)| (4)

The uniform LBP (LBPuni
P,R) is then defined as (Ojala et al., 2002):

BPuni
P,R(gc) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P−1∑
p=0

H(gp − gc) if U(LBPP,R(gc)) ≤ 2

P + 1 otherwise
(5)

As a result, LBPuni
P,R produces a (P + 2)-bin histogram that

haracterizes the pollen texture. In our study, three different config-
rations, P = 8 − R = 1, P = 16 − R = 2 and P = 24 − R = 3, were adopted
o evaluate texture in several scales (Ojala et al., 2002). A multiscale
exture descriptor (LBPmsc) was obtained by combining the feature
atterns from these three different scales.

.2.4. Discrete Tchebichef moments (DTM)
The set of DTM provides a unique representation of an image I(x,

) in the space spanned by Tchebichef kernels. The moment Tpq(p,
 = 0, 1, . . .,  L − 1) of order s = p + q is defined as (Mukundan et al.,
001):

pq = 1
�̃(p)�̃(q)

L−1∑ L−1∑
t̃p(x)t̃q(y)I(x, y), (6)
Please cite this article in press as: Marcos, J.V., et al., Automated polle
Micron (2014), http://dx.doi.org/10.1016/j.micron.2014.09.002

x=0 y=0

here t̃n(x) is the scaled Tchebichef polynomial of degree n and
˜(n) is its squared norm (Mukundan, 2004). The function rpq (x, y) =
p(x)t̃q(y) denotes the two-dimensional Tchebichef kernel.
 PRESS
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Recently, a texture descriptor has been proposed based on the
properties of discrete Tchebichef kernels (Marcos and Cristóbal,
2013). From Eq. (6), the magnitude of Tpq quantifies the correlation
between the original image I(x, y) and the kernel rpq(x, y), which
has an oscillating profile. Thus, this magnitude will be higher for
images characterized by repetitive patterns occurring at a simi-
lar rate to rpq(x, y). This is a relevant property for texture analysis
since texture involves the spatial repetition of intensity patterns
(Tuceryan and Jain, 1993). As kernels of the same order are charac-
terized by similar frequency content, i.e., similar varying patterns
along different directions (Teh and Chin, 1988), a description of
the texture attributes is obtained by assessing the dependence of
the total moment magnitude on the kernel order s (Marcos and
Cristóbal, 2013):

M(s) =
∑

p+q=s

|Tpq|, (s = 0, 1, . . .,  2L − 2) (7)

The value of M(s) evaluates the similarity between the original
image and the varying patterns implemented by s-order Tchebichef
kernels. The analysis based on DTM yields a vector M(s) of length
2L − 1 that describes the texture of the pollen grain, where L = 128
pixels denotes the size of the preprocessed image.

3.3. Dimensionality reduction

Feature extraction enables to summarize the information in the
pollen texture by means of a vector (pattern) of features. This vector
could be directly used for pollen classification. However, dimen-
sionality reduction was  performed through a twofold purpose.
First, it represents a normalization stage for the obtained feature
vector since its dimension depends on the method adopted for tex-
ture analysis. Dimensionality reduction avoids this dependence by
providing a new vector whose dimension can be controlled by the
user. As the new dimension is smaller than that of the original fea-
ture vector, a more compact representation of the pollen texture
is obtained. Second, reducing the dimension of the input feature
space prevents overfitting. As detailed in Bishop (1995), in order
to obtain an accurate statistical description of the problem, the
size of the training set should be exponentially increased with the
dimensionality of the input space. Commonly, a limited dataset is
available in real applications such as the proposed pollen classifica-
tion problem. Thus, reduced dimensionality may  be advantageous
for the posterior classification stage.

We used the conventional Fisher’s discriminant analysis (FDA)
to perform dimensionality reduction (Fisher, 1936; Bishop, 1995).
For a multiclass classification problem with C possible categories,
the original feature vector x = (x1, x2, . . .,  xd) of dimension d (d ≥ C)
is mapped onto a new space of dimension d′ = C − 1. The trans-
formation matrix W is obtained according to Fisher’s criterion,
which maximizes the ratio of the interclass variability to the intra-
class variability for the transformed samples. Mathematically, it is
expressed as follows (Bishop, 1995):

J(W) = |WT SBW|
|WT SW W|

(8)

where SB and SW are the between-class and the within-class scatter
matrices, respectively. The columns of W are given by the eigen-
vectors associated with the d′ largest eigenvalues of the matrix
n identification using microscopic imaging and texture analysis.

S−1
W SB. Therefore, the projection y of the original feature vector x

is obtained as (Bishop, 1995):

y = WT x. (9)
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Table 1
Total classification accuracy achieved by the evaluated texture feature patterns in
the pollen identification problem.

FDA-KNN KNN

GLCM1 89.94 57.06
GLCM2 84.39 57.11
GLCM3 85.83 60.39
GLCMmsc 85.11 65.06
LGF  92.50 90.06
LBP8,1 – 81.83
LBP16,2 84.89 80.28
LBP24,3 87.83 80.17
LBP 89.83 84.06
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.4. Classification

In the final stage, the vector y resulting from dimensionality
eduction is labelled as one of the 15 pollen classes considered in
ur study. According to Bayes’ decision rule, it must be assigned
o the class ωi for which the posterior probability p(ωi|y)(i = 1, . . .,
) is the highest in order to minimize the risk of misclassification.
ultivariate analysis was performed to define decision boundaries

n the d′-dimensional (d′ = C − 1) input space using the k-nearest
eighbour (KNN) approach. KNN is based on the approximation of
he probability density function of a variable from a finite set of
amples as described in the following expression (Bishop, 1995):

(y) ≈ K

NV
(10)

here K represents the total number of samples that are found in a
olume V centred on y. In a classification problem, this procedure
an be used to model the class-conditional density p(y|ωi) of each
ategory ωi as

(y|ωi) ≈ Ki

NiV
(11)

here Ki represents the total number of samples belonging to class
i that are found in a volume V centred on y, given that Ni is the

otal number of training samples of class ωi.
Since the prior probability of a class is estimated as the pro-

ortion of samples belonging to that class, i.e., p(ωi) ≈ Ni/N, the
osterior probability p(ωi|y) can be obtained from Bayes’ theorem
s follows (Bishop, 1995):

(ωi|y) = p (y|ωi) p (ωi)
p(y)

≈ Ki

K
(12)

Once posterior probabilities are known, classification is car-
ied out by applying the maximum a posteriori probability rule
escribed before. For this purpose, the K nearest neighbours to the

nput vector are retained and the class that includes the highest
umber of neighbours is selected. As a result, the KNN classifier
efines a non-linear decision boundary in the input space.

The smoothing parameter K influences the complexity of the
ecision boundary defined by the classifier, with high bias (smooth
oundaries) corresponding to high values of K (Bishop, 1995).
ence, increasing K is required to ensure a reliable estimation of

he posterior probabilities. On the other hand, K must be sufficiently
mall to be sure that p(y|ωi) is similar at all the neighbours of the
oint y. This trade-off leads to a compromise value of K given by a
mall fraction of the available samples (Duda et al., 2012). According
o this analysis, K was set to 20 in our study, which approximately
epresents 1% of the images in our dataset.

. Results

.1. Experiments on the pollen database

In our experiments, accuracy was adopted as the performance
easure to evaluate the discriminant capability of a feature pat-

ern in the pollen classification problem. Accuracy provides the
robability of correct classification for a given pollen image. This
robability is approximated by the percentage of pollen grains
orrectly classified (Bishop, 1995). In the present study, 10-fold
ross-validation was applied to estimate classification accuracy
rom the original dataset of 1800 images (Bishop, 1995; Duda et al.,
012).
Please cite this article in press as: Marcos, J.V., et al., Automated polle
Micron (2014), http://dx.doi.org/10.1016/j.micron.2014.09.002

In our experiments, several classification algorithms were
mplemented according to the methodology described before.
ence, in order to determine the most advantageous configura-

ion of GLCM and LBP, different scales of analysis were evaluated
msc

DTM 92.06 89.83
ALL  94.83 83.78

for these methods. Additionally, we assessed the utility of the com-
bination of the four texture methods in the pollen identification
problem. For this purpose, among all the evaluated configura-
tions of GLCM and LBP, those with the highest performance were
selected to be combined with LGF and DTM features, resulting in
the definition of a new texture feature pattern (ALL). Finally, to
measure the impact of Fisher dimensionality reduction on the sys-
tem performance, two classification schemes were compared: one
using Fisher dimensionality reduction followed by the KNN algo-
rithm (FDA-KNN), and another one using a simple KNN classifier on
the raw texture features (i.e., without any kind of dimensionality
reduction).

In the following Table 1, the results achieved by the classifi-
cation algorithms evaluated in our experiments are summarized.
Note that no result is reported for LBP8,1 with FDA-KNN classifi-
cation as the dimensionality reduction stage is not applicable to
feature spaces of dimension lower than C = 15. Several observations
can be made from the obtained results. First, configurations includ-
ing Fisher dimensionality reduction outperformed those based on
a simple KNN classifier fed with raw texture features. This reveals
that the dimensionality reduction stage enabled higher general-
ization capability (reduced overfitting) by encouraging smooth
decision boundaries between pollen categories in the input fea-
ture space. Second, the comparative analysis between the four
texture methods shows that LGF and DTM yielded the highest
classification performance. They achieved a correct classification
rate above 92% in the pollen identification problem. GLCM1 and
LBPmsc were the configurations with the highest performance for
GLCM and LBP methods, providing an acceptable accuracy of 89.94%
and 89.83%, respectively. Third, useful non-redundant texture fea-
tures can be derived from GLCM and LBP analysis at different
scales. Regarding the LBP method, the multiscale approach (LBPmsc)
outperformed single scale configurations for both FDA-KNN and
KNN classification schemes. Therefore, the combination of tex-
ture features captured by LBP at different scales provides a richer
description of the texture attributes when compared to single scale
analysis. In the case of GLCM, multiscale analysis led to improved
classification performance when no dimensionality reduction was
applied. An accuracy of 65.06% was  achieved by GLCMmsc while
single scale configurations provided up to 60.39% accuracy. This
reflects that complementary information is derived from GLCM
analysis at distinct scales. However, no improvement was observed
in the multiscale approach of GLCM when FDA-KNN classifica-
tion was  used. This result may  be motivated by the increased
difficulty of the dimensionality reduction task. In the multiscale
approach, the dimension of the original feature space (120 fea-
tures) is considerable higher than in single scale configurations
n identification using microscopic imaging and texture analysis.

(40 features), resulting in a higher degree of overlapping between
categories in the transformed space (Bishop, 1995). Fourth, the
combination approach (ALL) yielded 94.83% accuracy, improving
the performance individually achieved by each texture method.
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Table  2
Accuracy on each pollen category and total accuracy for the classification algorithms
with the highest performance.

Taxon Texture features

GLCM1 LGF LBPmsc DTM ALL

Aster 89.17 95.00 94.17 91.67 100.00
Brassica 95.83 89.17 82.50 94.17 90.00
Campanulaceae 85.83 93.33 86.67 92.50 90.83
Carduus 98.33 97.50 89.17 95.83 99.17
Castanea 99.17 100.00 100.00 99.17 100.00
Cistus 99.17 99.17 97.50 99.17 99.17
Cytisus 73.33 77.50 69.17 71.67 85.83
Echium 94.17 98.33 98.33 99.17 98.33
Ericaceae 95.00 89.17 93.33 88.33 99.17
Helianthus 81.67 93.33 90.83 94.17 90.83
Olea 93.33 91.67 91.67 92.50 96.67
Prunus 98.33 99.17 92.50 93.33 96.67
Quercus 88.33 81.67 90.83 87.50 95.00
Salix 95.00 95.83 95.83 96.67 99.17
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Teucrium 62.50 85.83 75.00 85.00 81.67

Total 89.94 92.50 89.83 92.06 94.83

he ALL pattern was obtained as the concatenation of GLCM1, LGF,
BPmsc and DTM patterns. Observe that, according to our results,
LCM1 and LBPmsc were selected as the optimum configurations
f GLCM and LBP, respectively. The result achieved by the ALL
pproach could be initially expected as a more robust and detailed
escription of the pollen texture is obtained by combining infor-
ation from different methods. Specifically, we found that the ALL

attern led to 93 misclassified pollen images out of 1800 samples,
hat represents a high percentage of correct classification.

Table 2 details the results provided by the selected configura-
ions of the four texture methods (GLCM1, LGF, LBPmsc and DTM)
nd their combination into the ALL feature pattern. For a thorough
nalysis of their performance, the classification accuracy achieved
n each pollen category is reported.

The results reflect that most of the errors corresponded to ‘City-
us’ (7) samples, for which all the methods achieved lower accuracy
ates. Other categories that also presented marked difficulties in
lassification were ‘Quercus’ (13), for which LGF provided reduced
ccuracy, and ‘Teucrium’ (15), which was specially difficult for
LCM1 and LBPmsc. Conversely, the highest correct classification

ate was achieved on ‘Castanea’ (5), ‘Cistus’  (6), ‘Echium’ (8) and
Salix’(14) categories. The combination of the four texture descrip-
ors resulted in a substantial decrease in the number of errors. For

ost of the categories, a positive increment in classification accu-
acy was observed with respect to any of the methods. It is worth
oting that the increment was specially large in ‘Cytisus’ (7), ‘Quer-
us’ (13) and ‘Aster’ (1), for which an improvement higher than
ve percentage points was obtained. As observed in the individ-
al assessment of the methods, the lowest accuracy values were
till achieved on ‘Cytisus’ (7) and ‘Teucrium’ (15) samples.

.2. Analysis of the results

To identify error flows between categories, Fig. 4 depicts the
rror matrices for the four evaluated texture methods. They provide

 graphical representation of the confusion matrices once the main
iagonal has been removed. As a result, only the number of misclas-
ified samples is observed. The error matrices show that ‘Cytisus’ (7)
amples, for which all the evaluated algorithms provided reduced
lassification accuracy, tended to be labelled as ‘Campanulaceae’
3) or ‘Teucrium’ (15). The similarity between ‘Cytisus’ (7) and ‘Teu-
Please cite this article in press as: Marcos, J.V., et al., Automated polle
Micron (2014), http://dx.doi.org/10.1016/j.micron.2014.09.002

rium’ (15) pollen samples also led to a significant number of
lassification errors in the opposite direction. Hence, a common
rend was observed in the four evaluated methods since misclas-
ified ‘Teucrium’ (15) images were usually labelled as ‘Cytisus’ (7)

597
Fig. 4. Error matrices for each texture method.

by all of them. In addition to the common difficulties found with
‘Cytisus’ (7) samples, other particular results were observed. For
instance, LGF and LBP labelled as ‘Olea’ (11) a relevant number of
‘Quercus’ (13) and ‘Brassica’ (2) samples, respectively. In addition,
GLCM and LBP exhibited particular difficulties between ‘Aster’ (1)
and ‘Healianthus’ (10).

The detected error flows reflect a coherent behaviour of our clas-
sification algorithms. As shown in Fig. 1, these flows connect pollen
taxa with a similar appearance. As an example, consider the pairs
given by ‘Cytisus’ (7) and ‘Teucrium’ (15), ‘Aster’ (1) and ‘Healianthus’
(10), or ‘Brassica’ (2) and ‘Olea’ (11). At this point, it is interesting
to analyse the effect of the combination approach on the observed
error flows. Table 3 details the confusion matrix obtained when a
single feature pattern with all the texture features is used to classify
pollen samples. As can be appreciated, most of the errors associ-
ated with each individual texture method are removed by adopting
the combination approach. Indeed, only the error flow between
‘Cytisus’ (7) and ‘Teucrium’ (15) seems to be substantial. Therefore,
the combination of different texture features provided the most
efficient characterization of the pollen taxon.

According to our results, LGF and DTM capture more useful
information about the pollen taxon, resulting in higher classi-
fication accuracy than the other texture descriptors. These two
methods are based on the analysis of the image using a bank of
filters placed at different frequency bands (Field et al., 1987; Marcos
and Cristóbal, 2013). This suggests that the spectral content of a
pollen image will vary from a category to another while it will be
similar for samples in the same category. To analyse this behaviour,
n identification using microscopic imaging and texture analysis.

we computed the average power spectral density (PSD) of pollen
images in each category, which is depicted in Fig. 5. The spectra
exhibit approximate radial symmetry, indicating that the pollen
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Table 3
Confusion matrix resulted from the combination of the four texture methods.

True Predicted

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 120
2 108 12
3  109 8 3
4  119 1
5  120
6 119 1
7  7 103 1 1 8
8  118 2
9  1 119
10  10 109 1
11  3 116 1
12  1 1 2 116
13  1 1 2 114 2
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15  1 2

extures are not associated with a specific orientation. In addition,
he resulting figure shows that the energy of a pollen image is com-
osed of different frequency components depending on its taxon.
or instance, high frequency components are observed in ‘Cistus’
6) pollen images while ‘Aster’ (1) and ‘Campanulaceae’ (3) images
o not have a siginificant energy content at high frequencies. On
he other hand, ‘Castanea’ (5) images tend to have lower energy
han pollen samples from other taxa as reflected by the small mag-
itude of the averaged spectrum. To appreciate these differences,
ig. 5 shows the profile of the PSD along the x-axis (i.e., the fre-
uency coordinate fy is set to 0). It is worth noting that the choice
f the orientation does not have a significant influence on this anal-
sis as the spectra do not reveal substantial variations along the
ngle coordinate. Categories ‘Campanulaceae’ (3), ‘Cytisus’ (7) and

Teucrium’ (15), among which the evaluated methods performed
ost of the classification errors, have very similar PSD profiles. On

he contrary, other categories such as ‘Castanea’ (5), ‘Cistus’  (6) or
Echium’ (8) exhibit a profile significantly different to the rest. As a
esult, they can be more easily identified as reflected by the classi-
cation accuracy close to 100% achieved by LGF and DTM on these
ategories.

. Discussion and conclusions

A detailed analysis on the role of texture in pollen taxon char-
cterization was presented. In addition to conventional texture
eature extraction based on GLCM, other methods including LGF,
BP and DTM were assessed in our study. Furthermore, the com-
lementarity between these texture features was explored by
eans of their combination. A methodology involving dimension-

lity reduction based on FDA and KNN classification was proposed
o identify pollen samples from 15 different taxa. The obtained
esults reflect the superior performance of LGF and DTM texture
escriptors as well as the utility of the combination approach in
he proposed pollen classification problem.

Our experiments support the conclusion that texture is a distinc-
ive characteristic of the pollen taxon. Note that 95% of the grains
n a dataset composed of 1800 samples from 15 different taxa were
orrectly identified by only using texture features. In particular, it
hould be appreciated that texture analysis enabled high discrimi-
ation between pollen samples from taxa with an increased degree
f similarity. For instance, consider the pairs given by ‘Brassica’ (2)
nd ‘Olea’ (11) as well as ‘Aster’ (1) and ‘Helianthus’ (10) (see Fig. 1).
Please cite this article in press as: Marcos, J.V., et al., Automated polle
Micron (2014), http://dx.doi.org/10.1016/j.micron.2014.09.002

n the case of ‘Cytisus’ (7) and ‘Teucrium’ (15), which were respon-
ible for most of the errors of our algorithms, a significant classi-
cation accuracy over 80% has been achieved. On the other hand,
e have demonstrated that pollen textures from distinct categories
119
1 98

tend to exhibit differences in their spectral content. Hence, texture
descriptors based on spectral analysis such as LGF and DTM have
shown to be capable of capturing these differences, reaching signif-
icantly high accuracy in the pollen classification problem. However,
we found that the most effective representation of the pollen taxa
was not given by a single texture descriptor. Instead, the combina-
tion of different texture features resulted in improved classification
accuracy. This represents a more complex approach since several
processing techniques must be applied to perform texture feature
extraction from the original pollen image. Nevertheless, our results
show that uncorrelated texture features complement themselves
in order to enable the pollen identification task.

Previously, other researchers highlighted the relevance of
texture in pollen identification. Commonly, GLCM analysis was pro-
posed to extract texture attributes (Langford et al., 1990; Li and
Flenley, 1999; Kaya et al., 2013; Rodriguez-Damian et al., 2006;
Zhang et al., 2004, 2005). These features were applied individu-
ally or in combination with other descriptors for automatic pollen
classification. The achieved accuracies ranged from 88% (10 cate-
gories) (Kaya et al., 2013) to 100% (four categories) (Li and Flenley,
1999). A fair comparison of our results with those reported in
preceding studies cannot be carried out since different databases
were analysed. However, two main observations can be made. First,
a comparable or higher number of samples and categories was
included in our research. This contributes to increase the reliability
of our experimental results and reflects the validity of the pro-
posed texture methods in the analysis of microscopy pollen images.
Second, although most of the previous studies used GLCM for tex-
ture characterization, other texture descriptors such as LGF or DTM
based on the spectral properties of the pollen image have proven
to be more efficient for capturing distinctive information about the
taxa.

The main handicap for the development of an automatic pollen
identification method is the huge number of distinct plant species
and pollen taxa. As a result, the implementation of a universal
method for pollen recognition seems an intractable task. Instead, a
subset of pollen taxa including those involved in a specific applica-
tion or context is usually considered. In our study, 15 different taxa
corresponding to honey-bee pollen from the mediterranean area
were analysed. However, it must be noted that the evaluated tex-
ture methods can be applied to other domains in which automatic
pollen identification is required. Indeed, texture features provide
several advantages when compared with other techniques for this
n identification using microscopic imaging and texture analysis.

purpose. For instance, unlike shape or morphological features, tex-
ture analysis adapts to the evaluation of fossil pollen samples that
may  be broken (Li et al., 2004). In addition, texture avoids the
dependence on the position of the pollen grain, which is crucial
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or methods based on the detection of pores. Furthermore, no com-
lex equipment is required to acquire pollen images such as those
valuated in our study, which were captured through brightfield
icroscopy. Hence, the proposed methods could be implemented
s in each category and (b) profile of the averaged PSD along the fx coordinate.
n identification using microscopic imaging and texture analysis.

in a specific software module coupled to the microscope, enabling
the analysis of a large number of pollen samples in a reasonable
time. This would overcome the limitation of spectroscopy tech-
niques (Pappas et al., 2003; Ivleva et al., 2005; DellAnna et al., 2009;
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chulte et al., 2008), which require more complex optical elements
spectrometers) and preparation to analyse the composition of the
ollen samples.

Despite the advantages from texture analysis, several limita-
ions can be found in our study. Although the available image
ataset includes a relevant number of taxa and samples, its size
eems to be insufficient for certain tasks involving the implemen-
ation of the classification algorithm. For instance, we adopted KNN
ith K = 20 for multivariate pattern classification. A search for the

ptimum K was not carried out as an independent dataset would
e needed to avoid biased test results. In addition, previous studies

n the field reported significant performance by means of neu-
al networks or support vector machines (Li and Flenley, 1999;
odriguez-Damian et al., 2006). Nevertheless, these algorithms
ave a considerable amount of design parameters and adaptable
eights. A larger number of samples per category than that avail-

ble in our research would be required to adjust them and prevent
verfitting (Bishop, 1995). The latter must be taken into account
n the design of classification algorithms. In our study, the strategy
dopted to avoid overfitting was the use of dimensionality reduc-
ion based on FDA. Our experiments revealed that dimensionality
eduction played an essential role to obtain classification algo-
ithms with a high generalization capability. As an alternative, other
rocedures could have been considered in order to reduce the num-
er of input features to the classifier. For instance, a smaller number
f statistics could be derived from each of the filters employed in
GF or GLCM features could be averaged along the four angle direc-
ions. Another limitation of our research is given by the acquisition
f the data, as images of isolated pollen grains analysed in our study
ere manually obtained from the image of the whole slide. Further

esearch is required in order to achieve a fully automatic system for
ollen identification by implementing a software module enabling
he localization of pollen grains in the original slide. Finally, it is
orth noting that a single image was analysed from the whole stack

aptured for each pollen grain. Future studies could evaluate the use
f fusion techniques including several images at different distances
rom the object.

In summary, our study reflects that the texture of the pollen
xine is a distinguishing property of its taxon. According to our
esults, other methods are more useful for the characterization of
he pollen texture than conventional first-order and second-order
tatistics such as Haralick’s GLCM. Specifically, we have shown that
he spectral representation of pollen images enables the extraction
f texture features that vary from a taxon to another. Thus, texture
escriptors based on spectral filtering such as LGF or DTM suitable
dapt to the pollen identification problem. Furthermore, our exper-
ments reveal that the complementarity between different texture
eatures can be exploited in order to achieve higher classification
erformance. Therefore, we propose an exhaustive analysis of tex-
ure in image-based applications pursuing automatic identification
f pollen taxa.
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