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Abstract Chronic obstructive pulmonary disease (COPD)

is a progressive and irreversible lung condition typically

related to emphysema. It hinders air from passing through

airpaths and causes that alveolar sacs lose their elastic

quality. Findings of COPD may be manifested in a variety of

computed tomography (CT) studies. Nevertheless, visual

assessment of CT images is time-consuming and depends on

trained observers. Hence, a reliable computer-aided diag-

nosis system would be useful to reduce time and inter-

evaluator variability. In this paper, we propose a new

emphysema classification framework based on complex

Gabor filters and local binary patterns. This approach

simultaneously encodes global characteristics and local

information to describe emphysema morphology in CT

images. Kernel Fisher analysis was used to reduce dimen-

sionality and to find the most discriminant nonlinear

boundaries among classes. Finally, classification was per-

formed using the k-nearest neighbor classifier. The results

have shown the effectiveness of our approach for quantifying

lesions due to emphysema and that the combination of

descriptors yields to a better classification performance.

Keywords COPD � Emphysema � Gabor filters � Kernel

Fisher analysis � Local binary patterns � Texture analysis

1 Introduction

COPD describes a collection of lung diseases that are

characterized by parenchymal destruction and gradual

limitation of airflow. Although it may manifest as

emphysema, chronic bronchitis, or both, the former is the

most common pathophysiological manifestation and is

mainly attributable to tobacco smoking [2]. Studies of the

World Health Organization report that over 65 million

people have COPD worldwide and predict that it will be

responsible for 10 % of the world’s mortality by 2030 [22].

Therefore, in order to prevent other health complications

such as pneumothorax and respiratory infections, the

accurate characterization of emphysema is required for

developing efficient treatments.

The literature recognizes three types of emphysema[26]:

(1) Paraseptal (PS) also known as distal acinar emphy-

sema is characterized by destruction of distal airway

structures, alveolar ducts, and alveolar sacs. It is localized

around the pleura; (2) Panlobular (PL) or panacinar

emphysema destroys uniformly alveoli and prevails in the

lower half of the lungs; and (3) Centrilobular (CL) or

centriacinar emphysema is the most common type of pul-

monary emphysema. It begins in the respiratory bronchioli

and spreads peripherally. Most of the damage is usually

contained to the upper half of the lungs.

Attenuation values in CT images, which are expressed

in the Hounsfield unit (HU) scale, have been used to
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identify pathological changes in lung parenchyma because

they are linked to physical density of lung tissue [14].

Hayhurst et al. [9] showed that attenuation values in

patients who had CL differed from healthy patients with

normal tissue (NT).

Density mask is a common technique used to quantify

emphysema. It describes the amount of air presented in a

CT image and computes the percentage of pixel values

smaller than a previously selected threshold. Routinely,

-910 HU is taken as a standard threshold but recently

Madani et al. [12] observed that if the threshold lies

somewhere between -960 to -980, HU then the correla-

tion with emphysema is larger. Mean lung density [25] is

another objective measure of the extent of macroscopic

emphysema; it is defined as the percentage of tissue lung

below -950 HU. All these metrics consider that emphy-

sema causes an abnormal enlargement of air spaces; thus,

the air-tissue ratio in an emphysematous lung should

increase, whereas the density should decrease proportion-

ally to the amount of emphysema. Nevertheless, such

methods are sensitive to scanner calibration and noise. In

addition, they cannot distinguish emphysema patterns due

to averaging effect.

On the other hand, texture analysis in lung CT images may

provide new insights toward the construction of a reliable

computer-aided diagnosis system because it is capable of

identify changes in lung parenchyma and abnormalities

associated with emphysema. For instance, Sørensen et al.

[24] combined textural features using local binary patterns

(LBPs) to classify three classes of emphysema. In [3], fractal

analysis was proposed to classify 3258 emphysema patches

of size 64 9 64 pixels. A simpler alternative based on the

density estimation of local histograms was introduced in

[13]. A different approach was presented in [23] where the

authors used metadata to label lung samples. A technique

based on the embedded probabilistic PCA was proposed in

[29] to classify interstitial lung abnormalities that include

emphysema as one class, whereas in [5], the Riesz transform

was used to obtain features of lung abnormalities.

In this study, we propose a novel approach that exploits

the advantages of complex Gabor filters (CGF) such as the

strong correlation with the human visual system and

simultaneously encodes local intensity information pro-

vided by LBPs. The former are global descriptors, whereas

the latter are local operators. Since the low-attenuation

areas in lung CT images describe different emphysema

patterns, the discrimination problem was focused on the

characterization of local intensities and global spatial

variations. Our approach considers these aspects and pro-

vides a robust representation for each type of emphysema.

Therefore, an improvement in the classification rate can be

attained. We used a methodology composed of three stages

to assign a given patch to one of several patterns: (1)

feature extraction, (2) dimensionality reduction using ker-

nel Fisher discriminant analysis (KFDA), and (3) classifi-

cation using k-nearest neighbor (k-NN) classifier.

This paper is organized as follows: In Sect. 2, we

described the construction of the feature vectors. In Sect. 3,

we explained the procedure to reduce dimensionality. The

data are presented in Sect. 4. The experiments and results

are detailed in Sect. 5. Finally, our work is summarized in

Sect. 6.

2 A bio-inspired model for feature extraction

In the mid-eighties, Daugman found out that the shape of

Gabor functions and the psychophysical properties of

simple receptive fields have a close match [4, 8, 10].

Furthermore, he proved that the conjoint time–frequency

properties of 1D Gabor functions are still satisfied for the

two-dimensional case.

2D Gabor functions, which are band-pass filters, occupy

the smallest possible volume in the time–frequency space;

such a volume represents the theoretical lowest bound of

the uncertainty principle: ðDxÞðDyÞðDuÞðDvÞ� 1
16p2 where

(x, y) and (u, v) correspond to spatial and frequency vari-

ables, respectively.

Gabor functions are defined as the product of a Gaussian

function and a complex sinusoid and form a complete but

non-orthogonal basis set, see (Fig. 1).

The canonical 2D Gabor function in the spatial domain

is defined as:

g x; yð Þ ¼ Ke
�1

2

x�x0ð Þ2þc2 y�y0ð Þ2
a2

h i
þi 2p u0 x�x0ð Þþv0 y�y0ð Þ½ �þ/ð Þ

ð1Þ

where K ¼ c
2pa2 is a normalizing constant, (x0,y0) represents

the center of the function, (u0, v0) and / are the central

frequency and the phase of the sinusoidal signal, respec-

tively. (a, c) control the bandwidth of the Gaussian enve-

lope along X- and Y-axes. We considered functions

centered at the origin, x0 = 0, y0 = 0, and although the

phase was implicitly encoded, it was ruled out in the

present study.

Now, let us apply to (1) the Euler’s formula, hence, we

have the next expression:

g x; yð Þ ¼ Ke
�1

2
x2þc2y2

a2

� �
cos 2pu0xð Þ þ i sin 2pu0xð Þ½ � ð2Þ

The previous Eq. (2) can be divided into two parts,

g(x, y) = ge(x, y) ? igo(x, y), where

ge x; yð Þ ¼ Ke�
1
2

x2þc2y2

a2

� �
cos 2pu0xð Þ ð3Þ

is an even-symmetric function, which responds with a

maximum in zero. This property is suitable for detecting

salient edges. On the other hand,
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go x; yð Þ ¼ Ke
�1

2
x2þc2y2

a2

� �
sin 2pu0xð Þ ð4Þ

is an odd-symmetric function. This function is ideal for

detecting step-like discontinuities because it responds to

zero-crossing [20].

The frequency response and orientation selectivity

properties of Gabor functions are made explicit in the

Fourier domain.

Consider that ge is a pure-real even-symmetric function

and its Fourier transform, Ffgeg; is given by 1
2
½Ĝðu; vÞ þ

Ĝð�u;�vÞ�; which is a symmetric function about the

Y-axis, whereas go is a pure-real odd-symmetric function

and its Fourier transform, Ffgog; is 1
2
½�iĜðu; vÞ þ

iĜð�u;�vÞ�; which is a symmetric function around the

origin. Note that if both even and odd parts are used, then

they closely approximate to a Hilbert transform pair.

Therefore, the Fourier transform of (2) is given by

Ĝ u; vð Þ ¼ e
�2p2a2 ~u�u0 cos hð Þ2þ 1

c2 ~vþu0 sin hð Þ2
h i

ð5Þ

where ð~u; ~vÞ ¼ ðu cos h;�u sin hÞ: This equation represents

a rotated Gaussian function by an angle h with u0 fre-

quency units shifted along the X-axis.

Psychophysical experiments have shown that frequency

bandwidths of simple receptive fields are about one octave

apart [1, 4]. To fulfill this condition, the half-amplitude

bandwidth, Bu, of each filter was linked to its central fre-

quency using

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
log 2ð Þ

p
2Bu þ 1ð Þffiffiffi

2
p

pu0 2Bu � 1ð Þ
ð6Þ

where the central frequency is given in cycles/image-width.

If the central frequency is very small, then the filters will

behave as low-pass filters rather than band-pass filters; this

fact usually leads to a loss of information. Furthermore,

there is an upper limit, u� 1
2
: Beyond this limit, the radial

bandwidth, a, will be very large; thus, filtering may cause

artifacts [17]. We selected the four following dyadic values

u ¼ f
ffiffiffi
2
p

; 2
ffiffiffi
2
p

; 4
ffiffiffi
2
p

; 8
ffiffiffi
2
p
g to build an optimal filter bank

with four scales.

In order to determine the optimal angular bandwidth,

Bh, we considered axisymmetric filters and set c = 1

a
c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log 2ð Þ

p
ffiffiffi
2
p

pu0 tan Bh
2

� � ð7Þ

in this way, Bh& 36� but for computational efficiency Bh ¼
p
6

was chosen. This setting resulted in a filter bank with six

orientations, see (Fig. 2).

2.1 Gabor feature vectors

The goal of feature extraction is to identify similar char-

acteristics or patterns that are common to a specific class.

Such patterns may vary slightly within the class but they

must be sensitive enough to discriminate elements from

different classes. Gabor filters extract characteristics in

specific orientations and frequency bands called complex

Gabor coefficients denoted by G(s,h) and computed as

follows:

G s;hð Þ x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

s;hð Þ x; yð Þ þ O2
s;hð Þ x; yð Þ

q
ð8Þ

with

E s;hð Þ ¼ IHge s;hð Þ

O s;hð Þ ¼ IHgo s;hð Þ
ð9Þ

where I is the image and H indicates the convolution; go s;hð Þ
and ge s;hð Þ are the odd-symmetric and even-symmetric fil-

ters at the scale s and orientation h, respectively.

Theoretically, the more the features, the greater the

ability to discriminate images. Nevertheless, this statement

is not always true because not all features are important for

understanding or representing visual scenes [6].

We focused this study not only on energy signatures

such as mean and standard deviation but also on higher-

order statistics to increase the ability to extract character-

istics. Since Gabor coefficients can be considered as

Fig. 1 2D Gabor functions in

the spatial domain. a Real part,

which is an even-symmetric

function and b imaginary part

that corresponds to an anti-

symmetric function
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probability density functions, mean, standard deviation,

skewness, and kurtosis are enough to provide a good

approximation of a scene [21].

We investigated the following set of statistics, where

M and N are the size of the coefficient.

• Mean

l s;hð Þ ¼
1

NM

XN

x¼1

XM

y¼1

G s;hð Þ x; yð Þ ð10Þ

• Standard deviation

r s;hð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NM

XN

x¼1

XM
y¼1

G s;hð Þ x; yð Þ � l s;hð Þ

� �2

vuut ð11Þ

• Skewness (!) is a measure of asymmetry; it can be

positive, which means that the distribution tends to the

right, negative when the distribution tends to the left, or

even zero, which typically implies a symmetric

distribution:

! s;hð Þ ¼
l3

s;hð Þ

r3
s;hð Þ

ð12Þ

We also included a measure of contrast ðWÞ using

kurtosis (K)

W s;hð Þ ¼
r s;hð Þ

K0:25
s;hð Þ

ð13Þ

where K s;hð Þ ¼
l4

s;hð Þ
r4

s;hð Þ
represents the degree of peakedness of a

distribution. We followed the recommendations in [27] and

used 0.25 to reduce the contrast value when it comes dis-

tributions with biased peaks and to increase it with polar-

ized distributions.

We used the four previous descriptors to characterize

emphysema patterns and to construct Gabor Feature Vec-

tors (GFV) as follows:

GFV ¼
�
l 0;0ð Þ; r 0;0ð Þ;! 0;0ð Þ;W 0;0ð Þ; . . .;

l s�1;h�1ð Þ; r s�1;h�1ð Þ;! s�1;h�1ð Þ;W s�1;h�1ð Þ
�

ð14Þ

2.2 Extended Gabor feature vectors with local binary

patterns

LBPs have been successfully applied to texture classifica-

tion. This approach is based on the idea that textural

properties within homogeneous regions can be mapped into

histograms that represent micro-features, see (Fig. 3).

Original LBP operator [18] uses a 3 9 3 square mask

called ‘‘textum spectrum’’. The values within the mask that

are smaller than the central pixel are replaced by ‘‘0’’

otherwise by ‘‘1’’. The new values are then multiplied by

a fixed weighting function and summed to obtain the

final label: LBP(gc) =
P

p=0
7 S(gp - gc)2

p where fgpjp ¼
0; . . .; 7g are the neighbors of gc, and the comparison

function is defined as: SðxÞ ¼ 1 if x� 0

0 if x\0

	

Ojala et al. [19] improved their method by including a

circular mask denoted by the subscript (P, R) where P is

the number of sampling points and R is the radius of the

neighborhood. If the sampling coordinates, ðxp; ypÞ ¼ ðxc þ
R cosð2pp

P
Þ; yc � R sinð2pp

P
ÞÞ; do not fall at integer positions,

then the values are bilinearly interpolated.

Furthermore, they observed that over 90 % of the pat-

terns can be described with a few LBPs; so, they introduced

a uniformity measure U that corresponds to changes (0/1)

as follows:

U LBPP;R gcð Þ
� �

¼ jS gP�1 � gcð Þ � S g0 � gcð Þj

þ
XP�1

p¼1

jS gp � gc

� �
� S gp�1 � gc

� �
j ð15Þ

Fig. 2 Fourier transform of a

2D real Gabor function and its

filter bank. a In the frequency

domain, even-symmetric Gabor

filters are represented by two

real-valued Gaussian functions

placed on each side of the origin

symmetrically. b Contour lines

of a real Gabor filter bank

distributed in six orientations

and four frequency bands. This

filter bank was generated with

the parameters proposed in this

paper
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Thus, the uniform LBP (LBPP,R
uni ) can be obtained as:

LBPuni
p;R gcð Þ ¼

Xp�1

p¼0

S gp� gc

� �
if U LBPP;R gcð Þ
� �

�2Pþ 1 otherwise

8><
>:

ð16Þ

After this process is completed, a labeled image L x; yð Þ
is generated and the pixel-wise information is encoded as a

histogram, Hi, so that it can be interpreted as a fingerprint

or a signature of the analyzed object. LBPP,R
uni produces

Pþ 2ð Þ-bin histograms [16].

We propose to concatenate a GFV and its corresponding

LBPP,R
uni histogram into a single sequence called extended

Gabor feature vector (EGFVP;R) that represents any given

texture patch.

EGFVP;R ¼ GFV ;Hi

� �
ð17Þ

where

Hi ¼
XN

x¼1

XM

y¼1

C L x; yð Þ ¼¼ iji ¼ 0; . . .;Pþ 1f g ð18Þ

with

C Að Þ ¼ 1 if A is true

0 otherwise

	
ð19Þ

EGFVP;R simultaneously encodes global texture charac-

teristics extracted by Gabor filters and local information

provided by LBPs.

3 Multi-class kernel Fisher discriminant analysis

It must be considered that the size of a training set should be

exponentially increased with the dimensionality of the input

space. Since our approach generates high-dimensional

Fig. 3 Example of the LBP8,1
uni operator. The first row shows

emphysema patches in the window �1000;�500½ � HU. The second

row shows the labeled images, and the third row shows their

histograms. All the images were magnified by a factor of 4 for a better

visualization. a NT, b PS, c PL, and d CL

Med Biol Eng Comput (2014) 52:393–403 397

123



vectors and a limited dataset is available, we used KFDA

[15] that maps original data into a new feature space pre-

venting overfitting. In addition, another motivation for

reducing dimensionality is that psychophysical findings

indicate that perceptual tasks such as similarity judgment

tend to be performed on a low-dimensional representation

[11].

Discriminant analysis was introduced by Ronald Fisher

[7] for two-class problems (Fisher discriminant analysis,

FDA) and remains to be one of the most popular methods

for dimensionality reduction. Contrary to PCA, FDA pro-

jects vectors onto a line which preserves direction useful

for data classification.

Nevertheless, FDA has an important limitation because

it assumes Gaussian likelihoods. To overcome it, Mika

et al. [15] proposed a nonlinear generalization by mapping

original data into some space f in order to compute FDA

there.

The goal is to find w� 2 f that maximizes

J wð Þ ¼ wT SU
B w

wT SU
Ww

ð20Þ

where SU
B and SU

W are the corresponding matrices in f:
Let X1 ¼ fx1

1; x
1
2; . . .; x1

l1
g; . . .;XC ¼ fxC

1 ; x
C
2 ; . . .; xC

lC
g be

feature vectors from C classes, it is necessary to define a

matrix form of the inner product k x; yð Þ ¼ U xð Þ;U yð Þh i:
The idea is to compute dot products of mapped data

without a mapping function; thus, the kernel matrix is

defined as: K m; nð Þ ¼ k Xm;Xnð Þ where X ¼
SC

i¼1 Xi:

There are three popular kernels functions: (i) polyno-

mial, k x; yð Þ ¼ xyþ að Þb; (ii) sigmoidal, k x; yð Þ ¼
tanh axyþ bð Þ; and (iii) Gaussian or Radial Basis Function

(RBF), k x; yð Þ ¼ e�
1
2

x�yk k2

a2 : For all kernels a; b 2 R
þ:

It follows that

wT SU
B w ¼ aPaT

wT SU
Ww ¼ aQaT

ð21Þ

Now, the between-class scatter matrix is defined by

P ¼
XC

j¼1

lj lj � l
� �

lj � l
� �T ð22Þ

where lj ¼ 1
lj

P
8n2X j K m; nð Þ and l ¼ 1

l

P
8n K m; nð Þ:

Q is the within-class scatter matrix defined by:

Q ¼ KKT �
XC

j¼1

ljljl
T
j ð23Þ

Q = Q ? rI to guarantee that Q is positive definite.

Finally, a* is built with the C - 1 largest eigenvalues of

Q-1P, and the projection can be computed as:

y ¼ Ka� ð24Þ

Note that this method reduces the length of EGFVP;R to

C - 1 bins.

4 Material

We used two datasets labeled by experienced pulmonolo-

gists. The Bruijne and Sørensen (BS) dataset was pro-

vided by Prof. Dr. Bruijne and Dr. Sørensen [24]. It

consists of 168 non-overlapping patches of size 61 9 61

pixels manually annotated in 25 subjects previously divi-

ded into three groups: healthy non-smokers, smokers

without COPD, and smokers with moderate or severe

COPD. These patches belong to three patterns: NT (59

patches from 8 subjects), CL (50 patches from 7 subjects),

and PS (59 patches from 10 subjects). The NT patches were

annotated in healthy non-smokers, while the CL and PS

patches were annotated in both smokers with and without

COPD.

Brigham and Women’s Hospital (BWH) dataset was

provided by the Brigham and Women’s Hospital using a

subset of the COPDGene study [13, 29]. The COPDGene

study uses 342 CT scanners located in 16 different sites. In

total, 1337 patches that belong to 353 subjects were ran-

domly selected. The distribution per pattern is as follows:

NT (370 patches from 74 subjects), PS (184 patches from

52 subjects), and PL (148 patches from 39 subjects). In

addition, BWH includes three subtypes of CL (mild,

moderate, and severe): CL1 (170 patches from 5 subjects),

CL2 (287 patches from 84 subjects), and CL3 (178 patches

from 49 subjects), respectively. The size of the samples

was chosen to fit the physical extent of emphysema within

the secondary lobule corresponding to 31 9 31 pixels.

Prior to the application of our approach, the data were

normalized by the global mean and the standard deviation.

Neither BS nor BHW contains private information of

patients.

5 Experiments and results

Parameter selection is a fundamental step in any classifi-

cation problem; its goal is to find a global optimum to

achieve the best results in terms of accuracy and bias.

Tenfold cross-validation is a simple and yet widely

employed technique for model validation that randomly

splits up data into 10 disjoint subsets of approximately

equal size. For each fold, the remaining nine subsets are

used to train the model then the average of all folds should

provide an estimate of the model. However, in order to

reduce bias, Varma et al. [28] recommend a nested pro-

cedure that divides the data into tenfolds, for each fold, the

398 Med Biol Eng Comput (2014) 52:393–403
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remaining nine subsets are divided into ten subsets to train

the model.

It is important that any method generalizes to unseen

patients; thus, a solution is to use only a single patch of

each patient. Leave-one-patient-out cross-validation

divides the original dataset such that each partition contains

only samples of a single patient.

In order to assess our approach, we used the proposal of

Varma et al. with the parameters found in the inner circle

of the cross-validation that maximized the average accu-

racy. We also assessed the full datasets with leave-one-

patient-out cross-validation. In the classification stage, we

used k-NN classifier and the Euclidean distance as a metric;

such a distance was computed from the input samples to

every training data, so that we classified the samples using

the majority rule among the k-closest vectors.

5.1 BS dataset

This dataset was previously presented in [24] where the

authors achieved the best classification rate using k = 1 in

the k-NN classifier. We completed several tests varying

k ¼ f1; 2; . . .; 25g; and the best rate was achieved with

k = 20. Since KFDA projects data onto a new space where

class separation is maximized, the rate variation due to

changes in k was minimized, see (Fig. 4). We used the RBF

kernel with a = 543, the classification rates in the range

a \ 450 and a [ 550 decreased dramatically due to the

variance of the kernel.

We tested three combinations of GFV and LBPP,R
uni by

varying the number of neighbors and radius length:

{8, 1}, {16, 2}, and {24, 3}. These values are recom-

mended in the literature for testing purposes [19]. Fur-

thermore, we computed precision (Pr), sensitivity (Se), and

F1-Score ¼ 2� Pr�Se

Pr þ Se
; which is a measure of accuracy

and reaches its best value at 1 and worst score at 0.

The results using tenfold cross-validation were sum-

marized in Table 1. The highest precision rate, 93.70 %,

was achieved using EGFV16;2; which is a combination of

GFV and LBP16,2
uni . We set the radius length at R = 2, which

led to a higher accuracy of about 6 %. On the contrary,

R [ 2 caused lower accuracies. This fact suggests that

local variations, which can be interpreted as edges, may be

useful for characterizing emphysema patterns. We also

increased the number of neighbors, P = 16, that made our

approach less sensitive to noise because there are more

neighbors to average; however, it may cause over-

smoothing with larger values of P.

Furthermore, we carried out a comparison of the meth-

ods GFV ; LBPuni
8;1; LBPuni

16;2; and LBP24,3
uni . We also computed

the performance of Gabor filters using only the real part,

see (8). The estimated classification rates are shown in

Table 2.

Table 3 summarizes comparisons between GFV ;

LBPuni
P;R; and R(s,h), which are distinguished as ‘‘single

descriptors’’ and EGFVP;R; distinguished as ‘‘extended

descriptor.’’ The classification rates were achieved using

leave-one-patient-out cross-validation. It is worth men-

tioning that although Sørensen et al. used the same dataset,

a straightforward comparison is not possible because they

did not report classification rates for patches of 61 9 61

pixels.

5.2 BWH dataset

The BWH dataset was previously used in [13] where the

authors achieved a precision of 66 %. Also in [29], the

dataset was used with a technique based on an embedded

probabilistic PCA that resulted in a precision of 69 %. Note

that this dataset includes three subtypes of CL (mild,

moderate, and severe), which increase the complexity of

the classification task.

Fig. 4 KFDA on the BS three-class dataset. The data were reduced into a 2D space. The vectors were produced by a GFV (96-dimensional

space); b LBPP,R
uni (10-dimensional space); and c EGFV8;1 (109-dimensional space). The final space depends on the number of classes
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The results using the BWH dataset and tenfold cross-

validation are summarized in Table 4. We kept the previous

configuration, k = 20 and the RBF kernel with a = 543 and

also assessed three possible combinations of GFV and

LBPP,R
uni . The best precision was achieved with EGFV16;2:

We carried out a comparison among the methods:

GFV ; LBPuni
8;1; LBPuni

16;2; LBPuni
24;3; and Rðs;hÞ: The estimated

rates are shown in Table 5. Note that all the single

descriptor rates were lower than those obtained by our

approach.

We summarized in Table 6 comparisons of all the pre-

vious methods using leave-one-patient-out cross-validation.

The best rate was achieved with our approach, EGFV16;2:

Note that when it comes BWH, the variance is larger than in

Table 1 Classification results of EGFV8;1; EGFV16;2; and EGFV24;3 with the BS dataset and tenfold cross-validation

EGFV8;1 EGFV16;2 EGFV24;3

NT CL PS Mean (±SD) NT CL PS Mean (±SD) NT CL PS Mean (±SD)

Pr 81.03 88.00 90.00 86.34 (±4.71) 88.71 95.83 96.55 93.70 (±4.33) 78.69 89.36 88.33 85.46 (±5.89)

Se 79.66 88.00 91.53 86.40 (±6.10) 93.22 92.00 94.92 93.38 (±1.47) 81.36 84.00 89.83 85.06 (±4.34)

F1-Score 80.34 88.00 90.76 86.37 (±5.40) 90.91 93.88 95.73 93.51 (±2.43) 80.00 86.60 89.07 85.22 (±4.69)

All the data are expressed in (%)

Bold values represent the best rates achieved by the corresponding descriptor

EGFVPR extended Gabor feature vector with P sampling points and radius R

Table 2 Comparison of the methods GFV ; LBPuni
P;R; and Rðs;hÞ using the BS dataset and tenfold cross-validation

Descriptor Pr Se F1-Score

NT CL PS Mean (±SD) NT CL PS Mean (±SD)

LBP8,1
uni 68.85 79.59 74.14 74.19 (±5.37) 71.19 78.00 72.88 74.02 (±3.54) 74.11

LBP16,2
uni 74.60 79.59 82.14 78.78 (±3.84) 79.66 78.00 77.97 78.54 (±0.97) 78.66

LBP24,3
uni 73.33 85.11 77.05 78.49 (±6.02) 74.58 80.00 79.66 78.08 (±3.04) 78.28

GFV 70.37 75.00 87.10 77.49 (±8.64) 64.41 78.00 91.53 77.98 (±13.56) 77.73

Rðs;hÞ 65.38 71.15 84.38 73.64 (±9.74) 57.63 74.00 91.53 74.39 (±16.95) 74.01

All the data are expressed in (%)

Bold values represent the best rates achieved by the corresponding descriptor

Rðs;hÞ Gabor feature vectors using only real filters, GFV Gabor feature vector, LBPuni
PR local binary pattern with P sampling points and radius R

Table 3 Comparison rates in the BS dataset using leave-one-patient-out cross-validation

Descriptor Pr Se F1-Score

NT CL PS Mean (±SD) NT CL PS Mean (±SD)

Single LBP8,1
uni 61.40 76.60 67.19 68.40 (±7.67) 59.32 72.00 72.88 68.07 (±7.58) 68.24

LBP16,2
uni 74.58 76.60 75.81 75.66 (±1.09) 74.58 72.00 79.66 75.41 (±3.90) 75.54

LBP24,3
uni 69.84 82.61 77.97 76.80 (±6.46) 74.58 76.00 77.97 76.18 (±1.70) 76.49

GFV 53.33 64.44 82.54 66.77 (±14.74) 54.24 58.00 88.14 66.79 (±18.58) 66.78

Rðs;hÞ 57.41 66.00 82.81 68.74 (±12.92) 52.54 66.00 89.83 69.46 (±18.88) 69.10

Extended EGFV8;1 77.19 87.76 85.48 83.48 (±5.56) 74.58 86.00 89.83 83.47 (±7.93) 83.48

EGFV16;2 83.87 93.48 91.67 89.67 (±5.10) 88.14 86.00 93.22 89.12 (±3.70) 89.39

EGFV24;3 80.00 87.23 90.16 85.89 (±5.23) 81.36 82.00 93.22 85.53 (±6.67) 85.71

All the data are expressed in (%)

Bold values represent the best rates achieved by the corresponding descriptor

Rðs;hÞ Gabor feature vectors using only real filters, GFV Gabor feature vector, LBPuni
PR local binary pattern with P sampling points and radius R,

EGFVPR extended Gabor feature vector with P sampling points and radius R
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BS because BWH includes three subtypes of CL. Since low-

attenuation areas in CL may vary in shape, some patients

show well-defined borders patterns, while others do not.

Therefore, CL is not a single morphological feature.

6 Conclusions

In this paper, we proposed a new approach to quantify up to

six emphysema patterns based on complex Gabor filters

and local binary patterns. This joint model allows to

encode global texture characteristics with local information

simultaneously. We presented the complex Gabor model

and summarized its properties related to the human visual

system. Since Gabor-based methods transform images into

a high-dimensional feature vectors, we applied kernel

Fisher discriminant analysis via the kernel trick to avoid

computing a mapping function and to find discriminant

boundaries among classes. Then, we performed tenfold

cross-validation and leave-one-patient-out cross-validation

to assess our approach.

We also included a comparison between complex and

real Gabor filters. The difference is that in the frequency,

domain real Gabor filters are represented by two real-val-

ued Gaussians symmetrically placed on each side of the

origin, whereas complex Gabor filters are represented with

a single Gaussian on the positive side of the spectrum.

Therefore, real filters contain more redundant information

than complex filters. However, redundant information does

not always allow greater discrimination ability. This sug-

gests that the next step to improve the classification should

be a sparse model that performs a deeper analysis of the

redundant information.

In general, the extended descriptors increased precision

rates around 15 % in the BW dataset. Concerning the BWH

dataset, our method achieved a F1 score of 70.32, which

means 10 % above any single descriptor. Theses results

were mainly influenced by the misclassified severity levels

of CL, most of the errors occurred between moderate and

severe emphysema that could indicate a limitation of the

BWH database.

It seems that only the distribution of attenuation values

in PS is clearly different from the rest of the classes. Since

we consider that the main limitation of filter approaches is

that the information from each coefficient is represented

with a few moments causing loss of information in terms of

orientation and distribution, we used LBPs to overcome

this limitation and characterize the distributions of local

patterns. Most of the errors using GFV occurred between

NT and CL patterns but the precision rates of such patterns

increase around 30 % when EGFV16;2 is used. These

results have shown that the proposed approach is a prom-

ising technique that yields a good performance inT
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emphysema classification and successfully discriminates

among NT, CL, PL, and PS in CT images. Its value lies in

providing an independent quantification of the disease in

order to propose new therapies. Furthermore, this approach

may be useful in other textural classification scenarios

beyond medical imaging.
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