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Besides the well-established healthy properties of pollen, palynology and apiculture are of extreme
importance to avoid hard and fast unbalances in our ecosystems. To support such disciplines computer
vision comes to alleviate tedious recognition tasks. In this paper we present an applied study of the state
of the art in pattern recognition techniques to describe, analyze, and classify pollen grains in an extensive
dataset specifically collected (15 types, 120 samples/type). We also propose a novel contour–inner seg-
mentation of grains, improving 50% of accuracy. In addition to published morphological, statistical, and
textural descriptors, we introduce a new descriptor to measure the grain’s contour profile and a logGabor
implementation not tested before for this purpose. We found a significant improvement for certain com-
binations of descriptors, providing an overall accuracy above 99%. Finally, some palynological features
that are still difficult to be integrated in computer systems are discussed.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

A grain of pollen contains the male vegetative and generative
cells required for fertilization of plants to ensure the development
of seeds and consequently the life of plants. The study of pollen,
palynology, is therefore of great interest in so diverse disciplines
such as archeology, paleontology, forensics, health (allergies) or
agriculture (bee products, and crop forecast). Specifically, bee pol-
len is collected by worker honey bees which is used as food for the
entire colony. For humans it is one of the richest and purest natural
foods, with an incredible nutritional and medicinal value
(Bogdanov et al.; Bogdanov) and one of the most interesting facts
about bee pollen is that it cannot be synthesized in a laboratory.
The main nectar source and main pollen source differ widely with
latitude, region, season, and type of vegetation, where in scarce
nectar periods bees can harvest far away up to 3 km, i.e., in an area
of 300–2800 hectares (Eckert, 1933). This reflects their large
pollination capacity and the maintenance of plant diversity which
directly influences important human activities like agricultural and
forestry production. Furthermore, bees are the most common poll-
inators with strong influence on ecological relationships, ecosys-
tem conservation, and stability, genetic variation in the plant
community, biodiversity, specialization, and evolution (Bradbear
et al., 2009).

The pollen grains manifest a great variety of shapes, sizes, and
ornamentation and their description is genetically bound to their
botanical family. Externally, pollen grains are protected by a resis-
tant wall called sporoderm, conformed by an internal layer named
intine and an outer layer named exine, where the latter exhibits in
its surface distinct morphological structures according to the pol-
len type. Generally, most of them are spheroidal in equatorial view,
varying between oblate spheroidal and prolate spheroidal in the
range of 8–100 lm.

In the human activities previously mentioned a correct pollen
identification is vital in terms of production, bio-preservation, or
simply knowledge achievement. The recognition can be accom-
plished through different techniques which in general are time
consuming and require highly trained palynologists who must
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Table 1
Pollen database description.

Pollen types Aster, Brassica, Campanulaceae, Carduus, Castanea, Cistus, Cytisus, Echium, Ericaceae, Helianthus, Olea, Prunus, Quercus, Salix, Teucrium
Magnification �40
Original captures 2560 � 1920 RGB pixels
Cropped grains From 200 to 600 gray pixels of width and height (variable aspect ratio)
Type grains 120 images/type
Total samples 1800 images (grains)
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analyze manually thousands of individual pollen grains: Fourier
transformed infra-red from attenuated total reflectance (FTIR-
ATR) spectroscopy represents a useful technique for identifying
chemical structures (Gomez-Ordonez and Ruperez, 2011); and
Polymerase Chain Reaction (PCR) is a recent method for pollen
authenticity based on molecular analysis. PCR technique stands
out for its specificity for botanical identification. Nevertheless both
techniques are expensive in terms of equipment and reagents, and
requires several processing days. Finally, the most common and
affordable technique is bright-field microscopy. This technique is
time consuming too and therefore many efforts have been put on
automated classification systems. However it remains a challenge
to provide accurate pollen classifications in real scenarios. For a
recent study that provides a comparison of the microscopy tech-
niques, see Sivaguru et al. (2012).

The first attempt to automate pollen recognition was conducted
in 1968 by Flenley (1968), who identified two difficulties attached
to bright-field microscopy: images partially focused and multiple
grain orientations (views). Both are related with the reduction of
3D objects into 2D captures. The depth of field of optical systems
allows visualization of specimens partially in focus. Here, the use
of multifocus stacks and recent multifocus fusion techniques
(Redondo et al., 2009) could eventually provide more details about
pollen’s surface, but the way of collecting information is still an
open issue. On the other hand, morphology, surface ornamenta-
tion, and pori layout are strong indicators of the pollen type, but
such information strongly vary with the point of view.

Besides these inherent difficulties in capturing 3D features into
2D, two main obstacles hamper the current progress in this field:
(a) the extraction of knowledge from expert palynologists and (b)
the limited access to open pollen databases with a large number
of reference pollen per taxa. A previous work in the area of aero-
palynology (ASTHMA EU project) used multifocus stacks and
reported recognition rates around 97% for 5 pollen types
(Boucher et al., 2004). Other studies demonstrate accuracy ratios
between 90% and 97% (Rodriguez-Damian et al., 2006; Chen
et al., 2006; Ticay-Rivas et al., 2011; Chica, 2012; Ronneberger
et al., 2007). However, such ratios must be considered with care,
they are not reliably comparable because their training database
usually differ largely in terms of pollen genre and/or number of
training samples, which is directly related to obstacle (b).

Most of these approaches, if not all, perform morphological and
certain statistical description of gray-levels like mean, median, var-
iance, entropy, etc. Some modern approaches incorporate more
sophisticated descriptors through spatial correlations like the
Haralick’s co-occurrence matrices (Haralick et al., 1973). For
instance, Zhang proposed Gabor transforms and invariant
moments (Zhang et al., 2004), Rodriguez-Damian et al. (2004) eval-
uated Fourier descriptors and Run-Length Statistics, Chen et al.
(2006) incorporated a description of the number of pores and
recently Ronneberger et al. proposed 3D invariant moments
(Ronneberger et al., 2007). An interesting and profuse thesis can
be consulted in Haas (2011).

In some applications, e.g. images from ambient air, a previous
image cleaning from dirt, fungal spores and other non-pollen
particles (Landsmeer et al., 2009) is required. This is also a time
consuming process where a robust automatic segmentation is a
challenging problem.

In this paper we present a complete applied study of segmenta-
tion, description, and classification of bee pollen, reviewing the
state of art and proposing some novel techniques. For that, within
the EU-funded project APIFRESH, we recollected an important data
base of 15 pollen types with 120 samples per type described in Sec-
tion 2. Under the hypothesis that contour and inner of grains typ-
ically manifest disparate statistical distributions, we proposed in
Section 3 a novel segmentation to apply descriptors separately
across these two regions. In Section 4 an important exercise of
knowledge transfer is done from palynology to computer vision
together with a complete list of descriptors. Sections 5 and 6
describe classification strategies and classifiers. Finally experimen-
tal results are presented in Sections 7 and 8 concludes the paper
addressing unresolved challenging problems.
2. Materials and preparation: collecting database

Bees collect pollen aggregated in balls and normally of the same
pollen type, which guarantees a certain corresponding hue. There-
fore, balls were separated in the laboratory and individualized by
color tonality and then labeled with a color code according to the
Universal Code Guide PANTONE 747XR. Although pollen can share
color, each color corresponds to a pollinic type and a pollinic type
can be matched to a larger group of plants (a family), to a middle
group of plants (some genera from the same family), to a reduced
group of plants (a genus) or more rarely to one species. Balls col-
lected from the same place of origin were classified in colors and
for each color we selected 25 pollen balls. Balls were dissolved with
glycerogelatin drops and prepared in slices sealed with a coverslip.
Through the microscope each botanical group has characteristic
features that differentiate it from others like morphology, surface
structures or pori layout. For a summarized featured list of the pol-
len types studied here consult the appendix in Appendix A.

Although multiple studies have already evaluated a wide range
of pollen descriptors, most of them have been done with a reduced
dataset and/or a reduced number of pollen types. Without a doubt
one of the major efforts in this kind of studies has to do with the
compilation, preparation and labeling of datasets. Thus, some of
those studies deal with 300–500 total samples and/or 3–5 pollen
types (Rodriguez-Damian et al., 2006; Chen et al., 2006; Boucher
et al., 2004; Carrión et al., 2002; Travieso et al., 2011; Ticay-Rivas
et al., 2011). The study from Chica (2012) is one the most complete
in this respect with 5 pollen types and 1063 total pollen grains. But
one impressive case is Ronneberger et al. (2007) with 180 000 air-
borne particles and 22 700 pollen grains. In this case study, we
have done an important effort to collect a considerable dataset in
order to test computer vision algorithms focused on a real auto-
mated pollen classifier.

The 15 pollen types studied were collected mostly from Spain
(Guadalajara, Toledo, La Rioja, Madrid and Cantabria). Other types
like Aster and Castanea came from Italy (Grosseto, Cosenza and
Asti), Helianthus from Bulgaria and Teucrium from Turkey. They
are enumerated in Table 1 and some examples are depicted in



Aster Brassica Campanulacea Carduus Castanea

Cistus Cytisus Echium Ericaceae Helianthus

Olea Prunus Quercus Salix Teucrium

Fig. 1. Examples of pollen database. Note these grains have been conveniently scaled here for aesthetic reasons.
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Fig. 1. Neither type is endemic, which means that their presence is
common along the whole Mediterranean territory and some of
them are present all over the planet. Besides, none of them comes
from plants commonly cultivated.

A NIKON E200 microscope (fluoride objective) and a camera
NIKON DS-Fi1 were employed to capture the images. Auto-white
background balance was previously carried out for every slice cap-
ture with the NIS-Elements Nikon software. In Fig. 2 a capture and
a example of manual cropping is shown. See Table 1 for specifica-
tions of the captured and cropped images.

Every sample was manually cropped to ensure an effective sur-
rounding region with no nearby samples or debris, so cropped
image samples are not necessarily square. To ensure an optimum
focus, every acquisition included a 31-stack image where only
the best focused slice was included in the dataset. This best focus
was again manually selected. These stages and their automation
are beyond the scope of this study.
Fig. 2. Microscope example of Brassica genre at magnification �40 of size
2560 � 1920 pixels. Framed sample of size 258 � 243 pixels.
The colors observed through the microscope, which are not
necessarily consistent with the color of the ball which the
pollen come from, did not presented evidences of discriminant
significance. In addition the white balance performed by CCDs
can significantly vary from one to other. Therefore the images
were finally converted to grayscale. By doing this we mitigated
at the same time the presence of yellowish lipids and other
possible colored debris present in the slices which could
impair the pollen segmentation and also feature extraction
stages.
3. Binary masks: contour–inner segmentation

Binary masks are effective regions where descriptors must be
computed, while other regions out of the mask are ignored. The list
of published works about automatic pollen segmentation is short
and there is still a need for a definitive method without posterior
supervision. In this work we present a semi-automatic method
which still requires manual outline corrections. Nevertheless the
main novelty that we propose is a dual segmentation for inner areas
and grain’s contours. In these two areas there are visible structural
differences in terms of recognition and therefore our hypothesis is
that some descriptors should manifest different distributions too.
This is not expected to affect morphological descriptors but descrip-
tors relating with statistical properties of the pixels. One way to
deal with such a dichotomy could be to implement classifiers able
to handle multi-modal distributions. However, in this case we con-
sidered this dual segmentation more robust and controlled
approach. Doubling the number of effective regions will double
dimensionality of the classification domain, but at the same time
the classification process gets simplified in terms of class separabil-
ity according to the a priori location knowledge of pollen’s textures.
The following items enumerate the sequence of processes we used
to give shape to such masks (see also in Fig. 3 a schematic block
diagram).



Fig. 3. Segmentation example of a pollen grain borrowed from the previous Fig. 2 (258 � 243 pixels): image thresholding binarization with maximum histogram value;
maximum area preservation and removal of smaller areas; inner holes filling-in; opening process with a 15 � 15 mask (it may need feedback); and inner and contour
segmentation (15% grain diameter).

(a) (b) (c) (d) (e)
Fig. 5. Examples of binary mask segmentation including a contour extraction with a kernel 15% of the grain diameter. (a) Brassica (368 � 320), (b) Campanulaceae
(272 � 256), (c) Echium (288 � 272), (d) Helianthus (384 � 352) and (e) Prunus (512 � 512). Note again these grains have been conveniently scaled here for aesthetic reasons.

(a) (b) (c)
Fig. 4. Examples of contour and interior pollen segmentation adjusted to 15% of their equivalent diameter. (a) Echium (237 � 285), (b) Brassica from Fig. 3 (258 � 243) and (c)
Helianthus (354 � 330). Note these grains have been conveniently scaled here for aesthetic reasons.
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1. Thresholding binarization: automatic thresholding segmenta-
tion with the maximum histogram value. Similar techniques
like Otsu’s (Travieso et al., 2011; Rodriguez-Damian et al.,
2006; Chica, 2012).

2. Maximum area: preservation of the biggest area, smaller regions
rejected.

3. Hole filling: inside holes are filled if present.
4. Opening: erosion and dilation with a 15�15 kernel, holes

revised again.
5. Inner–contour segmentation: erosion with a kernel proportional

to the equivalent binary mask diameter.1 Empirically adjusted to
15%.

These well-known algorithms are present in almost every
image processing software and therefore no further details are
given in this respect. Due to the presence of debris and some pecu-
liar pollen types more complex to be segmented, the binary masks
were afterward manually checked for finishing correction, see
some examples in Fig. 4. Note that every pollen type present differ-
ent exine but the pollen type is not know a priori, therefore such a
15% is necessarily a compromised value that could better fit in
some pollen types than others, see Fig. 5. This value corresponds
1 Diameter of a circle with the same area.
to exine sizes from 1 to 10 lm. At this moment we will leave pos-
sible improvements and alternative segmentation strategies for an
interesting further research.

4. Pollen feature descriptors

As descriptions of pollen species can be found through numer-
ous publications, a special effort must be done in translating such a
knowledge in terms of computer vision. To a significant extent the
experts’ capability to distinguish among similar pollen types comes
from a knowledge not necessarily extracted from such bright-field
images, but also coming from text descriptions, 3D spatial vision
and simply reasoning that humans often do almost effortlessly.
Considering that some features are simply imperceptible without
such human capability recognizing, which is still not present in
the state of the art in computer vision, some other features do
describe pollen grains as for accomplishing a helpful automatic
classification. In this way, according to our palynologist team we
described such pollen features in useful terms for pattern classifi-
cation in Table 2. Although not all the features will be faced here,
like for instance apertures which are for the moment under devel-
opment and some previous works can be found in Chen et al.
(2006), Angulo (2008), other features like general morphology or
texture will be one of the basis of this study.



Table 2
Feature description of the 15 pollen types in terms of computer vision.

Type Inside Contour Size Polar view Meridian view Usual view

Perimeter Apertures Perimeter Apertures

Quercus Slightly granulated Thick Medium Circular or oval 3 Depressions Circular or oval Enlarged towards poles None
Echium Smooth Thin Small Oval (pear) Negligible Oval (pear) Negligible Meridian
Cistus Reticular Medium Medium Circular Negligible Circular Negligible None
Olea Partially reticular Thick + reticular Medium Circular 3 Subtle openings Circular Negligible None
Salix Wide reticular Thick + reticular Medium/small Circular 3 Profound openings Oval Enlarged towards poles None
Brassica Reticular Medium Medium Tri-lobular 3 Depressions Circular 3 Lineal fissures None
Retama Reticular Medium Medium/small Triangular 3 Depressions Circular 3 Lineal fissures None
Carduus Dense prickles Thick + dense prickles Medium/large Circular 3 Protuberances Circular Protuberances None
Aster Prickles Thick + prickles Medium/small Circular 3 Tiny depressions Circular 3 Lineal fissures None
Helianthus Prickles Thick + large prickles Medium Circular 3 Tiny depressions Circular 3 Lineal fissures None
Teucrium Smooth Thick poles Medium Oval 3 Tampons Triangular Two tampons None
Cytisus Transparent Thin + non reticular Medium/small Triangular 3 Thin openings Rhomboidal Rhombus opposite sides None
Ericaceae Transparent Thick + non reticular Medium/large Tetrahedral Tri-lobed Tetrahedral Qua/bi-lobulated None
Castanea Transparent Non reticular Small Circular 3 Depressions Oval Several depressions None
Campanulacea Trickles Thin + tiny prickles Small Circular 3 Tiny depressions Oval 3 Small depressions Polar
Prunus Mainly striate Double + striate Medium/large Triangular 3 Openings Oval Central + large Polar

� 10—25 lm, medium � 25—50 lm, � 50—100 lm.
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Along the subsequent subsections we organized descriptors in
groups according to their formulation, which at the same time
will help to conduct the later experiments. A brief notion is intro-
duced here and we let the reader to deepen along of plenty of
well documented references. See descriptors categorized in
Table 3. Note that with the exception of the morphological type,
the rest of descriptors are computed uniquely in those pixels
tagged by the segmented binary masks (contour and inner
separately).

4.1. Morphological descriptors

The binary masks described in the previous section establish an
appropriate framework to compute morphological features related
to pollen’s contour and area.

4.1.1. Area
This descriptor can be calculated as the sum of pixels in the bin-

ary mask of size M � N given B 2 ð0;1Þ:

Area ¼
XN

n¼1

XM

m¼1

Bðm;nÞ ð1Þ

4.1.2. Perimeter
This descriptor is the number of pixels that belong to the object

and which have at least one neighbor belonging to the background.

Perimeter ¼
XN

n¼1

XM

m¼1

Pðn;mÞ

Pðm;nÞ ¼
1 if 9 Bðm� 1; n� 1Þ ¼ 1
0 otherwise

� ð2Þ

4.1.3. Shape
This descriptor measures the elongation of an object. For a circle

its value is equal to 1. It is calculated in the following way:

Shape ¼ 4 � p � Area

Perimeter2 ð3Þ
4.1.4. Eccentricity
These descriptors also reflect elongation but in relation with the

object’s center of mass, also called centroid and defined as:

ðmc;ncÞ ¼
1

Area

X
ðm;nÞ2Area

m � Bðm;nÞ; 1
Area

X
ðm;nÞ2Area

n � Bðm;nÞ
 !

ð4Þ
The first Eccentricity1 is defined as a quotient of the maximum and
minimum distance between the centroid and object’s border, also
called outer and inner circumference radius.

Eccentricity1 ¼
Outerradius
Innerradius

ð5Þ

Similarly Eccentricity2, is calculated as quotient of the semi-axes
of the best fitting ellipse for the object and Eccentricity3 is a ratio of
the inertia moments of the two semi-axes of the best fitting ellipse
(see forwards for a description of moments).

4.1.5. Fullness
is the ratio of the object area to bounding rectangle area.

4.2. Statistical descriptors

4.2.1. 1st-Order statistical: histogram
These descriptors, listed in Table 4, measure typical statistics in

image histogram hðiÞ. These group of descriptors are sensible to
global variation of gray pixel levels, but they ignore their local
correlation.

4.2.2. 2nd-Order statistical (Haralick): co-occurrence matrix
These descriptors, listed in Table 5, measure statistics in co-

occurrence matrix cðm;nÞ defined as the distribution of co-occur-
ring neighbor gray values. For a complete guide to statistical
description consult (Haralick et al., 1973).

4.3. Contour profile descriptor

In this section we introduce a novel descriptor to describe micro
structures present along the perimeter of grains. As described in
Table 2, some pollen types have reticular exines, which is trans-
lated into corrugated contours at the zenithal microscope view.
In computer vision terms this means that the variance of gray lev-
els along the pollen contour is higher than in pollen with no retic-
ular surface. Although this measure could not classify by itself one
specific pollen type, it can work as an efficient support tool for dis-
criminating among pollen groups of highly, medium and low retic-
ular exines.

The first step uses the center of mass of binary masks described
in Section 3 to accomplish square cropping. One simple way of
making this calculation is by means of moment equations
described in Section 4.5. After that Cartesian coordinates ðx; yÞ



Table 3
List of descriptors grouped in testing categories.

Category Descriptor Annotation Total descriptors

Morphological Area, perimeter, shape, 6 Features 6
Eccentricity, fullness, contour profile (3 eccentricities)

Statistical 1st order 13 features 13
2nd order haralick distance ¼ 1;3;5 19 � 3 � 4 = 241

direction ¼ 0� ;45�;90�;135�

Transformed space LBP Mean, variance, asymmetry and kurtosis 4
Moments Hu 7 moments 7
Space-frequency Fourier 4 Scales 241 � 4 = 964

Wavelets 4 Scales (3 orientations) 241 � 4 = 964
Gabor 4 Scales (6 orientations) 241 � 4 = 964

Table 4
First order statistical descriptors.

Mean l ¼
PH�1

i¼0 i � hðiÞ
Mode i ¼ argmaxðhðiÞÞ
Variance r ¼

PH�1
n¼0 ði� lÞ2 � hðiÞ

1st Quartile lq1 ¼
PH

i¼3dH=4ei � hðiÞ
2nd Quartile lq2 ¼

P3dH=4e
i¼2dH=4ei � hðiÞ

3rd Quartile lq3 ¼
P2dH=4e

i¼dH=4ei � hðiÞ
Interquartile Range lq3 � lq1

Minimum minðhðiÞÞ
Maximum maxðhðiÞÞ
Range maxðhðiÞÞ �minðhðiÞÞ
Entropy PH�1

i¼0 hðiÞ � logðhðiÞÞ
Asymmetry 1

r3

PH�1
n¼0 ði� lÞ3 � hðiÞ

Kurtosis 1
r4

PH�1
n¼0 ði� lÞ4 � hðiÞ

Histogram hðiÞ, bins number H, floor operator d e.

Table 5
Second order statistical descriptors (Haralick).

Energy PH�1
i¼0
PH�1

j¼0 cði; jÞ2
Variance PH�1

i¼0
PH�1

j¼0 ði� lÞ2 � cði; jÞ
Contrast PH�1

n¼0 n2 PH�1
i¼0
PH�1

j¼0 cði; jÞ
� �

, ji� jj ¼ n

Dissimilarity PH�1
i¼0
PH�1

j¼0 ji� jj � cði; jÞ
Correlation 1

rxry

PH�1
i¼0
PH�1

j¼0 i � j � cði; jÞ � lxly

Autocorrelation PH�1
i¼0
PH�1

j¼0 i � j � cði; jÞ
Measure of correlation 1 T�HXY1

maxðHX;HYÞ

Measure of correlation 2 1� exp½2 � ðHXY2� TÞ�ð Þ0:5

Cluster shade PH�1
i¼0
PH�1

j¼0 ðiþ j� lx � lyÞ
3 � cði; jÞ

Cluster prominence PH�1
i¼0
PH�1

j¼0 ðiþ j� lx � lyÞ
4 � cði; jÞ

Maximum probability maxðcði; jÞÞ, i ¼ ½0 . . . H � 1�; j ¼ ½0 . . . H � 1�
Entropy T ¼ �

PH�1
i¼0
PH�1

j¼0 cði; jÞ � logðcði; jÞÞ
Sum average P2ðH�1Þ

i¼0 i � cxþyðiÞ
Sum entropy P2ðH�1Þ

i¼0 cxþyðiÞ � logðcxþyði; jÞÞ
Sum variance �

P2ðH�1Þ
i¼0 ði� SumEntropyÞ2 � cxþyðiÞ

Difference entropy �
PH�1

i¼0 cx�yðiÞ � logðcx�yði; jÞÞ
Difference variance PH�1

i¼0 i2 � cx�yðiÞ
Homogeneity 1 PH�1

i¼0
PH�1

j¼0
cði;jÞ

1þji�jj

Homogeneity 2 PH�1
i¼0
PH�1

j¼0
cði;jÞ

1þði�jÞ2

H bins number, HX and HY entropy of px and py .

lx ¼
PH�1

i¼0
PH�1

j¼0 i � cði; jÞ; ly ¼
PH�1

i¼0
PH�1

j¼0 j � cði; jÞ.

cxðiÞ ¼
PH�1

j¼0 cði; jÞ; cyðjÞ ¼
PH�1

i¼0 cði; jÞ.

rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPH�1

i¼0 cxðiÞði� lxÞ
2

q
; ry ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPH�1
j¼0 cyðiÞði� lyÞ

2
q

.

cxþyðkÞ ¼
PH�1

i¼0
PH�1

j¼0 cði; jÞ; iþ j ¼ k; k ¼ ½0 . . . 2ðH � 1Þ�.

cx�yðkÞ ¼
PH�1

i¼0
PH�1

j¼0 pði; jÞ; ji� jj ¼ k; k ¼ ½0 . . . H � 1�.

HXY1 ¼ �
PH�1

i¼0
PH�1

j¼0 cði; jÞlogðcxðiÞ � cyðjÞÞ.

HXY2 ¼ �
PH�1

i¼0
PH�1

j¼0 cxðiÞ � cyðjÞ � logðcxðiÞ � cyðjÞÞ.
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are transformed into polar logarithmic coordinates q ¼

logð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm�mcÞ2 þ ðn� ncÞ2Þ

q
;0 6 q 6 qmax and x¼arctanððm�mcÞ=

ðn�ncÞÞ;06x62p (Angulo, 2008). See in Fig. 6(b) and (e) a couple
of examples of polar logarithmic transformations.

The second step computes a snake algorithm from the bottom
of the polar transformed images (outskirts in Cartesian coordi-
nates), i.e. from the maximum radius. Starting from a horizontal
line, each location (pixel) of that line is moved upwards if the gray
level at the current location is higher than a given threshold (we
used 30% of the maximum graylevel). When a dark gray pixel is
found it may belong highly probably to the pollen contour and
the snake at that point is fixed. Some elastic properties are given
to the snake, so that it can fit to the curved contour. We used
1 pixel maximum curvature. Previously the polar image is
smoothed by a 5� 5 uniform filter to remove spurious values
and outskirts debris. Such contours found by snakes do not neces-
sarily match with those binary contours found in Section 3 for the
binary masks. Other descriptors that operate globally in a given
region could not require a segmented region extremely precise.
However this contour profile descriptor in concrete requires a path
as much precise as possible. In any case such snaked-contours
could be also applied for all descriptors as some studies revealed
some improvements (Rodriguez-Damian et al., 2006). Considering
the snake as a uni-dimensional function, the whole algorithm is
described in Algorithm 1.

Algorithm 1. Contour profile descriptor
Transform image into polar coordinates PIMAGE (radius↪ angle);
SNAKE (angle) = radiusmax;
radius = radiusmax;
while angles exist and are not anchored do

if [(SNAKE (angle ± 1) < aCurvature) and
(PIMAGE (SNAKE (angle) + 1↪ angle) > aThreshold)] then

SNAKE (angle) = radius − 1;
else

anchor SNAKE (angle) = radius;
The third and final step draws a profile of gray levels along the
snake and measures its variance in relation to the mean local value
obtained by smoothing in our case the gray profile with a 21-bin
uniform filter. See Fig. 6(c) and (f). A high contour profile variance
will indicate that the grain contour, the exine, is probably reticu-
lated and a low variance means no reticulation.

4.4. Local binary patterns

The Local Binary Pattern (LBP) operator (Ojala et al., 1994) is
based on the idea that textural properties within homogeneous
regions can be mapped into patterns, which represent micro-fea-



(a) (b) (c)

(d) (e) (f)

Fig. 6. Reticular descriptor of contour profile (exine). (a) olea and (d) echium samples, (b) and (e) polar transformation, (c) and (f) gray level profile and variance measurement
(blue line) and local mean obtained with a 21-bin uniform filter (black dotted line). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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tures. It uses a 3� 3 square mask called ‘‘texture spectrum,’’ to
compare masked values with their central pixel, those ones lesser
are labeled with ‘‘0’’ otherwise with ‘‘1’’. The labeled pixels are
multiplied by a fixed weighting function and summed to obtain a
label: LBPðgcÞ ¼

P7
p¼0sðgp � gcÞ2

p, where fgpjp ¼ 0; . . . ;7g are the
neighbors of gc and the comparison function is defined as:

sðxÞ ¼ 1 if x P 0
0 otherwise

�
Ojala et al. (2002) improved their proposal by including a circu-

lar mask denoted by the subscript P;Rð Þ where P is the number of
sampling points and R is the radius of the neighborhood. If sampling
coordinates, ðxp; ypÞ ¼ ðxc þ R cosð2pp

P Þ; yc � R sinð2pp
P ÞÞ, do not fall at

integer positions, then the values are bilinearly interpolated. Fur-
thermore, they observed that over 90% of patterns can be described
with few LBP patterns, so, they introduced a uniformity measure

UðLBPP;RðgcÞÞ¼jsðgP�1�gcÞ�sðg0�gcÞjþ
PP�1

p¼1jsðgp�gcÞ�sðgp�1�gcÞj,
which corresponds to the number of transitions ð0=1Þ in the
labeled LBP.

In this way, the uniform-LBP (LBPuni
P;R) can be obtained as:
LBPuni
P;R gcð Þ ¼

PP�1
p¼0s gp � gc

� �
if U LBPP;R gcð Þð Þ 6 2

P þ 1 otherwise

(
ð6Þ

After this process is completed a labeled image is generated and
the pixel-wise information is encoded as a histogram, so that it can
be interpreted as a fingerprint or a signature of the analyzed object.
LBPuni

P;R produces P þ 2ð Þ-bin histograms (Nava et al., 2012). Then
from all statistical descriptors only mean, variance, asymmetry
and kurtosis are computed assuming a studied trade-off between
overloaded dimensionality vs. accuracy impairment (Schwartz
et al., 2012).

4.5. Hu moments

Image moments, originally proposed by Hu (1962), describe not
only invariant morphological features of shapes but also high order
statistical features. They are formulated as follows:

lpq ¼
X

m

X
n

ðm�mcÞp � ðn� ncÞq � gðm;nÞ ð7Þ

where mc ¼ r10
r00

and nc ¼ r01
r00

.

4.6. Space-frequency descriptors

These do not really constitute descriptors themselves but trans-
formations where features, somehow hidden, arise with higher vis-
ibility. It is in this transformed domains where features are
measured by applying the mathematical previously introduced
descriptors, in our case the statistical descriptors. For every sub-
band there are 241 statistical descriptors (13 1st-order statistical
plus 19 2nd-order statistical with 3 distances and 4 orientations)
and for the whole transformed domain with 4 scales the total num-
ber of descriptors is 964, see Section 4.2.

4.6.1. Fourier transform
It is the first formal proposal to analyze spectral contain of a sig-

nal where 2D frequencies arise in this context from graylevel vari-
ations along features like contour, edges, stripes and other periodic
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structures like textures. The Fourier spectrum is split in octave
bands apart and averaged as follows:

Fourierl ¼
X1
2l�1

r¼ 1
2l

X360

h¼0

j Iðr; hÞ j drdh; l 2 f1; . . . ; Lg ð8Þ

where I is the Fourier transform of the image in polar coordinates
and L the number of levels. For the experiments we selected 4
decomposition levels, which is a common value in most computer
vision algorithms. Note the continuous DC-component (luminance)
is disregarded and binary mask cannot be used here since the spa-
tial dimension is lost.
4.6.2. Wavelet transform
Although some pollen types present stationary structures (tex-

tures) through their inner regions, they mostly present a different
spectral content not only along the interior but also along their
contour. The Fourier transform loses the space localization where
this happens and frequencies from different areas are mixed. In
the late 80s wavelets were firstly proposed with Daubechies and
Mallat as main precursors (Daubechies, 1988). We used the over-
complete version and 5 stem long of Daubechies basis to build
our descriptors as the energy on every scaled level as follows:

Waveletl ¼
X3

o¼1

XU;V
u¼1;v¼1

jWl;oðu;vÞ � Bðu;vÞ j; l 2 f1; . . . ; Lg ð9Þ

where W is the wavelet transform of the image for the scale l and
orientation o whose vertical and horizontal coordinates extend to
U ¼ M and V ¼ N. Based on preliminary observations, the number
of scales was set to L ¼ 4. Note that to achieve orientation invari-
ance all bands in the same scale must be summed, i.e the vertical,
horizontal and diagonal bands. The residual DC-component was dis-
carded. As previously stated, prior to this wavelet average the coef-
ficients are masked by the corresponding contour and inner binary
masks Bðu;vÞ.
4.6.3. LogGabor transform
Firstly proposed by Dennis Gabor in 1946 (Gabor, 1946), the

Gabor filters are different versions of a Gaussian-shaped window
modulated by a sinusoid. The result is the partition of the Fourier
plane into bands modulated in orientation and octave bands apart
in frequency. Gaussian shape ensures an optimum spreading in
both dimensions, i.e. space location vs. frequency discrimination,
while one weakness of wavelets is the pronounced frequency over-
lapping. In addition, the Gaussian envelop is modulated by a com-
plex exponential with odd and even phases, which is effective for
analyzing features with odd phase like ridges and even phase like
edges. In this study we used the overcomplete implementation of
logGabor filters proposed by Fischer et al. (2007) never tested
before for this task. Similarly to wavelets, the logGabor descriptor
is formed by calculating the energy at every scaled level:

Gaborl ¼
XO

o¼1

XU;V
u¼1;v¼1

j F�1 Glo � Ið Þ � Bðu;vÞ j ; ; l 2 f1; ::; Lg

Glo ¼ exp �1
2

q� ql

rq

� 	2
 !

exp �1
2

h� hpl

rh

� 	2
 ! ð10Þ

where F�1 is the inverse Fourier transform, Glo is the logGabor filter
with L scales and O orientations in log-polar coordinates ðq; hÞ and
ðrq;rhÞ are the angular and radial bandwidths, see (Fischer et al.,
2007) for more implementation details. Again L ¼ 4; O ¼ 6 and
the residual DC-component is discarded.
5. Discriminant analysis

In case of task-specific methods like this study, descriptors are
either chosen after a comprehensive literature review study but
also after empirical experiment feedback. With a generalized
descriptor extraction, the large set of image descriptors provides
an extensive numeric description of the image content (Orlov
et al., 2008). However, descriptors that are discriminant for one
specific dataset may not be discriminant for others, probably
because they describe features that are widely spread along all
classification groups or because they are redundant (correlated)
with respect to other descriptors. In that case such descriptors pro-
vide useless information that moreover will likely degrade the
classification performance not only in terms of accuracy but also
in terms of speed due to the higher dimensionality (Guyon and
Elisseeff, 2003; Liu and Motoda, 1998). To reduce the number of
irrelevant descriptors, discriminant analysis minimizes the classifi-
cation error for the smallest possible subset of descriptors. Thou-
sands of descriptors are extracted from the methods here
described and it is a fact widely studied that beyond a certain limit
an increasing number of descriptors not only provokes an increas-
ing computational time but also impairs classification (Duda et al.,
2001). Therefore a feature selection process is then required to
remove redundant information.
5.1. Floating selection

A preliminary study was carried out to elucidate which are indi-
vidually the most discriminant descriptors. For that we employed
the Sequential Forward Feature Selection (SFFS) (Pudil et al.,
1994). It constructs an incremental priority subset of descriptors
by adding the descriptor in the excluded subset that increments
the highest the classification rate. For every step the priority subset
is re-arranged and re-examined in case of one of the descriptors
impairs classification with the new formed group. As a result this
algorithm often converges to a ordered list by discrimination
capacity. In Table 6 there is such a list for the first 100 features.
The percentage of LBPs descriptors is only 2% although they are
on the top. The percentage in that list of morphological descriptors
is 6%, logGabor 9% and the statistical descriptors 83%. Although this
is an interesting list for elucidating some discriminant descriptors,
one should bear in mind that later on their contribution will be
altered by the LDA transformation (see Section 5.3).
5.2. Correlation

Some overloaded features like Fourier, wavelets and Gabor are
treated like new domains themselves where the whole bank of sta-
tistical descriptors can be calculated and extracted from each
decomposition band. This means that the total number of descrip-
tors becomes 4 times larger given a 4-level decomposition trans-
form. This approach increases the workload to a cuttered extend
to be easily computable. Therefore, for these feature groups of
space-frequency transform we decided to remove those statistical
variables that are highly correlated.

To remove redundant information we firstly used the correla-
tion coefficient as the similarity measure between two or more fea-
tures. Hence, a threshold value must be defined for determining
the correlation value from which features are considered redun-
dant. This measure has been commonly adopted for unsupervised
feature selection (Mitra et al., 2002). In our study, an empirical
threshold of 98% was adopted. Such a decision reduced the number
of descriptors in such a way that for instance a 4-level Fourier
bands with 964 initial descriptors gets shortened to 224, 4-level
wavelet decomposition from 964 to 143 or the actual statistical



Table 6
The 100 most discriminant descriptors listed in order of importance. L stands for LBP, M for morphological, S for statistical and G for logGabor. Extension Org means that the
descriptor was calculated in the pollen kernel and KEx in the outer exine.

1 L Asimmetry_LBP.Org 26 S Dissi_1_135.Org 51 S Dissi_3_0.KEx 76 S Contr_5_0.Org
2 L Curtosis_LBP.Org 27 S Dissi_1_90.Org 52 S Dvarh_5_135.KEx 77 S Entro_3_0.Org
3 M Perimeter.Org 28 S Dissi_1_45.Org 53 S Denth_5_45.Org 78 S Denth_3_0.KEx
4 M Area.KEx 29 S Denth_1_135.Org 54 S Dissi_3_45.Org 79 S Denth_1_135.KEx
5 M Area.Org 30 S Dvarh_3_0.KEx 55 S Denth_5_90.Org 80 S Dissi_3_135.KEx
6 M EquivDiameter.Org 31 S Denth_3_0.Org 56 S Denth_5_135.Org 81 S Dissi_3_45.KEx
7 M EquivDiameter.KEx 32 S Dissi_1_0.KEx 57 S Entro_1_0.Org 82 G OrgS_Gbf6
8 M Perimeter.KEx 33 S Denth_1_90.Org 58 S Dissi_1_90.KEx 83 S Denth_1_0.KEx
9 S Entropy.Org 34 S Dissi_3_90.Org 59 S Dissi_1_45.KEx 84 S Denth_1_90.KEx

10 S Entropy.KEx 35 S Dvarh_5_0.KEx 60 S Dissi_1_135.KEx 85 S Entro_3_90.Org
11 S Dvarh_3_0.Org 36 S Dvarh_3_45.KEx 61 S Dissi_5_90.Org 86 S Denth_3_45.KEx
12 S Dvarh_1_135.Org 37 S Denth_1_0.Org 62 G OrgS_Gbf26 87 S Denth_1_45.KEx
13 S Dvarh_3_135.Org 38 S Dvarh_3_135.KEx 63 S Entro_1_135.Org 88 S Denth_5_0.KEx
14 S Dvarh_3_90.Org 39 S Dvarh_3_90.KEx 64 S Contr_3_135.Org 89 S Denth_3_135.KEx
15 S Dvarh_3_45.Org 40 S Denth_1_45.Org 65 S Dvarh_1_90.KEx 90 S Denth_3_90.KEx
16 S Dvarh_5_0.Org 41 S Denth_3_45.Org 66 S Contr_3_90.Org 91 S Contr_3_45.Org
17 G OrgS_Gbf2 42 S Dvarh_1_135.KEx 67 S Dissi_5_0.KEx 92 S Contr_1_0.Org
18 G OrgS_Gbf14 43 S Denth_3_90.Org 68 S Entro_1_90.Org 93 S Contr_5_90.Org
19 S Dissi_1_0.Org 44 S Dissi_3_135.Org 69 S Entro_1_45.Org 94 G OrgS_Gbf8
20 S Dvarh_5_45.Org 45 S Denth_3_135.Org 70 G OrgS_Gbf12 95 S Denth_5_45.KEx
21 S Dvarh_5_90.Org 46 S Dvarh_5_45.KEx 71 G OrgS_Gbf4 96 S Contr_1_45.Org
22 S Dvarh_1_90.Org 47 S Denth_5_0.Org 72 S Dvarh_1_45.Org 97 S Dissi_5_90.KEx
23 G OrgS_Gbf1 48 S Dvarh_5_90.KEx 73 S Contr_1_135.Org 98 S Denth_5_90.KEx
24 S Dvarh_5_135.Org 49 S Dissi_5_0.Org 74 S Dissi_3_90.KEx 99 S Denth_5_135.KEx
25 S Dissi_3_0.Org 50 S Contr_3_0.Org 75 G OrgS_Gbf10 100 S Entro_3_135.Org
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descriptors from 964 to 147. In summary with this technique it is
achieved an overall 75–80% dimensionality reduction and the cor-
responding computing time. In return classification accuracy,
according to calculations shown afterwards, is insignificantly
affected.
5.3. Linear discriminant analysis

Since the previous methods generate high dimensional feature
vectors and a limited dataset is available in our context, Linear Dis-
criminant Analysis (LDA) (McLachlan, 2004) constitutes an effi-
cient tool for dimensionality transformation. Since oversized
spaces crowd together classes which impairs classification, LDA
transforms the original space into an orthogonal and linear space
where feature vectors are prioritized in order of importance while
others are rejected. This implies that classes must be linearly sep-
arated which is not always fulfilled. LDA also requires unimodal
Gaussian likelihoods which was so validated.
6. Training and classification techniques

Dimensionality reduction is a fundamental step in any classifi-
cation problem. In most cases we cannot assume parameter inde-
pendence, which prevents from separately assessing each
parameter from the rest. This issue is the so called Model Selection
Problem (MSP). In this case we validated normal distributions by
means of normality test of K.S. normality test, Levene’s homosce-
dasticity and the analysis of variance (ANOVA) (Stevens, 2002;
Walpole et al., 2006).

10-fold cross-validation is a simple and yet widely employed
method for model evaluation that randomly splits up data into
10 disjoint subsets of approximately equal size. Each fold is then
classified separately by using the remaining 9 subsets to train
the model. In the end the average of all folds provides an estima-
tion of the classification accuracy of the model. A similar procedure
was exercised with groups of 1 element, also called leave-one-out.
Both training methods threw similar results and for the sake of
simplicity only leave-one-out will be presented in the experiments.
Although many classifiers can be found and some of them could
significantly improve accuracy rates, it is not the main purpose
here to carry out a thorough analysis of classifiers’ performance,
but again to discover which descriptor or combination of descrip-
tors better discriminate between pollen types. Hence, although we
do compare an extensive bank of classifiers like nearest-neighbor,
k-means, Parzen classifier, decision tree, neural networks, qua-
dratic Bayes normal classifier, Fisher classifier, linear discriminant
or support vector machine, we selected here three representative
ones, which in turn were three of the best classifiers tested.

6.1. Fisher classifier

Fisher’s linear classifier finds a linear discriminant function by
minimizing the errors in the least square sense (Duda et al.,
2001). This linear discriminant is based on finding a direction in
the feature space such that the projection of the data minimizes
Fisher’s criterion, i.e., the ratio of the squared distance between
the class means and averaged class variances. The linear classifier
is then perpendicular to this projection.

6.2. Support vector machine

Support Vector Machines (SVM) finds a discriminant function
by maximizing the geometrical margin between positive and neg-
ative samples (Cortes and Vapnik, 1995). Thus, the space is mapped
so that examples from different classes are separated by a gap as
wide as possible. Besides linear classification, SVMs act as a non-
linear classifier by using the so-called kernel trick. This trick can
be considered a mapping of the inputs onto a high-dimensional
feature space in which classes become linearly separable. SVMs
minimize both training error and geometrical margin. The latter
accounts for the generalization abilities of the resulting classifier.
SVMs are one of the best classifiers available and have been applied
to many real-world problems.

6.3. Random Forest

A Decision Tree (DT) is a conceptually simple, yet robust, and
widely used tool for decision support in which classification is



Fig. 7. Comparing descriptors types under the Fisher classification error.
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performed through a tree graph (Breiman, 2001). The classification
starts from an initialization node (root node) from which a given test
sample is tested at each stage (internal node) of the classification, all
the way down to the end of a tree branch (leaf or terminal node)
(Tan et al., 2006). The path followed by the sample depends on
threshold-based conditions associated to each internal node.

To select the optimal threshold-based conditions, DT algorithms
make use of a brute force method, which consists of testing all
potential variables and selecting the variable that maximizes a
given criterion. When building the DT, this criterion characterizes
the quality of the split created by the transition from an internal
node to its associated leaves (Tan et al., 2006).

To improve classification accuracy and robustness, the Random
Forest (RF) classifier, built upon an ensemble of DTs, learn from dif-
ferent subsets of the training dataset and no pruning is performed
after their construction (Breiman, 2001). Each DT is built using the
values of random feature vectors in a way that all DTs from the RF
possesses the same distribution. The random feature vectors may
be generated using several techniques, such as bagging (Breiman,
2001), random split selection (Dietterich, 2000) and the so-called
random subspace technique (Ho, 1998). When classifying an
unknown sample, its feature vector is tested using all DTs of the
RF. Their outputs constitute votes for the most popular class, which
in turn is the RF prediction. Nowadays, the RF classifier is consid-
ered as one of the most accurate learning algorithms and its perfor-
mance has been proven on many datasets (Caruana et al., 2008).
7. Results

Given the total number of descriptors is 6320, considering that
space-frequency, moments, LBPs and statistical descriptors are
duplicated due to the contour-interior pollen segmentation. Given
also the feature reducing and transformation algorithms (correla-
tion and LDA) and the three selected classifiers (Fischer, SVM and
Random Forest), the number of possible experiments is consider-
able. We organized the results in several experiments to show con-
crete aspects of descriptors and classifiers.

Although the experiments are driven according to the best
accuracy/error rates, one should bear in mind that the obtained
absolute values could be hardly compared quantitatively to other
studies due to discrepancies in feature vector, dimensionality
reduction and/or classifiers. One example case could be
Ronneberger et al. (2007) with an astonishing number of parti-
cles/grains and classification rate around 98.5%, but not compara-
ble because (1) 3D information is additionally incorporated, (2)
pollen grains were only 12% of the training date set and (3) aller-
genic pollen is not necessarily the same pollen than for beekeeping.
Fig. 8. Accuracy performance of Morphological + Statistical (MS) and remaining
descriptors with contour + inner segmentation.
7.1. Experiment 1: whole and contour + inner segmentation

Descriptors were tested here according to their mathematical
definition type. At the same time descriptors were compared when
applied for both segmentation cases: whole-segmented grain and
contour + inner segmentation. In order to simplify the case study,
the same classifier was used for all of them, in this case Fisher
but with no particular reason, except for its accurate performance
behavior. Albeit similar results can be observed with the remaining
classifiers.

From the plot in Fig. 7 most descriptors lead to similar classifi-
cation error around e � 0:3 when they operate individually. Two of
them are above 0.7 though, i.e. LBP and moments. This corrobo-
rates that macro-features derived form morphology descriptors
already provide competitive accuracy on a par with local micro-
feature analysis performed by (spatio)-frequential descriptors.
We have no plausible explanation for the lower rates delivered
by LBP and moments. Note that although some LBPs had an impor-
tant discriminant capacity in Fig. 6, all together combined do not
perform as high as other texture descriptors. This could be to the
reason that the number of LBP descriptors 4 is not actually enough
for the current database. The McNemar’s significance test
(McNemar, 1947) provides a confidence value to accept that meth-
ods are statistically significant provided a minimum threshold typ-
ically chosen 95% of confidence. That value is found by projecting
the classification discrepancies of both methods through a chi-qua-
dratic function as a expectation model for binomial distributions.
McNemar’s threshold delivered here a more than amply averaged
value T ¼ 230:98 > v2

1;0:95 ¼ 3;84 except for 5 pairs which cannot
be considered significative: Wavelets vs. Fourier, morphological
and statistical; Fourier vs. statistical and morphological vs. statisti-
cal on averaged T ¼ 1:95.

Another favorable observation reveals a significant improve-
ment when computing doubly but separately for contour and inner
pollen regions, as we hypothesized. Overall, one can observe a
drastic decline of errors achieving an overall accuracy improve-
ment of 50% (T ¼ 344:62). Note that morphological descriptors
have no counterpart for contour + inner segmentation. All subse-
quent experiments will consider exclusively contour–inner
segmentation.

To justify the rejection of the space-frequency descriptors above
a 98% correlation threshold (see Section 5.2), the classification
error obtained for instance with logGabor is e ¼ 0:124, while with
the 100% of descriptors a similar error is obtained e ¼ 0:128 and
the significance test is low T ¼ 0:78.
7.2. Experiment 2: descriptor types combinations

The combination of different types of descriptors can
strengthen the discrimination capacity. In Fig. 8 morphological
and statistical descriptors constitute a baseline for comparison



Fig. 9. Accuracy performance (contour + inner segmentation) of Morphologi-
cal + Statistical (MS) and combinations of remaining descriptors: Wavelets (W),
Fourier (F), logGabor (G), Moments (M), LBP (L). Note that the vertical dashed line
corresponds to previous logGabor + MS error rate 0.05.
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since they provided high accuracy rates and bring together the two
main discriminant features: shape and texture. From this chart,
when statistical descriptors are combined with morphological
descriptors provided together an improvement of 51.1%. Adding
to these two groups the space-frequency descriptors separately
provided an overall accuracy improvement of 34% (averaged
T ¼ 81:31), while the logGabor + morphological + statistics are
the most accurate with e ¼ 0:05. Note that moments and LPB pro-
duces slight impairments. Significance test between pairs deliv-
ered an averaged value (T ¼ 23:63), except for Fourier vs.
Wavelets (T ¼ 1:35) and Moments vs. LBP (T ¼ 1:04). This ten-
dency is confirmed in Fig. 9 where morphological + statistical com-
bined with space-frequency descriptors achieve the lowest error
rates. Particularly the combination of morphological + statisti-
cal + all space-frequency descriptors provided the lowest error rate
e ¼ 0:032 (T ¼ 31:05 averaged with comparative cases). Note also
that neither LBP nor moments barely affect performance.
7.3. Experiment 3: LDA dimensionality reduction

In previous Figs. 8 and 9 already compared the improvement
achieved by LDA. All combinations of descriptors augmented their
accuracy significantly and reduced the overall classification error
around 70% (averaged T ¼ 89:54). This suggests that, besides uni-
modal Gaussian likelihoods tested in advance, most descriptors
can be linearly separated. Now most combinations classify with
less than 2% error and an outstanding case is the combination of
morphological, statistical descriptors with the three space-fre-
Table 7
Confusion matrix for the best case combining Morphological + Statistical + Fourier + Wave

Actual Predicted

Aster Brassica Campanula. Carduus Castanea Cistus Cytisus

Aster 120 0 0 0 0 0 0
Brassica 0 119 0 0 0 0 0
Campanula. 0 0 118 0 0 0 2
Carduus 0 0 0 119 0 0 0
Castanea 0 0 0 0 120 0 0
Cistus 0 0 0 0 0 120 0
Cytisus 0 0 0 0 0 0 120
Echium 0 0 0 0 0 0 0
Ericaceae 0 0 0 0 0 0 0
Helianthus 6 0 0 0 0 0 0
Olea 0 1 0 0 0 0 0
Prunus 0 0 0 0 0 0 0
Quercus 0 0 0 0 0 0 0
Salix 0 0 0 0 0 0 0
Teucrium 0 0 0 0 0 0 0
quency descriptors achieving 99.4% accuracy rate (e ¼ 0:006), see
its confusion matrix in Table 7. Note also that LDA successfully
deals with the addition of LBP and moments achieving a similar
error e ¼ 0:008 and low significant difference T ¼ 0:35 for these
two cases.

In Fig. 10 Fisher classifier was compared with SVM and Random
Forest by using four reference groups of descriptors. Although
there is a slight improvement tendency in favor of Random Forest,
outcomes did not show preference in all groups, nor even for other
groups not shown here. Thus no pair of group and classifier
revealed evident superiority here. This leads to the point that
descriptors and classifiers must be selected as two parts that work
together accordingly.
8. Discussion: grain features, limits and possibilities

Several important contributions have been made in this work. A
considerable data base of pollen grains has been elaborated. It was
compound of 15 pollen types and 120 samples per type manually
cropped. Grains have been automatically segmented (manually
revised) to make binary masks. A bench of the state of the art in
morphological, statistical and texture descriptors together with a
new contour profile descriptor has been exhaustively tested for
classifying the 15 pollen types. Some of them like texture descrip-
tors have not been evaluated before in this field. Furthermore we
proposed a novel contour + inner segmentation which provided
an overall 50% improvement up to 99.4% accuracy. We concluded
that the traditional morphological and statistical descriptors
together with space-frequency representations, specifically logG-
abor, provided the best classification accuracy rates. Moreover
the dimensionality reduction with LDA improved classification by
70%. Along this research we also come across with other several
challenging issues addressed in the following.

After long conversations with palynologists, they argue that the
geometric shape and number of apertures are the first aspects they
look for in a preliminary screening. Although size is an effective
feature to discriminate between broad groups of pollen types, this
should be taken carefully since size could vary more than 10 lm in
some circumstances like the substrate conditions or how much
water received the plant. Thus it could be recommended to sim-
plify the size in two classes: small and medium-large. Other mor-
phological refinement would consider triangularity, rhomboicity
or even more complex shapes adapted to the wide range of shapes
exhibited by the pollen. After that, depending on the possible pol-
len types according to their morphology, the search would resume
lets + logGabor descriptors and LDA.

Echium Ericaceae Helianthus Olea Prunus Quercus Salix Teucrium

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

120 0 0 0 0 0 0 0
0 120 0 0 0 0 0 0
0 0 114 0 0 0 0 0
0 0 0 119 0 0 0 0
0 0 0 0 120 0 0 0
0 0 0 0 0 120 0 0
0 0 0 0 0 0 120 0
0 0 0 0 0 0 0 120



Fig. 10. Performance comparison of classifiers Fisher, SVM and Decision Tree with
Group1 (MS), Group2 (MS + F + W) and Group3 (MS + G + W + F) and Group4
(MS + W + F + G + M + L).
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for some other details like reticular texture, spikes, apertures, exine
width, etc. This leads again to the idea of a hierarchical-tree
classification.

Unfortunately some pollen types are almost equal even for
experts which shows up the difficulty of this task. For instance Cru-
ciferae and Olea are similar except for the polar area and apertures.
Retama and Cytisus belong to the same family Fabaceae and are
consequently similar except for the almost negligible aperture
and triangular view of the former.

In addition to the obvious place of origin, the first and effective
way of classifying pollen is the color ball. Bees rarely harvest pollen
of different types in the same ball, therefore the knowledge of a
given color drastically reduces the number of possible candidates.
Such a description can be easily incorporated in an automatic rec-
ognition software by displaying a color chart where the user could
select the most similar ball tonality. This pre-processing stage
could help computer vision tasks not only by reducing computa-
tion time but also reducing error classification rates (decision tree).
As previously indicated, the color ball is not consistent with the
color later observed through the microscope and furthermore we
found no evidence that color could have any discriminant capacity
beyond this point, therefore images were converted to grayscale.

A pollen type may present different appearances according to
their view with respect to the z-view and consequently their mor-
phological and also statistical descriptors can drastically vary.
Although it is still unclear how to handle such a difficulty, three
alternatives are discussed. Multimodal classifiers deal with com-
plex probability distributions functions made of several monomo-
dal pdf’s. This could be the case of some morphological descriptors
like ‘circularity’ (and related) that clearly present two or more
probability means depending on the view. This approach is more
database consistent, although increases the complexity. Another
approach could split those multi-appearance types in two or more
different subclasses (polar, meridian, . . .) which refines database
description and simplifies classification, however this doubles the
effort for labeling each pollen type and collecting more training
samples. Hybrid tree-monomodal classification or decision rule
could also be employed for classifying in two steps. Firstly the
monomodal classifiers could be used for those descriptors not
affected by the z-laying and secondly for those sensible to view,
without making separated classes for each z-laying. This alterna-
tive demands a smaller training dataset than the previous option,
however it needs for a decision rule adjustment and still needs
for tedious polar/meridian/others labeling.

Precise segmentation is a critical point for the whole classifica-
tion process. Some studies using snakes and other computer vision
techniques showed remarkable results (Ronneberger et al., 2008).
Effectively segmentation should be done accurately, although our
purpose in the current study focuses on comparing descriptor’s
discriminant capacity while optimum classification rates remain
a secondary goal. Therefore we do not pursue perfect binary masks,
but suitable enough to be equally shared by all descriptors. How-
ever since one of the main contributions here is the strategy of
splitting grains in contour and inner parts, therefore segmentation
techniques will require a further study.

In a real scenario there is a need for an ‘unknown’ class, also
known as outlier detection. This class contains samples that do
not belong to any of the trained classes. Furthermore rejection
class is also required to embrace those ambiguous samples due
to malformations or a bad cropping. Considering a commercial
software the goal is to discover the origin of the harvested balls
and a pollen ball contains hundreds of grains whose majority
belongs to the same pollen type due to a smart habit of bees. In this
scenario it is not therefore so critical the ratio of false-negative
(attributed to a outlier-class), since there are hundreds of attempts
to find out the principal pollen type. Instead false-positive ratio
should be minimized as much as possible. In other words, once a
pollen grain is considered to belong to a certain class, one must
be highly confident on that assertion. Such a confident threshold
has to be modeled according to not only the classification error
but also according to population ratio present in every pollen ball
or slice preparation.
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Appendix A

Description of the main features of the 15 pollen types studied
in this paper.

Aster – isopolar, radially symmetric, medium size (P ¼
22—31 lm; E ¼ 20—29 lm), spheroidal to prolate (elliptic), in
equatorial view (P=E ¼ 0:96—1:20), circular or trilobulate in polar
view, 3-zonocolporate, ornamentation echinate–perforate.

Brassica – isopolar, radially symmetric, medium size
(P ¼ 21—30 lm; E ¼ 27—27 lm), oblate spheroidal to prolate
(elliptic) in equatorial view (P=E ¼ 0:90—1:28), circular or trilobu-
late in polar view, 3-zonocolpate, ornamentation reticulate.

Campanulaceae – isopolar, radially symmetric, small or medium
size (P ¼ 18—29 lm; E ¼ 20—34 lm), oblate spheroidal to sphe-
roidal in equatorial view (P=E ¼ 0:80—0:96), subtriangular in polar
view, 3-zonoporate, ornamentation echinate.

Carduus – isopolar, radially symmetric, medium to big size
(P ¼ 31—50 lm; E ¼ 31—51 lm), oblate spheroidal to prolate
(elliptic) in equatorial view (P=E ¼ 0:85—1:20), trilobulate in polar
view, 3-zonocolporate, ornamentation echinate–perforate–finely
reticulate.

Castanea – isopolar, radially symmetric, small size (P ¼ 14—15 lm;

E ¼ 9—11 lm), prolate (elliptic) in equatorial view (P=E ¼
1:27—1:55), triangular in polar view, 3-zonocolporate, ornamenta-
tion rugulate.

Cistus ladanifer – isopolar, radially symmetric, small to medium
size (P ¼ 41—55 lm; E ¼ 50—53 lm), spheroidal to prolate sphe-
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roidal in equatorial view (P/E=0.91–1.19), circular in polar view, 3-
zonocolporate, ornamentation reticulate.

Cytisus – isopolar, radially symmetric, medium to small size
(P ¼ 20—33 lm; E ¼ 15—29 lm), spheroidal to prolate spheroidal
(elliptic or subrhomboid) in equatorial view (P=E ¼ 0:86—1:55),
circular to trilobulate in polar view, 3-zonocolporate, ornamenta-
tion finely reticulate.

Echium – heteropolar, radially symmetric, small size
(P ¼ 13—25 lm; E ¼ 8—15 lm), prolate (pyriform) in equatorial
view (P=E ¼ 1:30—1:87), trilobulate in polar view 3-zonocolporate,
perforate–finely reticulate.

Ericaceae – tetragonal tetrads, medium to big size
(P ¼ 27—67 lm), pollen 3-zonocolporate, ornamentation psilate
to verrucate.

Helianthus – isopolar, radially symmetric, medium size
(P ¼ 27—31 lm; E ¼ 27—33 lm), oblate spheroidal to spheroidal
in equatorial view (P=E ¼ 0:90—1:00), circular in polar view, 3-
zonocolporate, ornamentation echinate–perforate.

Olea – isopolar, radially symmetric, small to medium size
(P ¼ 20—27 lm; E ¼ 19—31 lm), spheroidal to prolate (elliptic)
in equatorial view (P=E ¼ 1:05—1:31), circular or trilobulate in
polar view, 3-zonocolporate, ornamentation reticulate–verrucate.

Quercus – isopolar, radially symmetric, medium size
(P ¼ 19—33 lm; E ¼ 15—34 lm), oblate to prolate (elliptic) in
equatorial view (P=E ¼ 0:86—1:35), circular or triangular in polar
view, 3-zonocolpate, ornamentation granulate–verrucate.

Rubus – isopolar, radially symmetric, small to medium size
(P ¼ 16—28 lm; E ¼ 14—24 lm), spheroidal to prolate (elliptic)
in equatorial view (P=E ¼ 1:00—1:57), circular or trilobulate in
polar view, 3-zonocolporate or 3-zonocolporoidate, ornamentation
reticulate.

Salix – isopolar, radially symmetric, small to medium size
(P ¼ 16—27 lm; E ¼ 16—23 lm), prolate (elliptic) in equatorial
view (P=E ¼ 1:10—1:20), subtriangular in polar view, 3-zonocolpo-
rate, ornamentation reticulate.

Teucrium – isopolar, radially symmetric, medium to big size
(P ¼ 35—66 lm; E ¼ 26—45 lm), spheroidal to prolate (elliptic)
in equatorial view (P=E ¼ 1:05—1:65), circular or triangular in
polar view, 3-zonocolpate, ornamentation echinate–perforate.
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