
J Intell Robot Syst (2012) 66:75–109
DOI 10.1007/s10846-011-9627-8

Odometry-Based Viterbi Localization with Artificial
Neural Networks and Laser Range Finders
for Mobile Robots

Adalberto Llarena · Jesus Savage · Angel Kuri ·
Boris Escalante-Ramírez

Received: 9 December 2010 / Accepted: 25 July 2011 / Published online: 26 August 2011
© Springer Science+Business Media B.V. 2011

Abstract This paper proposes an approach that
solves the Robot Localization problem by us-
ing a conditional state-transition Hidden Markov
Model (HMM). Through the use of Self Or-
ganized Maps (SOMs) a Tolerant Observation
Model (TOM) is built, while odometer-dependent
transition probabilities are used for building an
Odometer-Dependent Motion Model (ODMM).
By using the Viterbi Algorithm and establishing a
trigger value when evaluating the state-transition
updates, the presented approach can easily take
care of Position Tracking (PT), Global Local-
ization (GL) and Robot Kidnapping (RK) with

A. Llarena (B) · J. Savage · B. Escalante-Ramírez
Universidad Nacional Autónoma de México UNAM,
Ciudad Universitaria no. 3000, Col. Copilco
Universidad, Del. Coyoacán, México,
D.F., C.P. 04360, México
e-mail: adallarena@aol.com

J. Savage
e-mail: savage@servidor.unam.mx

B. Escalante-Ramírez
e-mail: boris@servidor.unam.mx

A. Kuri
Instituto Tecnológico Autónomo de México ITAM,
Río Hondo No. 1, Col. Progreso Tizapán, México,
D.F., C.P. 01080, México
e-mail: akuri@itam.mx

an ease of implementation difficult to achieve
in most of the state-of-the-art localization algo-
rithms. Also, an optimization is presented to allow
the algorithm to run in standard microprocessors
in real time, without the need of huge probability
gridmaps.

Keywords Artificial neural networks ·
Simultaneous localization and mapping ·
Mobile robots · Hidden Markov models

1 Introduction

In mobile robotics, one of the most basic prob-
lems to be solved is the Simultaneous Localization
and Mapping or SLAM problem [1], where an
autonomous robot must be capable of generating
a representation often called a ‘map’ of an un-
known environment, at the same time that tra-
verses it and gets localized into that environment
representation.

Although robotic localization is considered a
solved problem, it is far from being a closed
investigation topic. It involves three aspects:
(a) data collecting and pre-processing to build an
observation model, (b) a priori motion kinematics
knowledge for building a movement model (or
odometer estimations, not always incorporated on
cheaper or smaller robots) and (c) an observation-

76 J Intell Robot Syst (2012) 66:75–109

movement relationship, used for updating the po-
sition estimation through time.

While computers are approaching the process-
ing power of the human brain [2], the complexity
of operating systems, algorithms and the sensor-
ial robot information is also increasing. For this
reason, algorithms and architectures suitable of
being adapted or re-trained will constitute a good
alternative in the future. The best example is the
animal brain, capable of performing very complex
tasks and adapting to the environment, all just
done with neurons. Based on these premises, a
kind of Artificial Neural Network (ANN) inspired
in the way the brain organizes information, the
Self Organized Map (SOM) has been widely used
in robotics because its properties for organizing
high-dimensional observation vectors. In this way,
the nature has helped the researchers in finding
novel ways to manage the increase in the data to
be processed.

This paper is organized as follows: Sections 1
to 3 present the general robotic localization prob-
lem and the most common solutions up to date.
Sections 4 and 5 introduce the Viterbi Localiza-
tion Method (VL) and propose a solution based
on ANNs and odometry-based motion models
named Odometry-dependent Viterbi Localization
(OVL). Section 6 presents an error-tolerant ob-
servation model by using SOMs. Section 7 ex-
plains the full path reconstruction from discrete
sample nodes. Section 8 shows the method opti-
mizations. Section 9 shows the OVL Algorithm.
Sections 10 and 11 present the experiments and
show the results. Finally, Sections 12 to 14 present
the conclusions and the future work.

2 Previous Work

2.1 Robot Localization with Artificial
Neural Networks

Since the first efforts for effectively locating a
robot using ANNs the main purpose has been
relating the robot pose as a function exclusively
of the observations. Although this has been made
possible using several kinds of ANNs such as Feed

Forward Networks (FFNs) [3], Hopfield [4], Ko-
honen Self Organized Maps (SOMs) [5], Fuzzy-
Adaptive Resonance Theory (Fuzzy-ARTs) [6],
General Regression Neural Networks (GRNNs)
[7] or Multi-Layered Perceptrons (MLPs) [8],
such direct relationship between pose and ob-
servations makes it difficult to carry on a mixed
hypothesis based on both odometry estimations
and perceptual data because the displacement in-
formation is ignored.

2.2 Robot Localization and Hidden
Markov Models

Probabilistic localization with Hidden Markov
Models (HMMs) has been explored in the past
by [9, 10] with good results. Unfortunately, with
the discretization of the configuration space, large
amounts of memory were required for storing a
location probability distribution. For this reason
they and other researchers started a new success-
ful approach known as Monte Carlo Localization
(MCL) [11]. The main feature of this method is
the use of probabilistic Motion and Observation
Models (MM and OM respectively). With the aid
of these models, the new robot pose Probability
Density Function (PDF) can be estimated based
on odometry data and by comparing the actual ob-
servation against the stored model. This important
modeling approach is also incorporated into the
Kalman Filter (KF) Localization [12] technique
and makes probabilistic methods tolerant to oc-
clusions and sensor noise.

2.3 Viterbi Localization

In 2005, Savage et al. [13] proposed a method
that used the Viterbi Algorithm to solve the ro-
bot localization seen as a HMM with a fixed-
probability state-transition model. That method
was unable to give precise location estimations,
due to the lack of an odometry-dependent Motion
Model (ODMM). The present work extends that
approach with an ODMM, incorporating rescaling
techniques in order to avoid the tendency of prob-
abilities to zero out after several iterations.

J Intell Robot Syst (2012) 66:75–109 77

3 Robot Localization and HMMs

3.1 The Robot Localization Problem

The robot localization problem consists of de-
termining the robot’s pose with respect to some
known references (a common origin in a Cartesian
plane or environment landmarks), involving three
basic aspects:

1. Global Localization (GL). The mobile ro-
bot must determine its initial pose, based on
the universe of known locations and sensor
readings.

2. Position Tracking (PT). The robot has prior
knowledge about its previous location and
keeps track of the position changes, through
the integration of the successive displace-
ments calculated by the PT algorithm.

3. Robot Kidnapping (RK). The robot is
abruptly taken out of its current location
and it is repositioned into an arbitrary place
of the working environment, but the robot
is not informed about this change. As a
consequence, the robot must be able to
detect the position change and find its global
location again.

Robot localization intends to determine the ac-
tual robot pose xt:(xt,yt,θ t), where (xt,yt) are the
robot coordinates in the Cartesian plane and θ t

is the robot’s heading, based on a set of control
actions a1:t−1, a set of odometry displacements
estimations u1:t, a set of previous visited locations
x0:t−1 and a sensor readings set z0:t. It is assumed
that the robot starts at location x0 observing z0

(Fig. 1).
A new control action a1 is issued and the

robot performs some displacement �x1 accord-
ing to its kinematics, arriving at location x1 with
odometer estimation u1 and observing z1. A new
action a2 is issued, displacing the robot �x2,
arriving at x2, observing z2 and estimating u2.
This process continues up to some time instant t,
with at, �xt, xt, ut and zt, where a re-localization
method is launched to correct the robot position.

Fig. 1 Robot Localization Problem. The robot starts at
x0 perceiving z0. As the robot moves, it looses certainty in
the pose estimation. [a1, a2]: planned trajectory. [u1, u2]:
odometry estimation. [�x1, �x2]: actual displacement

3.2 Classical Approaches in Robot Localization

Historically, two kinds of methods have been de-
veloped to solve the localization problem, data–
data and data–model associations.

3.2.1 Data–data Associations

The data–data association calculates xt as

xt = f (x0:t−1, z0:t, u1:t, a1:t−1) (1)

The simplest way to do this association is by
collecting and storing a set of observations at
known locations L: (xi, zi), gathered in a previous
sampling phase. It is possible to find the closest
observation zk in L to a given observation zt

and assuming corresponding xk as the true robot
location. Although this association directly relates
xi with zi and vice versa (apparently solving GL
and RK but not PT), this procedure is not com-
pletely adequate because it finds the location most
similar to a given observation, regardless of robot
motions and sensor errors or occlusions.

Another kind of methods like [14] calculate
successive robot displacements with xt as xt−1 +
�xt where

�xt = f (zt, zt−1) (2)

By exploiting a relation between zt−1 and zt

they are able to find the exact amount of displace-
ment �xt. They are adequate for calculating PT
by integrating successive �xt but cannot therefore
deal neither with GL nor RK.

Because data–data approximations directly re-
late position with observations they result very

78 J Intell Robot Syst (2012) 66:75–109

sensitive to sensor noise and occlusions. More-
over, they are incapable of deciding between two
possible robot locations x1 and x2 with identical
observation vectors, due to the lack of movement
estimators.

3.2.2 Data–model Associations

The data–model associations calculate xt by in-
corporating some robot and world models. While
traversing the environment, some conditions must
be met according with those models, thus:

xt = f (x0:t−1, z0:t, u1:t, a1:t−1, �) (3)

where

� : {S, W, O, M} (4)

is a set of models regarding the robot sensors S,
the world model W, a location–observation rela-
tionship O and a motion model M.

3.3 The Sensor Model

The Sensor Model stores a representation about
the way that specific sensors (like range finders,
temperature sensors or digital cameras) behave
under real world inputs. They model the sensor
output zk for a given measuring condition ϑr,
based on specific sensor parameters ςk accord-
ing to

zk = S (ϑr, ςk) (5)

where ϑr is a measuring condition vector com-
prising important parameters such as the object’s
distance, scanning angle, surface incidence angle
(for range scanners), surface color and roughness
and etcetera. ςk is the specific sensor parameter
vector containing information such as sensibility,
operative range, distortion and etcetera; used for
predicting the noise added to zk by the S function.
For digital cameras ϑr is equivalent to extrinsic
parameters while ςk corresponds with the intrinsic
parameters.

3.4 The World Model

The World Model W, often implemented trough
a map, has a representation of the robot envi-
ronment (such as the physical location of the

objects and their attributes). It constitutes the
reference frame where the robot is located into.
It is important to have all the World Model’s in-
formation as sensor independent as possible (the
World Model must be complete). Regardless of
the impossibility for any sensor to detect some
features from a certain location inside the world
(like black polished objects, invisible for the laser
range finder) the World Model must incorporate
as much characteristics as possible. In this sense,
Sensor Fusion Methods [15, 16] are relevant to
build more complete World Models than those
conformed only with information coming from a
single sensor.

Several kinds of maps are commonly used as
world models such as occupancy grids [17], metric
maps [18], topological maps [18, 19], feature maps
[20] and many others. In any case the main goal
in SLAM will be making the robot able to build
by itself those maps, while exploring an unknown
environment.

3.5 The Observation Model

The Observation Model (OM) O stores a direct
association between locations xr and observations
zr for a given sensor as

zr = O (xr) (6)

Most of existing localization algorithms con-
sider the environment as static. This issue sim-
plifies the location procedure by applying the
Markov Assumption [21] where the observation
made at certain state is only dependent of the state
itself (the current robot’s pose). Under normal
operation conditions only a few section of the
environment keeps static, basically the walls and
some big furniture, the rest of objects (including
human and robots) are constantly moving. For
this reason, it is necessary to differentiate between
scene, view and observation.

3.6 Scene, View and Observation

A scene corresponds with the instantaneous state
Wt of all the actors inside the environment (i.e. the
location of all the objects in the World Model). In-
side a static environment as several methods pro-
pose, the world model does not change over time,

J Intell Robot Syst (2012) 66:75–109 79

so it warranties the applicability of the Markov
Assumption.

A view is a particular section of the environ-
ment, only visible from a particular location and
depending on some sensor parameters such as
absolute location and heading, pan, tilt and field
of view. In other words, a view is a portion of the
environment suitable of being processed by the
sensor at a given location.

An observation is the measure that a specific
sensor performs from certain view. It is obvious
that depending on the sensor model, and obser-
vation conditions, some of the world character-
istics will not be perceivable by the sensor so
the measure condition will lead to bad measuring
errors produced for instance by lens distortion or
moisture in case of having digital cameras.

3.7 Simulating the Observations

As an alternative to implementation of one
Observation Model for every robot sensor by
gathering a huge set of sample readings, the as-
sociation xr–zr is often achieved by using a soft-
ware simulator that predicts observation condi-
tions ϑr from a given location xr by using a world
model W, having on mind specific sensor parame-
ters ςk as field of view, resolution (dimensional-
ity), maximum and minimum measure ranges and
etcetera:

ϑr = O (Wt, xr, ςk) (7)

The use of a simulation method is especially
adequate when working with high dimensional
observation vectors like cameras or range finders.
By using ray-tracing techniques (for range based
algorithms) or 3D renders and virtual cameras
(for simulating the actual observation for vision
systems) expected observations can be generated
with the expense of processor and memory of
course. Many authors build a readings [22] or
features [23] databases with optimized algorithms
like Kd-trees [11] to search for the direct or in-
verse location–observation value.

3.8 The Motion Model

Often referred as Plant Model in Probabilistic Lo-
calization [1], the Motion Model (MM) establishes

the estimated movement the robot will perform
under certain control action at based on odom-
etry estimations ut. Examples of these models
are differential drive, omni-directional, synchro-
drive or legged robot control. This model pre-
dicts the final robot location after performing the
at command.

Usually robots incorporate odometers to help
the control modules in estimating the robot dis-
placements based on ut.

In general, a Motion Model is a transfer func-
tion that computes the new robot location xt+1, in
terms of current location xt, robot constrains ρr

and odometry data ut.

xt+1 = M (xt, ut, ρr) (8)

The Motion Model imposes the restrictions
a mobile robot must meet between consecutive
movements. While a set of encoders is supposed
to be mounted on the robot wheels and the ro-
bot dimensions and mechanics are known, the
Motion Model establishes which locations trans-
fers are valid (or more ‘probable’ in terms of
probability theory) between consecutive move-
ments, based either on odometry estimations ut

(for wheeled robots), the commanded movement
at or a movement statistical analysis (for legged
robots).

In this way, with the help of the abovemen-
tioned models, data–model associations match ac-
tual observations against those predicted by OM
and MM.

3.9 Probabilistic Localization

The most widely used data–model localization ap-
proaches are of probabilistic nature, where the
goal is estimating the posteriori Probability Den-
sity Function (PDF)p(xt) according to

Bel (t) = p (xt|z0:t, x0:t−1, a1:t−1, u1:t−1) (9)

where xt is called the robot state representing the
robot pose.

The most popular probabilistic localization
methods are Kalman Filters (KFs) and Parti-
cle Filters (PFs). Both are basically data–model
associators.

80 J Intell Robot Syst (2012) 66:75–109

Probabilistic methods are also known as
Bayesian Filters because they support their oper-
ation upon certain a-priori assumptions:

3.9.1 Markov Assumption

The Markov Assumption [21] considers observa-
tions zt dependent only on the current state xt

(and the immediate previous and next states),
this is

p (zt|z0:t−1, x0:t, a1:t, u1:t) = p (zt|xt) (10)

and therefore

p (xt|x0:t−1, a1:t−1, u1:t−1) = p (xt|xt−1, ut−1) (11)

in consequence

p (zt|a1:t−1, u1:t−1) = p (zt) (12)

The Markov Assumption is not completely valid
in crowded environments or scenarios with mov-
ing objects where observations are difficult to pre-
dict only in function of the current robot location.
More robust methods incorporate also the robot
observation history in order to give more accurate
predictions.

3.9.2 Bayes Rule

In order to calculate Bel(t), KFs and PFs apply
Bayes Rule [24], having on mind Eqs. 10 to 12 as

p (xt|z0:t, x0:t−1, a1:t−1, u1:t−1) = p (zt|xt) p (xt|ut−1)

p (zt)

(13)

While KFs keep track of the position using para-
metric continuous Gaussian functions and a linear
motion and observation models (something very
difficult to achieve in real scenarios), PFs carry
on a multi-hypothesis posterior PDF through a
set of individual samples called ‘particles’, each
one of them corresponding with a possible robot
location.

3.10 Kalman Filters

Kalman Filters [12] have a linear Motion Model
(so called the Plant Model) of the form

x (k + 1) = �x (k) + 	u (k) + Cv (14)

where x(k) is the previous state, � indicates the
state variation in the absence of inputs, 	 is a
state-transition matrix, u(k) is the control com-
mand and Cv is the state covariance matrix.

They also consider a linear Observation
Model

zi (k + 1) =
Ex (k) + Wi (15)

where zi(k+1) indicates the sensor reading at time
k+ 1,
E is a matrix relating observations with
robot states x(k). Wi(k) is a zero-mean Gaussian
noise function.

In its main stage, KFs compute a prediction of
the sensor readings for the next state k + 1 by
using Bayes Rule with

Kt = �̄tCT
t

(
Ct�̄tCT

t + Qt
)−1

(16)

where �̄t,Ct and Qt are matrixes. Kt is known
as Kalman Gain and requires a matrix inversion
with O(k2.4) [25] being k the dimension of the
observation vector.

Kalman Filters, carry on a robot location esti-
mate based on the parameters of Gaussian func-
tions, they assume a Gaussian, zero mean move-
ment and observation errors. This, together with
the linearity model assumption and matrix in-
version makes difficult to implement KFs under
real world conditions in limited devices. For this
reason some improvements have been developed
as the Extended Kalman Filter EKF [26], the
Unscented Kalman Filter UKF [27] and the Infor-
mation Filter IF [1]. KFs can carry on only one
localization hypothesis [28], limiting their use in
changing environments.

3.11 Monte Carlo Localization

Particle Filters surpass some of the KFs limita-
tions by approximating the posterior PDF p(xt)

J Intell Robot Syst (2012) 66:75–109 81

by a set of samples called ‘particles’. The particle
density over the configuration space reflects the
probability p(xt) calculated according to Bayes
Rule as

Bel (xt)=ηp (zt|xt)

∫
p (xt|xt−1, ut) Bel (xt−1) dxt−1

(17)

where Bel(xt) is the pose belief at time t, p(zt|xt)

is the Observation Model, p (xt|xt−1, ut) is the Mo-
tion Model, Bel(xt−1) the pose belief at time t − 1
and η is a normalizer.

The most popular PF is the Monte Carlo Local-
ization method (MCL) [11]. MCL approximates
Eq. 17 by randomly sampling locations accord-
ing to the Motion Model p (xt|xt−1, ut), based
on robot motions and odometer estimations ut.
After a sample set is generated, an importance
weight wi is calculated for every particle location
xi based on the Observation Model p(zt|xt). After
computing all pairs (xi, wi), every wi is rescaled,
multiplying its value by their individual scaling
factor ηi (equivalent to p(zt) in Bayes Rule) calcu-
lated with

ηi = wi
n∑

j=1
w j

(18)

where n is the size of the sample set in the PF.
Then, a method known as Importance Sam-

pling renews the entire particle set by generat-
ing new random particles, based on importance
factors wi, generating more new samples in those
locations with higher matching between real ob-
servations zt and supposed observations zx for
that location. This process avoids the effects of
progressive degradation of Bel(xt) due to the
implicit computation of probabilities that tend
to zero.

In many MCL implementations for laser range
finders, the OM is computed by using a ray-tracing
simulator in real-time, based on world model W
or a set of stored observations L at known lo-
cations and an optimized-search method. Obser-
vation probability is calculated by evaluating a
Probabilistic Sensor Model (as the one proposed
in [11] for range scanners) for every simulated

individual reading zxi and the actual individual
sensor reading zri according with

p (zt|xt) =
n∏

i=1

p
(
zti |zxi

)
(19)

By incorporating measuring errors and oc-
clusion probabilities in the Probabilistic Sensor
Model p

(
zki |zxi

)
the MCL filter is capable to

deal with both sensor errors and occlusions. By
generating a small extra set of randomly samples
all over the configuration space eventually MCL
can recover from robot kidnapping.

Finally, as every particle has an importance
weight associated to it, the current robot location
can be computed as

E (xt) =
n∑

i=1

(xi · wi) (20)

In conclusion, MCL has some important
advantages

1. Multi Hypotheses. The sample set distribution
allows managing many possible robot loca-
tions at once. Once the particles have con-
verged to a narrow area, it can be assumed as
the true robot pose.

2. Completeness. By having an evenly distributed
initial particle set, MCL can handle GL. By
adding some random particles across all the
configuration space in the resampling process
MCL can eventually recover from a RK. As
robot motions ut are used for sampling the
new particle set, MCL can handle PT.

3. Memory Reduction. It reduces drastically the
amount of memory required by discrete local-
ization techniques that use three-dimensional
spatial grids as Markov Localization [9]. It
is capable of integrating observations at high
rates.

4. Easiness of Implementation. MCL It is easy to
implement in systems with limited resources
of memory and speed, because it does not
require matrix inversion like KFs.

Unfortunately, MCL also has some disadvantages

1. Sensor Error. The MCL performance decays
when having sensors with low error rates (like
laser range finders).

82 J Intell Robot Syst (2012) 66:75–109

2. Simulation Processor Cost. As each particle
represent a possible robot location, the Ob-
servation Model must be able to predict a pre-
cise observation for each particle, this is often
performed with the help of a software simula-
tor. When managing laser range finders with
hundreds of readings per scan or mounted
vision cameras, the simulation process re-
sults very expensive in terms of processor
consumption.

3. Number of Particles. The MCL performance
depends mostly on the re-sampling process.
At less one particle must be located very
close to the actual robot position to ensure
the method’s convergence. In some scenarios
bigger than a dozen of meters long and width,
thousands of particles can be needed for per-
forming GL or RK.

4. Independent Sensor Readings. As proposed in
Eq. 19 individual sensor readings are consid-
ered as conditionally independent. The true is
exactly the opposite: individual sensor read-
ings zri are highly correlated.

Some additions to MCL have been proposed by
the authors to overcome some of these disadvan-
tages like an inverse sampling model Mixture-
MCL [11] for predicting locations with a Kd-
tree forest storing observations, or the Rao-
Blackwellized Particle Filters [29] that carries on a
whole map with every particle. They both increase
the performance of PFs but also their complexity
and thus the required computer resources for run-
ning those algorithms.

In this form, spatial grids and particle filters
have proved their applicability to the SLAM
problem [11], but they require large amounts of
processing time and memory resources. Topolog-
ical localization [13] has proved its simplicity in
terms of computational resources but they fail in
the presence of occlusions and partial readings
due to range sensors sensing limits. By the other
hand, one fundamental issue is the inherent com-
plexity of the localization problem. It requires
many resources for every square meter added to
the environment.

3.12 Hidden Markov Models and Robot
Localization

Hidden Markov Models (HMMs) [21] are prob-
abilistic directed graphs, where the current state
xi ∈ X:[x1.. xn] is not directly observable (i.e.
measurable). There is an observation zi ∈ Z :[s1..
sm] associated with every state in the model and
through the observation sequence and model pa-
rameters the hidden variable (the state) can be
estimated. X is a set of states and Z is a set of
observations (symbols).

The parameters of a Hidden Markov Model
λ are

λ = (A, B, �) (21)

where A = {aij} is a state-transition probability
distribution over X × X such as

aij = p
(
xt = x j|xt−1 = xi

)
, 1 ≤ i ≤ n (22)

B = {b j(k)} is an observation probability distrib-
ution over X × Z (relating states with observed
symbols) such that

b j (k) = p
(
zt = sk|xt = x j

)
, 1 ≤ k ≤ m (23)

and � = {π i} is an initial state distribution

πi = p (xt = xi) , 1 ≤ i ≤ n (24)

where n is the number of states and m is the
number of symbols in the HMM.

A, B and � can be expressed in matrix form:
A(n × n) is the state transition matrix, B(n × m) is
the observation matrix and �(1 ×n) is the initial
state probability matrix.

4 Viterbi Localization

As proposed in [13], robot localization can be seen
as the process of estimating the hidden variable
in a HMM (the current state x corresponding to
a discrete robot pose, see Fig. 2), based on the
sensor observation sequence {z0,z1,..., zt}.

J Intell Robot Syst (2012) 66:75–109 83

Fig. 2 Robot Localization Problem as HMM. Every state
has transition and observation probabilities associated to it
(not all of them are drawn)

4.1 The Viterbi Algorithm

The Viterbi Algorithm (VA) [30] proposes a solu-
tion for estimating p(O|λ), i.e. the probability of
the observations O given the model λ, where O=
(z0, z1,..., zt) is the observation sequence and λ is
the HMM. The Viterbi Algorithm has two ways
of calculating p(O|λ), the forward and backward
procedures.

The Viterbi’s forward procedure (VFP) has
three steps:

A. Initialization

α1 (i) = πib i (z1) , 1 ≤ i ≤ n (25)

α1(i) stores the joint probability p(xi, z1) of
being at state i at t = 0 and observing z1, equals
to the probability π i of starting at state i by the
probability of observing the symbol z1 at that
state, while n is the number of states in the model.

B. Induction

αt (j) = b j (zt)

[
n∑

i=1

aijαt−1 (i)

]
1 ≤ t ≤ tk
1 ≤ j ≤ n

(26)

where tk is the time when the last observation zk

was taken.
αt (j) computes the joint probability p(x j, z0:t)

of being at state i at time t while observing zt.
By summing the probability p(x j|xi, z0:t−1) of per-
forming a transition to the state j from every state
i (total probability) p(x j, z0:t−1) is obtained. If this

result is multiplied by the probability of observing
the symbol zt at the state j then results p(x j, z0:t),
because p(x j, z0:t) = p(zt |x j)p(x j, z0:t−1).

C. Termination

p (O|λ) =
n∑

i=1

αt (i) (27)

where

αt (i) = p (xt = xi, z0, z1, · · · , zt|λ) . (28)

By rewriting Eq. 26, according with 23 and 24

αt (j) = p
(
zt|x j

) n∑

i=1

p
(
x j|xi

)
αt−1 (i)

= p
(
zt|x j

)
p

(
x j, z0:t−1

) = p
(
z0:t, x j

)
(29)

can be noticed that Eq. 26 computes the joint
probability of the observation sequence up to zt

finishing at state x j. By summing all αt(j) with
1≤ j ≤ n, p(z0:t) is obtained in Eq. 27.

4.2 Viterbi Algorithm vs. Probabilistic
Localization Approaches

Main probabilistic localization methods estimate
the robot location given the observation sequence,
this is p(x j|z0:t). They apply the Bayes Rule
(BR) to simplify this calculation as p

(
x j | z0:t

) =
p

(
z0:t| x j

)
p

(
x j

)
/p (z0:t).

By analyzing the Particle Filters (PFs) update
rule [11]

Bel (xt) = ηp (zt|xt)

∫
p (xt|xt−1, ut) Bel (xt−1) dxt−1

(30)

it can be seen that the BR is applied by having
η = p(zt). If we compare Eq. 29 with Eq. 30 it can
be seen that Eq. 29 is the discrete case of Eq. 30,
except by two important absences: the term ut (the
motion estimation) and the normalizer η.

In a similar way, Eq. 22 corresponds to
p(xt|xt−1, ut), the Particle Filter Motion Model
M (the state-transition rule in Mobile Robotics,
regardless of ut) while Eq. 23 would precisely

84 J Intell Robot Syst (2012) 66:75–109

correspond to an Observation Model O (the re-
lationship between locations and observations).
In this sense, Particle Filters implement contin-
uous versions of the Viterbi Algorithm with an
ut-dependent Motion Model. As shown above,
Observation and Motion Models have their origin
in the Viterbi Algorithm.

4.3 Viterbi Forward Procedure

The Viterbi Forward Procedure (VFP) in Eq. 29
computes the observation probability in a very
similar way that PFs do, except by the normal-
izer η and the odometer estimation ut. By mod-
ifying the VFP incorporating these parameters,
robot pose estimation can be computed in a dis-
crete form, without the need of solving a con-
tinuous model as Eq. 30 with the corresponding
saving of time and resources. If the physical lo-
cation of the states is known in advance, then
the location–observation relationship can be built
off-line, avoiding the need of precise observation
estimations in real-time as PFs and KFs need
[11, 12] often computed with the aid of a software
simulator (through a metric map and ray-tracing
techniques for simulating range scans at given
locations).

By substituting Eq. 26 in Eq. 27 it can be shown
that

n∑

i=1

p (xi, z0:t) = p (z0:t) (31)

and therefore

p (xt|z0:t) = αt (i)
n∑

j=1
αt (j)

(32)

that exactly corresponds to the rescaling factor η

in PFs.
In order to solve Eq. 29, p(x j | xi) can be com-

puted as

p
(
x j|xi

) =
∫

p
(
x j|xi, ut

)
p (ut) dut (33)

Unfortunately, due to the unpredictable na-
ture of control actions a1:t−1 that produce robot

displacements estimations u1:t, the former integral
computation could result impractical, because it
would be necessary to calculate a priori the over-
all transition probability between two consecutive
robot locations, regardless of the control actions
issued to the robot.

4.4 Disadvantages of Viterbi Localization against
Particle Filters

The Viterbi Localization (VL) presented in [13]
which approximated p(x j | xi) through a PDF by
randomly simulating robot displacements discards
one of the most important parameters involved
in the pose estimation (especially when solving
Position Tracking), the odometry displacement
estimation ut. Also, this lack of odometry data
makes the localization method incapable of decid-
ing between two consecutive locations with similar
observations zt located at the same distance to the
previous location xt−1, something very common in
long corridors. An alternative to the computation
of p(x j | xi) is including ut both in the HMM and
the VA (Fig. 3).

4.5 Viterbi Localization Mathematical
Foundations

Trellis diagrams are interesting tools to under-
stand the VA (Fig. 4), since they show in a graph-
ical form how the forward VA procedure works.
As the Fig. 4 depicts, in the induction phase of
the forward procedure there is a summation that
implies the state-transition probabilities aij that
are part of the parameters of the HMM.

Fig. 3 Modified robot localization HMM. State transitions
are control dependent, the rest of the model is a classical
HMM

J Intell Robot Syst (2012) 66:75–109 85

Fig. 4 Trellis diagram of Viterbi’s forward procedure in
HMM. State-transition probabilities aij are considered as
fixed values

By using matrix notation and substituting
Eq. 26 in Eq. 27, the forward phase of the VA can
be rewritten as

p (z0:t) = �t−1ABνT
t (34)

A and B are the state-transition and observa-
tion matrices of the HMM respectively, while

�t−1 = [
αt−1 (1) αt−1 (2) . . . αt−1 (n)

]
(35)

is the previous belief vector and

νt = [zt ≡ s1 zt ≡ s2 . . . zt ≡ sm]T (36)

is a binary unitary vector with the exact correspon-
dence of zt with every symbol [s1.. sm] ∈ Z . For
instance, if zt = s1:

νt = [1 0 . . . 0]T

By analyzing the product �t−1A it can be noticed
that

⎡

⎢
⎢
⎣

αt−1 (1)

αt−1 (2)

. . .

αt−1 (n)

⎤

⎥
⎥
⎦

T ⎡

⎢
⎢
⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

.

an1 an2 . . . ann

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

p (x1, z0:t−1)

p (x2, z0:t−1)

. . .

p (xn, z0:t−1)

⎤

⎥
⎥
⎦

T

(37)

and similarly, the product BνT

⎡

⎢
⎢
⎣

b 11 b 12 . . . b 1m

b 21 b 22 . . . b 2m

.

b n1 b n2 . . . b nm

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

(zk = s0)

(zk = s1)

. . .

(zk = sm−1)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

b 1 (zt)

b 2 (zt)

. . .

b n (zt)

⎤

⎥
⎥
⎦

(38)

Now, let us define a Dimensional Vector Product
(DVP) as

ū ⊗ v̄ = (u1v1, u2v2, . . . , unvn) (39)

and a Dimensional Vector Contraction (DVC) as

v̄⊕ = (v1 + v2 + . . . + vn) (40)

then, the dot product could be expressed as

ū · v̄ = (ū ⊗ v̄)⊕ (41)

By applying �t−1A⊗BνT (giving more prece-
dence to matrix multiplications than the dimen-
sional product), a new �t is computed as

�t (i) = bi (zt) p (xi, z0:t−1) (42)

As bi (zt) = p(zt | xi), when multiplying [�t−1A]
by [BνT] in Eq. 34 results (dot product formula):

n∑

i=1

p (zt|xi) p (xi, z0:t−1) = p (z0:t) . (43)

It can be seen that Eq. 42 is included in Eq. 43,
and

p (xi|z0:t) = p (xi, z0:t)
p (z0:t)

= �t (i)
p (z0:t)

. (44)

The forward procedure of VA calculates the
total probability p(O|λ) by having {z0, z1,..., zt} as
the observation sequence. After the initialization
step when �0 (i) = π ib i (z0), in each iteration �t

(i) computes

�0 (i) = p (xi, z0) , �1 (i) = p (xi, z0, z1) , (45)

. . . , �t (i) = p (xi, z0:t)

that is, the joint probability p(xi,z0:t). If summat-
ing all �t (i), with 1 ≤ i ≤ n, on every iteration
then p(z0:t) is obtained, corresponding to p(O|λ).

If every �t (i) in �t obtained with Eq. 42 is
divided by p(z0:t) (by using Eq. 44) before the next
iteration, then

�′
0 (i) = p (xi|z0) , �′

1 (i) = p (xi|z0, z1)

, . . . , �′
t (i) = p (xi|z0:t) (46)

�t (i)
n∑

i=1
�t (i)

= �′
t (i) = Belt (i) (47)

As shown above, Viterbi’s forward procedure
can be easily adapted for carrying on a pose belief.

86 J Intell Robot Syst (2012) 66:75–109

Fig. 5 Space–state
partitions from [33]:
Occupancy Grid OG
(left) and Voronoi
Diagram VD (right).
VQNs can be used for
transforming OGs into
VDs

5 Motion Model Implementation

Based on a scan-matching algorithm as [14] or in
the robot self-odometry, it is possible to build a
Odometry-Dependent Motion Model (ODMM)
with differential movement estimations ut, plus
the previous pose beliefs, in order to compute a
complete motion estimation as Particle Filters do.

5.1 Partitioning the State–Space

The Viterbi Algorithm operates in a discrete
state–space. For this reason it is necessary
to partition the working environment —the
Configuration Space (CS)— into discrete regions.
The CS is usually represented with occupancy
grids (Fig. 5, left) or metric maps, then the par-
titioning can be easily done [31, 32]. In this work
a Vector Quantization Network (VQN) was used
because it provides locations uniformly distrib-
uted, similar to Voronoi Diagrams (Fig. 5, right).

From the CS representation, a random sam-
pling L:(xi, yi, θ i) of free locations and headings

can be obtained (Fig. 6, left). By using a VQN fed
with these vectors, after a few number of training
epochs, the found vectors will correspond to the
states of the HMM (Fig. 6, right).

The advantage of this method is that the final
number of states (nodes) can be decided in ad-
vance and the final locations will be uniformly-
distributed.

5.2 Vector Quantization Considerations

Although Vector Quantization (VQ) can be per-
formed in the three dimensions of the state–space
(x, y and θ), more convenient (and faster) results
are obtained by performing only a 2D state parti-
tioning (x and y dimensions) and the final set of
3D states can be built by sharing every xy location
of the 2D nodes with a group of absolute head-
ings like [0, 0.78, 1.57,..., 5.49], where every value
stands for an absolute heading angle respect to
the global coordinates frame expressed in radians
(Fig. 7). By dividing 2� by a fixed number of

Fig. 6 Left. 10,000
random pose samples
in the free space for
quantizing locations.
Right. VQN with 256
neurons (states)
trained with the
random sample
set, by using 100
training epochs

J Intell Robot Syst (2012) 66:75–109 87

Fig. 7 State absolute heading composition. Arrows indi-
cate the node’s heading

steps (eight in the former example) consecutive
absolute headings can be defined from [0..2�).

In this way, if a 2D node location is (3.2,
5.4) it is possible to set a group of eight nodes
(states) with absolute locations (3.2, 5.4, 0), (3.2,
5.4, 0.78),..., (3.2, 5.4, 5.49), and so on. This dis-
cretization reduces the memory needed for storing
the node’s location as it is assumed that for a
given xy obstacle-free location the robot is able
to be oriented in any direction. Otherwise, if VQ
is performed over the 3 dimensions of the state–
space, as θ is expressed in radians going either
from [-π ..π] or [0..2π], the VQN will select during
training the same neuron i as the closest for a small
neighborhood of (xi, yi) locations, regardless of θ i

(due to its smaller value compared with x and y).
As a result, all found discretized nodes will have
the same heading: 0 radians for θ i in [π ..π] or π

radians for θ i in [0..2π], because the VQN will
compute the average θ i. In this case all the HMM
states would have the same absolute heading and
it would be impossible to estimate the true robot’s
heading with that set of states if the robot is
oriented in a different direction than the one all
the states have.

5.3 Transition Vectors

If the node (state) locations in absolute world
coordinates xi : (

xwi , ywi , θwi

)
are considered as

fixed, the Motion Model has to estimate the over-
all transition probability, given the odometry esti-

mation ut (or the at command in systems without
odometers), this is p(x j | xi,ut), where ut is:

ut : (dt, φt, �θt) (48)

where dt is the distance between consecutive robot
locations xi and x′

i, φt is the direction of the dis-
placement (relative to the robot’s front), and �θ t

is the absolute heading change (Fig. 8, upper-left).
For each state xi it is possible to transform the

odometry estimation ut (given in a robot centered
coordinate system) into an absolute displacement
ui

t = (
ui

tx
, ui

tx
, ui

tθ

)
relative to each node absolute

location xi with

ui
tx

= dt cos
(
θwi + φt

)
(49)

ui
ty

= dt sin
(
θwi + φt

)
(50)

ui
tθ = �θt (51)

Once the absolute displacement has been cal-
culated, it can be added to xi, computing a new
absolute location

x′
i = xi + ui

t (52)

The closer x′i gets to every pose x j, the larger
the probability of a true transition between xi and
x j will exist.

One important issue is that, based on the con-
nectivity network between nodes, not all transi-
tions p(x j | xi,ut) would be valid, due to the exis-
tence of obstacles in the environment. In our case,
all transitions are considered valid because under
continuous movement conditions it is perfectly
possible for a mobile robot to avoid an object
by circumnavigating its contours. If location xi is

Fig. 8 Actual robot movement (above left) and Motion
Model parameters

88 J Intell Robot Syst (2012) 66:75–109

computed at time t−1 (before avoiding the ob-
stacle) and the robot pose reaches x j at time t
(when the robot has surpassed the obstacle), ut

will reflect this change of pose, corresponding to
a perfectly valid displacement.

5.4 Estimating Transition Probabilities

As xi is an absolute state location and ut is the
robot-centered displacement estimation, the tran-
sition probability of reaching x j starting from xi

will depend on how x′i approximates to x j, in a
global coordinates frame, this is:

p
(
x j|xi, ut

) = D
(
x′

i, x j
)

n∑

j=1
D

(
x′

i, x j
) (53)

where D is a distance-based PDF that can be a
Gaussian function centered at x′i (Fig. 6, right):

D
(
xi, x j

) = e
−

(
(xw j −xwi)

2

2σ2
d

+ (yw j −ywi)
2

2σ2
d

+ (θw j −θwi)
2

2σ2
θ

)

(54)

where σ d and σ θ can be set depending on the
xy node’s spatial separation to become more or
less inclusive (the w sub-index stands for ‘in world
coordinates’).

In this way, a new transition matrix A can
be computed in each iteration, based on the ut

estimation by assigning

aij = p
(
x j|xi, ut

)
(55)

calculated with Eq. 53. As Fig. 8 shows, p(x j | xi,ut)

depends on how probable is that ut takes xi exactly
into x j.

5.5 Complexity

Derived from Eq. 53 it can be seen that the
computation of A matrix is O(n2)(where n is
the number of nodes (states) in the configuration
space) because it implies calculating a Euclidean
distance between x′

i and every x j given ut, ∀xi,
x j ∈ X. Based on this premise, the total number of
required operations for the computation of A in
each iteration could make this method incapable
to run in real-time, considering that there will be
only a small number of significant transitions for
every node (those inside the influence ratio of D

function) and the rest of transition probabilities
would be almost zero. These extra calculations can
be avoided if Eq. 53 is computed only for those
states into the neighborhood of x′

i, having numer-
ical significance for D, the remaining transitions
can be assumed with probability near to zero.

6 Observation Model Construction

6.1 Random Sampling

Once a space partitioning has been computed, it
is necessary to relate observations with locations
for building the Observation Model (OM). This
implies obtaining a Probability Density Function
(PDF) of observations per discrete state. For this
purpose, a set of observations (raw sensor vectors)
must be obtained from random locations. The
goal is to have a uniformly distributed observation
sampling to relate enough observations with every
discrete robot pose (state) of the model without
introducing observation tendencies.

The main objective of this sampling is to have
enough observations per state in order to build a
complete observation PDF. If some observation
probable to occur at a given state is not contem-
plated, the algorithm would fail because the OM
does not relate that state-observation. In the next
sections a Tolerant Observation Model (TOM)
will be presented for dealing with such cases.

It is convenient using the same set of random
locations generated in Section 5.1 for obtaining
the ‘supposed’ observation at each random loca-
tion (Fig. 6), thus using a single set of random
locations with their corresponding simulated ob-
servation for building the OM. While more similar
the artificially generated observation to the actual
sensor data, more precise the observation model
will become. For this reason it will be important
to use a method which provides as much realistic
observations as possible.

6.2 Simulating Observations vs. Real Gathering

The best way to do this is by artificially generating
those observations with a previously built World
Model of the environment (metric map) and a
software simulator with ray tracing (Fig. 9).

J Intell Robot Syst (2012) 66:75–109 89

Fig. 9 Metric map and simulated range scan (cyan)

The use of a metrical representation avoids the
need of collecting as many samples as needed
with the real robot for almost every navigable
pose (the whole Configuration Space), something
clearly impractical in environments as those where
service robots must operate (Fig. 10).

By the other hand, if a real robot is used for
collecting observations inside the real environ-
ment, it is almost impossible to ensure that the
OM will have enough observations for all navi-
gable locations and headings (states), otherwise
the Observation Model will be incomplete. The
only case where using real samples for building
the OM is convenient is in such cases where the
mobile robot is always displacing along the same
trajectories over a track or railroad.

6.3 Building a Metrical Representation

Although it is possible to use a rough polygonal
representation by manually measuring the objects

in the environment (Fig. 11, left), more accurate
environment representations and simulations, as
those obtained by generating a map of the envi-
ronment using the actual robot sensors (Fig. 11,
right), give better results because the accuracy of
the simulated observations is greater.

Both types of Metrical Maps were used in the
present work for evaluating the proposed ap-
proach. A metrical representation of a working
environment scanned with the actual robot sen-
sors (a laser range scanner) was built by using
a Clustering Artificial Neural Network (CANN)
[34] with 10000 neurons (Fig. 12a). The network
was fed with the (x,y) coordinates correspond-
ing to projecting laser range scans as points into
the xy plane. The CANN generates a metrical
representation by placing clusters of a fixed size
(10 cm × 10 cm) grouping the xy points (Fig. 12b).
After 300 training epochs those neurons that were
not updated (i.e. there are far away from any
xy point) are removed (Fig. 12c) and a metrical
representation is obtained (Fig. 12d). Each cluster
represents an object.

Once the detailed metric map is built with the
CANN, the difference between actual observa-
tions (Fig. 13, center) and those simulated is noto-
rious for the case of the rough map (Fig. 13, left)
and the detailed map (Fig. 13, right).

As it can be seen in Fig. 13, a detailed map
will bring observations more similar to ‘real’ ones.
In the above example, Gaussian noise has been
added to the ray-tracing so the resulting scan con-
tour is not as sharp as Fig. 13 left.

One important fact is that the small details (i.e.
the high frequencies) corresponding with varia-
tions in the scans due to the presence of small ob-
jects, given the nature of the Observation Model

Fig. 10 Typical
environment for a service
robot. (Left) Real Env.
(Right) Rough 3D Model

90 J Intell Robot Syst (2012) 66:75–109

Fig. 11 Rough
polygonal map (left)
and real-scanned (right)
maps of the environment
of Fig. 10

Fig. 12 Clustering
ANN. a Initialization.
b Training. c Pruning.
d Final Map

Fig. 13 Ray-tracing. (Left) Rough map. (Right) Detailed map. (Center) Real observations

J Intell Robot Syst (2012) 66:75–109 91

(OM) proposed in the next sections will have less
importance in the OM than big changes. For this
reason both type of metrical maps (rough and
detailed) will be perfectly suitable for generating
the OM. This issue will be discussed in the experi-
ments section.

6.4 Simulating the Observations

The advantage of artificially generating the obser-
vations is that obviously is possible to generate
a raw sensor vector (so called the ‘supposed’ ob-
servation) for any robot pose. Unfortunately, the
‘real’ sensor data (the observation made with the
real robot at the given pose) could vary respect
to that ‘supposed’ one, due to sensor noise and
reflections (Fig. 14). For this reason is very impor-
tant adding noise to the generated observations,
as proposed in [11].

Also, when simulating observations it is very
important considering more random locations
than states in the model (10 times or more), be-
cause each discrete state will comprise a region of
poses and headings surrounding it. The Observa-
tion Model (OM) must consider as many different
observations as possible in every region in order to
relate states with real observations (environment
dependency).

6.5 Lowering the Dimensionality

The next step consists in lowering the dimension-
ality of the artificially generated observation vec-
tors, in order to simplify the OM construction. The
idea is to build the observation–location relation-

ship from quantized observations and quantized
locations (states) instead of using the raw vectors.

One important issue is that by quantizing the
observations, a type vector index will substitute
the whole multidimensional sensor observation,
so every range scan will be labeled with a scalar
(or a couple of scalars if a 2D VQ map is used).
In the case of Robot Localization this could im-
ply gathering information from multiple scenar-
ios before performing the VQ. Nevertheless, in
this work we propose performing VQ exclusively
using simulated observations for every evaluated
scenario (this implies repeating the VQ for a
new scenario), in order to avoid having type vec-
tors whose probability of occur will be always
practically zero thus saving memory and process-
ing time. In further works we will perform VQ
with simulated scans coming from many scenarios,
comparing the results.

6.5.1 Vector Quantization ANNs

If a standard VQN [34] is used to obtain a set of
observation vectors (to compute the Observation
Model), the result will be similar to the one shown
in Fig. 15.

It can be seen that there is no similarity be-
tween consecutive vectors in the 2D VQN ar-
ray, both in columns and rows (r and c indexes).
Although this quantization of observations will
solve the task, in case of having occlusions or
large reading noise (like the one presented by
black polished objects for laser scanners or soft
materials in the case of sonar range finders), two
found type vectors νi:(ri, ci) and ν j:(r j, c j) (with
and without noise respectively, see Fig. 15) would

Fig. 14 Location of
nodes (green squares),
polygonal objects (gray)
and 68-readings range
scanning simulation (cyan
lines), from -135 to 135◦.
Robot is facing 0◦. The
convex hulls of supposed
(left) and occluded (right)
observations are shown

92 J Intell Robot Syst (2012) 66:75–109

Fig. 15 256-units
standard VQN
without neighborhood
relationships. The
network was trained
with the simulated
observations at the
random locations
depicted in Fig. 6 left.
Also the corresponding
vector quantization of
observations in Fig. 14 are
shown: blue: supposed,
red: occluded. Each of the
small figures represents a
laser reading. The robot
is considered facing 90◦

become very distant in the 2D VQ array (Fig. 8).
As p(zt = sk| xi) must be calculated for building
the OM, the distance |r j − ri, c j−ci| between real
and noisy observations in the VQ array would
complicate the process of establishing an a priori
observation probability for a given location xi, be-
cause the actual observed symbol indexes (rs,cs),
measured with real sensors, could vary substan-
tially in the presence of sensor noise or occlusions
respect to the supposed observations stored in
the OM.

This distance between noisy and noise-free ob-
servations in the VQ array can be lowered with
the help of a neighborhood relationship, facilitat-
ing the process of including noise and occlusions
tolerance in the OM.

6.5.2 Vector Quantization with Self
Organized Maps

Self Organized Maps (SOMs) [34] are a special
kind of VQNs where a neighborhood relationship
is defined. Like in a standard VQN, in a SOM
the neuron whose weights are the closest to an
input pattern is selected, but not only its weight
is approached to the input vector during training,
also are the weights of the neighbors in a lower
proportion, according to

w̄k(t+1) = w̄k(t) + γ · (
x̄(t) − w̄k(t)

) · h (i − g) (56)

where h(i − g) is a neighborhood update function
in the SOM array, calculated based on the index
separation d = i − g, as

h (d) = e
−d2

σ2
SOM (57)

In this way, SOMs can organize the observations
space in a more correlated form. When training a
16 × 16 units SOM with the samples described in
Section 6.1, similar type vectors will be closer in
the map (Fig. 16).

6.6 Building a Tolerant Observation Model

Once the SOM has been built, the next step will be
identifying the Observation Model, by simulating
the corresponding observations for locations xi.

Every simulated sensor reading zs
i = S (xi) is

fed to the VQN V and a corresponding sym-
bol ss

i = V
(
zs

i

)
is obtained as the closest SOM

vector, then a probability of observation can be
established, based on a neighborhood relation-
ship as

G (sk, si) = e
−|γ(ss

i)−γ (sk)|2

2σ2
tol (58)

where γ
(
ss

i

)
and γ (sk) calculate the 2D indexes(

is
i , jsi

)
and (ik, jk) respectively into the SOM, cor-

responding to symbols ss
i and sk (Fig. 17), while

σ tol (or the ‘tolerance’) can be set in experimen-
tal form, depending on the probability of having

J Intell Robot Syst (2012) 66:75–109 93

Fig. 16 16-by-16
Kohonen SOM trained
with the simulated
observations at the
random locations
depicted in Fig. 6 left.
The corresponding
vector quantization of
observations in Fig. 14 are
shown: blue: supposed,
red: occluded. Occluded
observation is closer to
supposed in the SOM

occlusions and sensor errors (as the case of pop-
ulated environments). This parameter gives the
OM the property of ‘tolerating’ some observation
symbol variations, mainly produced by occlusions
and sensor reflections. The formula

p (sk|xi) = G (sk, V (S (xi)))
m∑

n=1
G (sn, V (S (xi)))

(59)

calculates the Tolerant Observation Model prob-
abilities, with S as a relationship between location
and observations (a ‘simulator’ or ‘sampler’) and
V gives the closest SOM vector ss

i to the supposed
observation zs

i , given by the sampler.

Fig. 17 Observation PDF based on SOM neighborhood.
Noisy observation indexes closer to supposed observation
will be more probable to occur, due to occlusions and
reflections

The normalization in Eq. 59 avoids the need of
an extra k parameter to ensure its integral equals
to 1. Finally,

b jk = p
(
sk|x j

)
(60)

can be calculated with Eq. 60 for building the
observation probability matrix B in order to

-------------------------------- initialization ------------------------------

1- Get the set of randomly sampled observations : (xi, zi)

2- Set all B(i, j) to zero

3- For i=1 to number of nodes

3.1 Set accumulator g(i) to zero

-------------------------------- quantization -------------------------------

4- For every sample k do

4.1- Get the corresponding state index nk by quantizing xk

4.2- Get the corresponding symbol sk by quantizing zk

---------------------------------- valuation ---------------------------------

4.3- For all si in the neighborhood of sk of size h

4.3.1- Calculate pki = G(sk , si) with Eq. (59)

4.3.2- Increment index B(nk , si) with pki

4.3.3- Increment accumulated sum g(nk) with pki

-------------------------------- normalization -----------------------------

5- For i = 1 to the number of states

5.1 For j = 1 to the number of symbols

5.1.1 Set B(i , j) = B(i , j) / g(i)

Fig. 18 Tolerant Observation Model construction
pseudocode

94 J Intell Robot Syst (2012) 66:75–109

initialize the Tolerant Observation Model (TOM).
By having a neighborhood of size h = 0 (only
the probability for the current symbol ss

i is up-
dated) a non-tolerant observation model is ob-
tained (Fig. 17).

Figure 18 shows the final Tolerant Observation
Model construction pseudocode.

7 Path Reconstruction

As we are using a probabilistic method for
pose and each node has a probability Belt (i) =
p(xi | z0:t,u1:t) assigned to it after the update phase,
then, by using the expected value formula, a con-
tinuous robot location xt can be computed from
discrete samples (nodes) with

xt =
n∑

i=1

[
xi p (xi|z0:t, u0:t)

] =
n∑

i=1

[
xi �′ (i)

]
(61)

after each iteration, being possible to build a
path with every successive location calculated with
Eq. 61.

8 Optimizations

The motion estimation proposed in this work has
the time complexity of O(n2), with n as the num-
ber of discrete states in the model, because in
each iteration the transition probabilities between
every state xi and the remaining states x j must be
calculated (total probability). Some assumptions
can be done in order to reduce drastically the
number of required operations without loosing
generality and precision (this is especially use-
ful when running the algorithm in standard non-
parallel processors):

8.1 Node Location Selection

Because transitions between nodes xi : (xwi ,

ywi , θwi

)
and x j : (

xw j, yw j, θw j

)
must be calculated

in each iteration, it results much simpler
partitioning the free space with a 2D vector
quantization network in order to get the node’s
xy location. Once calculated, a group of nodes

can share the same
(
xwi , ywi

)
, only differing on

their θwi coordinates, starting from zero and with
a heading at predefined regular intervals (see
Section 6.1). This can help to use one single
distance estimation

(
xw j − xwi

)
and

(
yw j − ywi

)
in

several transition updates.

8.2 Update Triggering

The belief update is calculated with �t−1A⊗BνT ,
but in general only a reduced number of pose
beliefs in the �t−1 vector will have a significant
value. In this form, all the transition and observa-
tion calculations can be performed only for those
�t−1(i) ≥ ε. If nested loops are used for calculating
the aij transitions, such transitions can be consid-
ered as almost zero if �t−1(i) < ε (or a minimum
probability value near to zero, in order to not
discard any state transition in future computa-
tions). This optimization has the important role of
selecting which states (and state-transitions) must
be evaluated during the pose belief update, acting
as a trigger of GL after a RK as follows: if the
robot is performing PT (the current robot pose is
known) some �0 (i) will tend to one while the rest
will tend to zero, due to the normalization after
the observation update in Eq. 47. After a RK,
�t(i) will rapidly tend to a uniformly distributed
probability value (due to the difference between
real and supposed observations (as the robot is
not informed about the displacement) equals to
1.0/number_of_states. If ε is set just below this
uniformly distributed probability value then the
method will trigger all the state-transitions evalua-
tion after the RK (when �t(i) reaches the uniform
probability).

As soon as some �t(i) increase their probabil-
ity, the rest will continue lowering their values be-
low ε, discarding them from future computations.
This will be equivalent to performing GL with an
unknown initial pose.

In a similar way, if the initial robot pose is
unknown or a GL command is issued to the ro-
bot, it will be enough to set every �0(i) equals
to 1.0/number_of_states, forcing the method to
reevaluate all state transitions (the operation of
the update triggering will be demonstrated in the
results section).

J Intell Robot Syst (2012) 66:75–109 95

8.3 Observation Update Nesting

The main Viterbi update is calculated through
Eq. 26 that is equivalent to

Bel (j)t =
n∑

i=1

[
p

(
x j|xi, ut

)
Bel (i)t b j (zt)

]
(62)

By nesting the observation update into the tran-
sition update, only a couple of nested loops can be
used to compute the belief update. Then, they can
be triggered together by ε (Fig. 19).

This observation update nesting allows using
a single vector array A(j) in each iteration, with
1 ≤ j ≤ number of states, instead of a whole transi-
tion square matrix A(i, j). The same loop (Fig. 19,
step 1) is being used both for the calculation of
the transition probabilities for the current state i
to every state j and for the calculation of Eq. 62
so there is no need to store the transition proba-
bility values for previous states i, thus saving much
memory space. According to this, it is possible to
substitute the A(i, j) term in steps 1.3.1, 1.3.2 and
1.4 by A(j).

8.4 Memory Usage

With all the abovementioned optimizations, if
nodes is the number of (xi,yi) quantized locations
(see 8.1), then nodes×2 is the required mem-
ory for storing them. If headings is the num-
ber of absolute state headings (see 5.2), then
states = nodes × headings is the number of states
in the OVL and states×2 is the memory re-
quired for storing �t and �t−1. If symbols is the
number of neurons in the SOM (see 6.5.2) and
dimobs is the dimensionality of the raw observa-

1. For i = 1 to number of states

If t-1(i) then

1.1 Set acc = 0

1.2 Calculate x i with Eq. (49)-(52)

1.3 For j = 1 to number of states

1.3.1 Calculate A(i, j) = D(x i, x j) with Eq. (54)

1.3.2 Increment acc with A(i, j)

1.4 For j = 1 to number of states

1.4.1 Increment t (j) with B(j, st) t-1 (i) A(i, j) / acc

Fig. 19 Observation update nested in the transition eval-
uation cycle (pseudocode)

tion vector zt, then symbols×dimobs is the mem-
ory necessary to store the SOM weights, states
is the memory required to store the A vector
and states × symbols is the memory required for
storing the B matrix. Then the total memory usage
will be:

Memory=nodes × (
2+headings×(

symbols + 3
))

+ symbols × dimobs (63)

9 Odometry-based Viterbi Localization
Algorithm

In this section we present the final Odometry-
based Viterbi Localization (OVL) Algorithm,
shown in Fig. 20.

-- initialization --------------------------------------

1.- Set =1 10-10, =1/(number_of_states)- , acc = 0,

d = 2/3 avg_node_separation, = /(2 num_of_absolute_headings)

3- For i = 1 to number_of_states

 3.1- If Initial Position x0 is known (Position Tracking)

 3.1.1- Set 0 (i) = D(x0, xi) B(i, s0) + with Eq. (54)

 3.2- else 0 (i) = B(i, s0) + (Global Localization)

 3.3- Increment acc with 0 (i)

4- For i = 1 to number_of_states Set 0 (i) = 0 (i) / acc

--- recursion ---

5- For t =1 to the number of observations

 5.1- Get robot odometer estimation ut :(dt , t , t)

 5.2- Get current symbol st by quantizing zt

 5.3- For i = 1 to number of states, Set t (i) =

-- A matrix calculation -------------------------------

 5.4- For i = 1 to number of states

 If t-1(i) then

 5.4.1- Set acc = 0

 5.4.2- Calculate x i with Eq. (49)-(52)

 5.4.3- For j = 1 to number of states (or those in the neighborhood of x i)

5.4.3.1- Calculate A(j) = D(x i, x j) with Eq. (54)

5.4.3.2- Increment acc with A(j)

 5.4.4- For j = 1 to number of states

Increment t (j) with B(j, st) t-1 (i) A(j) / acc

--- normalization --------------------------------------

5.5- Set acc = 0

5.6- For i = 1 to number of states, Increment acc with t (i)

5.7- For i = 1 to number of states, Set t (i) = t (i) / acc

-- pose estimation -------------------------------------

5.8- Set xt = (0,0,0)

5.9- For i = 1 to number of states, Increment xt with xt t (i)

5.10- Consider xt as the current robot pose

Fig. 20 Optimized OVL pseudocode for non-parallel
microprocessors

96 J Intell Robot Syst (2012) 66:75–109

9.1 Initialization

If the initial pose (x0, y0, θ0) is known, Eq. 54 can
be used to evaluate the initial pose probabilities
�i (as it evaluates the probability for any x’ to
correspond with every state xi):

�i = D (x0, xi) (64)

By the other hand, if the initial pose is un-
known, �i can be set to a uniformly distributed
PDF, this is

�i = 1/number_of _states. (65)

forcing the method to evaluate all possible state
transitions depending on u1.

9.2 Recursion

9.2.1 Transition Probability Estimation

This section is the core of the Odometry-Based
Viterbi Algorithm. First, steps 5.1 and 5.2 obtain
the odometer estimation ut and compute the cur-
rent symbol st by quantizing the current obser-
vation zt. Step 5.4.1 cleans the accumulator αacc

that serves to store the sum of state-transition
probabilities. Step 5.4.2 calculates the new loca-
tion xi’ given the state location xi and ut. Step
5.4.3 computes the corresponding state-transition
probability p(x j|xi, ut) and stores that value in the
temporal accumulator A(j).

Step 5.4.4 increments the state probability �t(j)
(already initialized with a value close to zero
in step 5.3) with the probability of observation
p(zt|x j) multiplied by the previous state probabil-
ity �t−1(j), the state-transition probability p(x j|xi,
ut) already stored as A(j) and divided by the
probability sum αacc. In this way, in a single loop,
every state probability �t (j) is incremented with
the individual contribution of a transition to xi

from every x j and normalized by αacc.
Below step 5.4, by using a trigger value ε, only

the overall contribution to �t(j) of those states
whose probability in the previous iteration �t−1(j)
was above the trigger value will be evaluated
(update triggering). This important feature allows
optimized-OVL to save time, memory and manag-

ing GL, PT and RK (this will be discussed in the
results section).

9.2.2 Normalization

Steps 5.5 to 5.7 compute Eq. 27 to obtain p(xi |z0:t).
This normalization ensures
∑n

i=1
p (xi|z0:t) = 1

9.2.3 Pose Estimation

Steps 5.8 to 5.10 compute the current robot pose
with Eq. 61. Although this equation calculates
only one localization hypothesis based on the ex-
pected value formula, OVL is always carrying-on
a multi-hypothesis PDF through the state proba-
bility vector �t. Other methods that can be used
for estimating multiple hypotheses are Clustering
Artificial Neural Networks (CANNs) [20] and Ra-
dial Basis Functions (RBFs) [21]. By isolating a
group of states with high-probability as a cluster,
they can represent multiple localization hypothe-
ses. When having only one cluster it would repre-
sent the true robot pose.

The advantage of using the expected value for-
mula in Eq. 62 is that it can be also used for
computing the average pose value for a group of
states (those in the influence ratio of every found
cluster).

9.3 Termination

As a difference with classical Viterbi Localiza-
tion [13], after every update the robot pose is
calculated with Eq. 62 so there is no need of
backtracking (i.e. searching for the most probable
individual state after every observation update).
The proposed approach in fact calculates a con-
tinuous pose after every observation update, this
is an important improvement against [13].

10 Experiments

10.1 Physical Robot

The robot ARTUR-ito (Autonomous Ready-To-
Use Robot, Fig. 21) is a differential drive ro-
bot equipped with two computers: an Apple Mac

J Intell Robot Syst (2012) 66:75–109 97

Fig. 21 Robot ARTUR-ito

Mini® with an Intel Core 2 Duo processor at
2.4 Ghz running Mac OS X Leopard, and a Javelin
Wedge® Point-Of-Sales (POS) touchscreen com-
puter with a Pentium MMX processor at 233 Mhz,
running Windows 98. The robot has on-board
stereo vision and Wi-Fi communications.

ARTUR-ito is equipped with a Hokuyo URG-
04LX laser scanner, with a sensing range from
20 mm to 4 m and 240◦ of field-of-view. Although
this laser is able to provide almost 700 readings
per scan. It was decided to use only 68 readings
while conserving the maximum field-of-view. This
is, one ray scan at every 3.53 ◦(from −120◦ to
120◦) conformed one 68-scans laser observation.
The laser is situated at 80 cm high to the floor
and the laser-scanning plane remains parallel to
the floor (Fig. 21).

10.2 The Experiments

Several experiments were conducted to evaluate
the OVL performance in both real and simulated
environments. The diagram in Fig. 22 shows the
experiment sequence. The initial task was defining
the best set of parameters for OVL. Then an
exhaustive evaluation of OVL solving PT, GL

Fig. 22 Experiment sequence for evaluating optimized-OVL

98 J Intell Robot Syst (2012) 66:75–109

Fig. 23 ARTUR-ito in a
real scenario. Left.
Bio-robotics laboratory.
Right. Long corridor

and RK both in detailed and rough maps was
performed. Finally, tests with real data with and
without a TOM were conducted to evaluate the
aid of such kind of pose-observation relationships.

10.3 Model Parameters Evaluation

10.3.1 Map Construction

First, a detailed metrical map representation was
built by manually displacing the real robot in the
environment and gathering laser range readings.
The real environment is the Biorobotics Labora-
tory of the National Autonomous University of
Mexico UNAM and a long corridor (Fig. 23).

In order to minimize the initial pose error when
building the map, the floor tiling (at every 30 cm)

was used to set the robot at every 2.10 m ± 3 cm,
performing four scans at the absolute headings
of zero, 90◦, 180◦ and 270◦ at every robot stop
(Fig. 24, left). This process took about 2 hours for
scanning the 50 m long corridor and the 5 × 7 m
Biorobotics Laboratory.

With the set of gathered observations a metric
map representation was built (Fig. 24, right) fol-
lowing the procedure described in Section 6.3.

10.3.2 Best OVL Parameter Set

Five OVL parameters were evaluated to test
their contribution to the overall OVL perfor-
mance: (a) the number of xy discrete nodes (see
Section 5.1), (b) the number of absolute headings
(see Section 5.2), (c) SOM size in neurons (see

Fig. 24 Detailed environment. Robot stops (left). Actual scans (center). Final map (right)

J Intell Robot Syst (2012) 66:75–109 99

Fig. 25 Real scenario
(50 × 12 m.) built with
Hokuyo URG laser,
ARTUR-ito and 258 m
path used for the
simulated tests

Section 6.5.2), (d) TOM’s neighborhood h (see
Section 6.6) and (e) samples per state for build-
ing the TOM state-observation relationship (see
Section 6.4).

The procedure described from Section 5.1 to
Section 6.2 was followed for building the set
of states, training the SOM and building the
TOM by artificially generating supposed obser-
vations at the navigable locations. Then, eight
optimized-OVL PT trials with the same tra-
jectory (a 258 m path with 314 observations,
see Fig. 25), one observation simulated roughly
at every 80 cm in the detailed environment

(Fig. 24) were run to determine the best set of
parameters.

After each simulated test, another OVL run
with the same set of parameters but with a real
observation sequence (Fig. 26) was run to com-
pare the simulated OVL performance under real
observation conditions, as the true robot pose in
the real environment cannot be precisely evalu-
ated under continuous robot motions. In order
to introduce noise and occlusions some objects
like chairs, lockers, boxes and small furnitures
were moved (Fig. 26 left, red squares) from their
original positions (Fig. 26 left, green squares).

Fig. 26 Real-data Testing Sequence. Original map (left, green squares). Testing map (left, red squares). Pure odometry
motion estimation (center). Actual sensor readings gathered (right)

100 J Intell Robot Syst (2012) 66:75–109

10.3.3 OVL Performance Evaluation

An average location error was calculated between
the true robot pose and the one calculated with
OVL for the set of 314 simulated observations as

Errθ = 1

n

∑n

i=1
|θri − θci| (66)

Errxy = 1

n

∑n

i=1

√
(xri − xci)

2 + (yri − yci)
2 (67)

where n is the number of states in �t, (xri, yri,
θri) is the actual robot pose at every step of the
314 observation’s trajectory, while (xci, yci, θci) is
the pose computed with the OVL algorithm with
Eq. 61.

10.4 Exhaustive OVL Evaluation for PT,
GL and RK

With the set of parameters that provided the
best trade-off between location error, process-
ing time and noise tolerance, a test of 10 tri-
als at random starting and ending locations in
four different simulated scenarios was run to
get the overall performance under PT, GL and
RK sub-problems (120 trials in total). The first,
second and third simulated environments corre-

spond to robocup@home 2006, 2007 and 2008
competition scenarios. The fourth environment is
the detailed map of the Biorobotics Laboratory
(Fig. 27).

10.5 Tests with Real Data with and Without
a TOM

Ten trials were conducted to test the OVL per-
formance with real data variations by randomly
choosing a start and ending poses into the real
environment (Fig. 23, Left) with the environment
differences depicted in Fig. 26 left (red squares).
Then, the experiment was repeated removing the
Tolerant Observation Model, in order to prove
the aid of the tolerance to sensor noise and
occlusions.

10.6 Comparison Against a State-of-the-Art
Algorithm

A comparison of optimized-OVL vs. classical
Monte Carlo Localization (MCL) [11] was per-
formed. By using the ray-tracing simulator with
the detailed environment, it was possible to sim-
ulate a ‘precise’ supposed observation for MCL in
real-time.

Fig. 27 Maps used in the tests. Robocup@home 2006, 2007 and 2008 rough maps (1 to 3). Detailed Biorobotics Lab. (4).
The connectivity network is shown

J Intell Robot Syst (2012) 66:75–109 101

10.7 Method Performance on Small Processors

Finally, optimized-OVL was run in real-time on
a Pentium MMX 133 Mhz processor with 64 MB
of RAM, incorporated in the robot ARTUR-ito
(Fig. 21).

11 Results

11.1 Model Parameters Evaluation

The first column shows the number of experiment,
then the number of absolute xy nodes (number of
Vector Quantization neurons) is shown in column
2, followed by the number of absolute headings in
the range of 2..2� (3rd column).

The 4th column indicates the number of dis-
crete symbols (neurons) used in the Self Orga-
nized Map while the 5th columns computes the
total number of states in �t as the number of
xy nodes multiplied by the number of absolute
headings.

The 6th column indicates the number of ran-
domly simulated observations per state. The 7th
calculates the total simulated samples used for
training the SOM and building the TOM as
the number of states (5th column) multiplied by
the number of simulated samples per state (6th
column).

In the 8th column the h parameter—the
‘tolerance’—of the TOM is shown. h/2 is the
neighborhood influence ratio of the Gaussian
function that computes p(zt|xt) with Eq. 60. The
Gaussian influence neighborhood function was es-
timated based on the work of Liu and Haralick
[35] that helps to calculate σ 2

tol in Eq. 58, based
on a Gaussian kernel of size h. They applied their
theories in building Gaussian kernels for image
processing.

Columns 9 and 10 show the average absolute lo-
cation and heading errors respectively, measured
with Eqs. 66 and 67.

Column 11 computes the total processing time
the OVL algorithm requires for calculating the
314 observations trajectory. It can be noticed how

the number of states affects the method’s process-
ing time.

Finally, the 12th column shows a qualitative
analysis of the OVL performance with the real-
data sequence of Fig. 26, analyzing the tolerance
to environment changes, update time and sensor
errors.

11.2 Best Parameter Set

Simulated (Table 1, columns 9 and 10) and real
experiments (Table 1, column 12) gave the best
results (a trade-off between speed and location
error) with 256 xy discrete locations and 16 ab-
solute headings, starting from 0 and up to 337.5◦
in 22.5◦ intervals (4096 states) for an average
node separation of 0.68 m. 10,000 simulated ob-
servations were used to train the 16 × 16 SOM
and almost 410,000 for building a TOM (a min-
imum of 50 samples per state was experimen-
tally determined and 100 as the optimum). This
means at least one sample per dm2 per absolute
heading.

σ tol was set to 0.1092 × h/2 + 0.4335 based on
[35], this is 0.87 for h = 8, while σd = 2/3×
avg_node_separation = 0.454m and σθ = �/ (2×
headings

) = �/32 was the best parameter set.
ε=1/Number_of _States − 1×10−10 was found

as the best trigger value (a uniformly distributed
PDF) while consecutive observations zt and dis-
placements ut should be taken when the robot
displacement surpasses the average xy node sep-
aration or when the robot’s heading change is
above 2�/headings, otherwise the method tends
to remain in the same state or in a small state
neighborhood.

11.3 Exhaustive OVL Evaluation for PT,
GL and RK

Table 2 (rows 1–3) and Fig. 28 show the per-
formance of OVL solving PT in three simulated
environments. The 4th column in Table 2 shows
the average deviation from the true pose (red
path in Fig. 28). The 4th row shows the simulation
results in the real-scanned environment (Fig. 24).

102 J Intell Robot Syst (2012) 66:75–109

T
ab

le
1

O
V

L
P

T
P

ar
am

et
er

te
st

s
fo

r
a

31
4

ob
se

rv
at

io
ns

se
qu

en
ce

#
no

de
s

H
ea

di
ng

s
SO

M
St

at
es

Sa
m

pl
es

T
ot

al
O

M
h

A
vg

.
A

vg
.

T
ot

al
P

er
fo

rm
an

ce
w

it
h

re
al

da
ta

.
xy

Sy
m

bo
ls

pe
r

St
at

e
Sa

m
pl

es
|x

y
er

ro
r

|
|θ

er
ro

r
|

P
ro

ce
ss

in
g

Si
m

.(
m

)
Si

m
.(

m
)

T
im

e
(s

)

1
25

6
16

25
6

40
96

10
0

40
96

00
8

0.
33

0.
06

6.
16

B
es

t,
to

le
ra

te
s

en
v.

ch
an

ge
s

an
d

er
ro

rs
2

25
6

36
25

6
92

16
10

92
16

0
8

0.
40

0.
11

31
.8

2
N

ot
ba

d,
ju

st
to

le
ra

te
s

re
fl

ec
ti

on
s

3
25

6
16

25
6

40
96

10
40

96
0

8
0.

34
0.

06
6.

16
N

ot
go

od
,n

on
to

le
ra

nt
to

bi
g

ch
an

ge
s

4
25

6
16

25
6

40
96

20
81

92
0

8
0.

34
0.

13
6.

16
N

ot
ba

d,
ju

st
to

le
ra

te
s

re
fl

ec
ti

on
s

5
25

6
36

25
6

18
43

2
10

18
43

20
11

0.
21

0.
06

11
7.

91
G

oo
d,

to
le

ra
te

s
m

os
te

rr
or

s
6

64
36

25
6

46
08

10
46

08
0

6
0.

11
0.

06
6.

7
B

ad
,f

ai
ls

on
re

al
en

vi
ro

nm
en

ts
7

14
4

16
64

40
96

20
81

92
0

4
0.

34
0.

12
9.

51
G

oo
d,

to
le

ra
te

s
m

os
te

rr
or

s
8

25
6

16
14

4
40

96
50

20
48

00
6

0.
30

0.
08

8.
26

N
ot

go
od

,n
on

to
le

ra
nt

to
bi

g
ch

an
ge

s

It is notorious that the OVL accuracy is mainly
related with the spatial separation between dis-
crete nodes (not in an exact linear relation) as
we are approximating the true robot pose from
a discrete probability distribution. Because the
method accuracy depends on several parameters
(five in the Table 1) and we are testing the same
parameter set in many environments, it is pos-
sible for instance that environments with more
different observations than others would require
bigger SOM elements. In such cases it will be
desirable to vary some parameters and rebuilding
the models.

In this way, the OVL accuracy becomes an op-
timization problem that could be treated in the fu-
ture with multi-objective optimization techniques
like Genetic Programming. By now the goal of this
article is demonstrating that a parameter set can
have an acceptable performance in many environ-
ments.

Figure 28 shows how it is possible computing
a continous path from discrete samples (states).
Despite the quantitative results in Table 2 show
an average error above 16 cm, the comparison
between the real motions path (red line) against
the path calculated with optimized-OVL (blue
line) showed that, despite in certain zones the
calculated path is somewhat distant to the real
one, in general OVL keeps track of the robot pose
very well.

Based on the above results, it is possible to
estimate that the OVL xy location error is
about 50% of the average node separation
and the angular error is also about 50%
of 2�/number_of_absolute_headings (32 in the
tested parameter set). For instance, in order to
have an average xy error of 5 cms, it would be
necessary at least three times more nodes (states)
in the environments 1 to 3 and five times more
states in the 4th environment.

In the GL tests, the method was able to esti-
mate the true robot pose after 6 updates in aver-
age. After a RK, in only two updates the probabil-
ity decay is enough to force GL to relocalize the
robot in 10 updates in average.

Figure 29 demonstrates OVL over PT, RK and
GL with the simulated environment number 2
for 4096 states (256 xy locations by 16 absolute
headings).

J Intell Robot Syst (2012) 66:75–109 103

Table 2 OVL
Performance tests
for PT in simulated
environments

Env. Map Dimensions Avg. Node Absolute Absolute
Width & Height (m) Separation (m) Avg. Location Avg. Heading

Error (m) Error (rad)

1 13 × 7 0.49 0.16 0.06
2 11 × 7 0.30 0.19 0.12
3 12 × 5 0.33 0.19 0.08
4 50 × 12 0.68 0.25 0.10

In Fig. 29, the robot starts at the known location
x0 performing PT, thus the maximum trigger value
max(φ0) is near 1.0. After a RK, in only one up-
date, the maximum trigger value max(φt) decays
until reaching ε thus firing the GL and evaluat-
ing all the state-transitions (4096). Ten iterations
later, OVL finds the true robot pose again, con-
tinuing with PT. As time passes, the number of
evaluated states (trigger firing) reaches the rates
before the RK (about 80 state-transitions).

It is notorious how the method can handle GL,
PT and RK based both in the update triggering
and the method initialization. Nevertheless, one
problem arises when GL is fired when φt decays
fast (as the case of having severe occlusions):
the time consumed for evaluating 4096 state-
transitions is considerably larger than the time
needed for performing PT (4 s for 4096 transitions

in GL against 0.02 s for 80 transitions in PT).
Usually the Probabilistic Localization Methods as
[11] limit the amount of change in the pose beliefs
φt respect to φt−1, in order to limit the belief
changes. This would help OVL to be less sensitive
to observation changes.

The total amount of memory required by
optimized-OVL was 1.07 MB. Compared with
16 MB required for storing only a full A(i, j)
transition matrix for 4096 states, the saving is
notorious.

11.4 Tests with Real Data with a TOM

Table 3 shows results in the environment 4
(real scanned) with real observations (Fig. 27, 4).
The largest location errors were obtained in

Fig. 28 OVL PT on three simulated Environments. Red
line: real path. Blue line: found path. Big square: final robot
location. Small gray squares: discrete states. Results show

that it is possible to get a continuous position estimation
from discrete node samples

104 J Intell Robot Syst (2012) 66:75–109

Fig. 29 OVL solving PT,
RK and GL. Red path:
true trajectory. Blue path:
found trajectory. The
robot starts at the known
pose x0 and starts PT
(blue circle). After
10 observations-
displacements a RK is
performed by abruptly
displacing the robot
(red circle and arrow).
OVL fires GL and in ten
observations the method
has found the true robot
pose (green circle)

trajectories traversing a long corridor, but the
method performance did not decay too much.

In this table, is evident that the OVL perfor-
mance depends mostly on the chosen sequence
path. The same issue also applies for Particle and
Kalman Filters. For example, although the aver-

age node separation is the same for all the above
tests (0.68 m) and all the tests use exactly the same
TOM, the first sequence has a greater xy location
error (0.33 m) than the fourth (0.13 m). This is
because the long first sequence crosses several
times the long corridor (Fig. 25) compared with

J Intell Robot Syst (2012) 66:75–109 105

Table 3 OVL
Performance tests for PT
in a real environment

Run Number of Accumulated Absolute Avg. Absolute Heading
Observations Traveled Location Error (rad)

Distance (m) Error (m)

1 314 258.20 0.33 0.06
2 37 24.60 0.16 0.15
3 43 29.69 0.23 0.10
4 21 16.00 0.13 0.08
5 70 53.61 0.17 0.11
6 37 24.89 0.23 0.08
7 20 12.5 0.25 0.09
8 51 34.9 0.24 0.14
9 19 9.81 0.27 0.10
10 44 28.82 0.24 0.08

the small fourth sequence that reflects a robot
motion inside de Biorobotics Lab (Fig. 26). In this
sense, OVL presents the same problems than PFs
and KFs: the long trajectories with very similar
observations (i.e. the corridors).

11.5 Tests with Real Data Without a TOM

Despite the use of a TOM has almost no effects
in simulated environments, under real condi-
tions having occlusions and sensor noise, it re-
ally helped to keep track of the true robot pose
(Fig. 30). Without a TOM the robot would have
easily got lost.

As the Tolerant Observation Model is ba-
sically a probabilistic tool for comparing high-

dimensional observations, its applicability scope is
not exclusive restricted to Viterbi Localization. In
this way a TOM could be incorporated to those
methods that require vector comparison. Even as
an optimization to the Monte Carlo Particle Filter
[11]. The main contribution of the Self Organized
Maps is the easiness for arranging similar observa-
tions in the 2D map.

11.6 Comparison Against a State-of-the-Art
Algorithm

Figure 31 (left) shows a comparison of standard
Monte Carlo Localization (MCL) using a real-
time scan simulator and 5,000 particles against
optimized-OVL (Fig. 31, right), for the same

Fig. 30 OVL algorithm
with real observation
scans for a PT problem.
Left: robot
pure-odometry pose
estimation. Center: OVL
without a TOM. Right:
OVL with TOM. The aid
of a Tolerant Model in
real scenarios is notorious

106 J Intell Robot Syst (2012) 66:75–109

Fig. 31 Comparison
between standard Monte
Carlo Localization MCL
(left) and Odometry
Viterbi Localization OVL
(right). Green squares
depict original mapped
objects. Red squares show
object locations when
running the test. It can
be noticed the map
variations that caused
MCL to fail on circled
locations

trajectory inside the Bio-robotics lab (Fig. 31, left)
using the Hokuyo URG-04LX laser scanner with
a 68-scans observation. MCL fails on two locations
(circled) due to high changes in the environment
(red squares) compared with the original mapped
environment (green squares). The time spent by
MCL per update was 5 s against 0.02 s of OVL. In
the case of GL, about 10,000 particles are needed
by MCL to correctly find the true robot pose
(consuming 10 s per update). Even in the worst
case, the 4 s needed by OVL for reevaluating 4096
states for GL results smaller.

After comparing the performance of OVL
against classical Monte Carlo Localization one
question arises:

What would happen if a PF is used with similar
intermediate simulated observation and motion
process, would it be improved in efficiency as
well?

The answer to this question is related with the
way that both methods operate: the PFs efficiency
rely in the precise prediction both of the next
robot location after a displacement (by means
of a resampling) and the ‘supposed’ observation
for that new location (by means of a simulator).
In this way, PFs performance basically depends
on ‘guessing’ an appropriate location based on

motions and having enough noise in the sensor
to approximate the simulated observation to the
real laser scan. In OVL the set of samples (the
states) remains constant during all the algorithm
execution and the efficiency depends mostly on
the physical separation among those states and the
relationship between locations and observations
stored in the OM (off-line built).

For this reason, the PFs performance would
decay by having a fixed location resampling set.
Despite this, the Observation Model in PFs could
improve its efficiency because a SOM allows nat-
urally correlating and arranging observations into
a ‘map’, and the TOM stores that relationship. By
searching for the closest state location stored in
a TOM, PFs could estimate the observation for
a given pose and compare it against the actual
observation in a faster way than simulating the ob-
servation for a relatively high number of locations
(the samples).

In any case, the weakness of most Probabilistic
Localization approaches is the estimation of the
next robot pose with the Motion Model (MM).
If the MM does not represent with precision the
way the mobile robot pose changes based on
odometry, in a very few steps PFs and KFs can
easily loose track of the robot. As OVL has a

J Intell Robot Syst (2012) 66:75–109 107

fixed set of ‘samples’ represented by the fixed
state locations, results less sensitive to imprecise
motion estimations.

According to this, OVL can be suitable of being
implemented in mobile robots whose motions are
difficult to predict (as the case when the robot
does not have odometers). Good examples are
legged robots, nano-robots, and applications that
calculate the pose based on accelerometers or by
matching observations without odometry.

Finally, it is appropriate to mention that
the performance of all Probabilistic Localization
methods is mainly driven by the similarity be-
tween observations in different locations of the
map. Similarities in the observations will therefore
induce a strong uncertainty in the final robot pose.

11.7 Method Performance Evaluation

The average time per iteration, running the op-
timized version of OVL was 0.02s in an Intel
Core 2 Duo processor, enough to run in real-time.
Without the optimization, a full update took about
4 s.

The optimized-OVL tests running on a Pen-
tium 133 Mhz computer of the ARTUR-ito robot
were able to locate the robot with an average up-
date time of 0.25 s. As the maximum robot speed
is limited to 1 m/s, this update time is enough for
using OVL in real-time.

12 Discussion

The first noticeable fact is that OVL can
effectively calculate a continuous robot pose from
a set of discrete locations. As a difference with
previous discrete localization methods [9], there is
no need of a huge 3D location probability array
(the Env. 4 would need a 200 × 48 × 16 location
matrix to reach the same error rates: 37.5 times
more memory space than the � vector for 4096
states).

The best attribute of OVL is the ability of
managing without any further modification all the
three sub-types of localization: GL, PT and RK.
With an initial pose supposition it can handle with
PT, if not, in a very small number of iterations
it can find the true robot pose, solving GL, and

automatically begins to keep track of the robot.
If a RK is suddenly performed, the belief prob-
ability degenerates fast (due to the observation
probability decay) forcing a GL, finding the true
pose in 10 to 15 iterations. Also, the optimized
version of OVL has proven its applicability to
real-time applications running in processors with
limited computing resources.

The main problem that causes the method to
fail consists in evaluating the new pose when
the robot displacement is below the average xy
node separation (e.g. below 68 cm for env. #4),
because the probability of remaining in the same
state for a small displacement will be considerably
higher than the probability of performing a true
transition to another state. In fact, after many
small displacements the robot could have changed
from xi to x j, but the method would remain the
robot at state xi as long as the observation remain
somewhat similar.

Another important issue is related with the GL
firing when φt decays fast. As it is stated in this
work, the method fires GL almost immediately
after a RK. In future works the method will be
tested in crowded environments and the pose be-
lief change will be quoted, in order to determine
if OVL can be less sensitive to improbable obser-
vations. This was the main reason of integrating a
TOM.

By the other hand, the main problem that com-
promises OVL performance in real-time is the
variable processing time needed for the belief
update, especially after a RK. The use of FPGA
hardware could help the method to achieve the
same update rates at high-speed, regardless of GL,
PT or RK.

Related to this, results very important consid-
ering enough simulated observations when build-
ing the TOM, otherwise the method would be
constantly performing GL due to the probability
decay when in crowded environments.

13 Conclusions

Compared with the most widely used probabilistic
pose estimation methods [11, 12] the Odometry-
based Viterbi Localization presents serious ad-
vantages: It is not necessary to estimate with high

108 J Intell Robot Syst (2012) 66:75–109

precision the observation at specific poses during
operation as Monte Carlo Localization. Neither
requires matrix inversion like Kalman Filters. De-
spite its discrete nature, it is able to estimate a
continuous pose with limited resources. It can also
handle with many hypotheses at once, as most of
the state-of-the-art algorithms do. Also, because
of the introduction of a Self Organized Map,
OVL is able to use n-dimensional observations
(including high-resolution visual information, or
data coming from many sensors) because the hard
work is performed by Vector Quantization Net-
works (perfectly suitable of being implemented in
hardware).

Compared with the previous Viterbi Localiza-
tion Approach by Savage et al. [13], optimized-
OVL has many important improvements:

1. The use of an odometry-dependent Motion
Model.

2. Larger number of states (thousands against a
dozen).

3. Continuous pose estimation. There is no
need of ‘backtracking’ for estimating the best
discrete state sequence. All the trajectories
(state-transitions) are considered.

4. Ability of handling GL, PT and RK by incor-
porating Update Triggering.

5. Self Organized Maps for building a Tolerant
Observation Model.

6. No probabilistic tendency to zero out.

In conclusion, OVL is a Non-degenerative
Probabilistic Algorithm (NDPA) that can
effectively solve the entire robot localization
problem, based both in odometry and observation
information. It saves memory and processing time
due to its discrete nature, but provides continuous
pose estimations. Finally, it can run in single and
multi-core microprocessors in real-time.

14 Future Works

Although in this paper we have started from a
previously built map and statistically generated
the Observation and Motion Models, by using an
ANN architecture a real-time learning procedure
can be used for re-adapting these model para-
meters to the actual operation conditions (fine

tuning). This architecture and its training will
be presented in the future for adapting OVL to
changing environments.

Also, some works using stereo and omni-vision
cameras as the main sensor will be presented,
because OVL generality easily allows using visual
information for training the VQN. In this case, the
narrowed field-of-view of computer cameras (45◦
or so) compared with the field-of-view of the laser
range scanners (240◦) and the two-dimensional
visual information would make very interesting
the process of building a TOM. In this sense,
stereoscopic cameras could help to provide depth
information (as laser range finders do). Another
important factor would be a variable illumina-
tion, thus the Vector Quantization of observations
could incorporate some previous image feature
extraction (like corners of SIFT [36]), instead of
the raw sensors values: in this case three values
for every pixel: red, green and blue.

Acknowledgements This work was supported in part
by PAPIIT-DGAPA UNAM under Grants IN107609,
IN113611 and IX100610, the Mexican Council of Science
and Technology CONACYT and Posgrado en Ciencia
e Ingeniería de la Computación PCIC, Universidad Na-
cional Autónoma de México UNAM.

References

1. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics.
MIT Press (2005)

2. Llarena, A.: Here comes the robotic brain. Trends
in intelligent robotics. Commun. Dependability Qual.
Manag. 103(2), 114–121 (2010)

3. Choi, W.S., Oh S.Y.: Range sensor-based robot local-
ization using neural network. In: International Confer-
ence on Control, Automation and Systems, pp. 230–234
(2007)

4. Djekoune, O., Achour, K.: Vision-guided Mobile Ro-
bot Navigation Using Neural Network. In: Proceedings
of 2nd International Symposium on Image and Signal
Processing and Analysis, pp. 355–361 (2001)

5. Janet, J.A., Gutierrez, R., Chase, T.A.: Autonomous
mobile robot global self-localization using kohonen
and region-feature neural networks. Journal of Robotic
Systems 263–282 (1997)

6. Racz, J., Dubrawski, A.: Mobile Robot Localiza-
tion With an Artificial Neural Network. International
Workshop on Intelligent Robotic Systems IRS’94,
Grenoble, France (1994)

J Intell Robot Syst (2012) 66:75–109 109

7. Wang, K., Wang, W., Zhuang, Y.: Appearance-Based
Map Learning for Mobile Robot by Using General-
ized Regression Neural Network. ISNN (1): 834–842
(2007)

8. Conforth, M., Meng, Y.: An artificial neural network
based learning method for mobile robot localization.
Robotics automation and control, Pavla Pecherkova,
Miroslav Flidr and Jindrich Dunik (Ed.), ISBN: 978-
953-7619-18-3, InTech (2008)

9. Fox, D., Burgard, W., Thrun, S.: Markov localization
for reliable robot navigation and people detection. In:
Modeling and Planning for Sensor-Based Intelligent
Robot Systems. Springer, Berlin (1999)

10. Simmons R., Koenig, S.: Probabilistic Navigation in
Partially Observable Environments. IJCAI ‘95, Mon-
treal Canada (1995)

11. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Ro-
bust Monte Carlo localization for mobile robots. AI
128, 99–141 (2000)

12. Roumeliotis, S., Bekey, G.: Bayesian estimation and
Kalman filtering: A unified framework for mobile ro-
bot localization. In: Proc.2000 IEEE ICRA, 22–28
April, pp. 2985–2992 San Francisco, CA (2000)

13. Savage, J., Morales, M., Márquez, E.: The Use of
Hidden Markov Models and Vector Quantization for
Mobile Robot Localization. Robotics and Applications
(RA 2005), IASTED, Boston, U.S.A.

14. Lu, F., Milios, E.: Robot Pose Estimation in Unknown
Environments by Matching 2D Range Scans. JIRS
(18), No. 3, March 1997, pp. 249–275. 9705

15. Crowley, J.L., Demazeau, Y.: Principles and techniques
for sensor data fusion. Signal Process. 32(1–2) S. 5–27
(1993)

16. Diosi A., Kleeman, L.: Advanced sonar and laser range
finder fusion for simultaneous localization and map-
ping. Proc. IROS (2004)

17. Elfes, A.: Using occupancy grids for mobile robot
perception and navigation. Computer. 22(6):46–57
(1989)

18. Thrun, S., Gutmann, J.-S., Fox, D., Burgard, W.,
Kuipers, B.: Integrating topological and metric maps
for mobile robot navigation: A statistical approach. In:
Proceedings of the AAAI Fifteenth National Confer-
ence on Artificial Intelligence (1998)

19. Savage, J., Llarena, A., Carrera, G., Cuellar, S.,
Esparza, D., Minami, Y., Peñuelas, U.: ViRbot: a
system for the operation of mobile robots. In: Proc.
RoboCup, pp. 512–519 (2007)

20. Barreto, G.D.A., Araújo, A.F.R., Ritter, H.: Self-
Organizing Feature Maps for Modeling and Control of
Robotic Manipulators. presented at Journal of Intelli-
gent and Robotic Systems, pp. 407–450 (2003)

21. Rabiner, L.R.: A tutorial on Hidden Markov models
and selected applications in speech recognition. Proc.
I.E.E.E. 77(2), 257–285 (1989)

22. Menegatti, A., Pretto, A., Scarpa, E., Pagello: Omni-
directional vision scan matching for robot localization
in dynamic environments. IEEE Trans. Robot. 22(3),
523–535 (2003)

23. Little, J., Se, S., Lowe, D.: Vision-based mobile ro-
bot localization and mapping using scale-invariant
features. Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA), pp.
2051–2058 (2001)

24. Jaynes, E.T.: Probability theory: the logic of science”,
Cambridge University Press. ISBN 9780521592710
(2003)

25. Kailath, T.: Lectures notes on Wiener and Kalman
filtering. Springer (1981)

26. Julier S.J., Uhlmann. J.K.: A new extension of
the Kalman Filter to Nonlinear Systems. Proc. of
AeroSense, The 11th Int. Symp. On Aerospace/
Defense Sensing, Simulation and Controls (1997)

27. Julier, S.J., Uhlmann, J.K., Durrant-Whyte. H.: A
new approach for nonlinear systems. In: Proceedings
of the American Control Conference, pp. 1628–1632
(1995)

28. Jazwinski, A.H.: Stochastic processes and filtering the-
ory. Academic Press, New York, NY (1970)

29. Doucet, A., de Freitas, N., Murphy, K., Russell,
S.: Rao-blackwellised particle filtering for dynamic
Bayesian networks. In: UAI (2000)

30. Viterbi, A.: Error bounds for convolutional codes and
an asymptotically optimum decoding algorithm. IEEE
Trans Inf Theory 13(2), 260–269 (1967)

31. Fortune. S.: A sweep line algorithm for Voronoi di-
agrams. Proceedings of the second annual sympo-
sium on Computational geometry. Yorktown Heights,
New York, United States, pp. 313–322 (1986). ISBN:
0-89791-194-6

32. Latombe, J.C.: Robot Motion Planning. Kluwer Acad-
emic Publishers, Boston, MA (1991)

33. Latombe, J.C.: Robot Motion Planning, 3rd edn.
Kluwer, Boston (1991)

34. Haykin, S.: Neural Networks. A Comprehensive Foun-
dation. 2nd edn. Prentice Hall (1999)

35. Liu, G. Haralick, R.M.: Two Practical Issues in
Canny’s Edge Detector Implementation. In: icpr.
3,15th International Conference on Pattern Recogni-
tion (ICPR’00), vol. 3, p. 3680 (2000)

36. Lowe, D.: Object recognition from local scale-invariant
features. In: Proceedings of the Seventh International
Conference on Computer Vision(ICCV’99), September
1999, pp. 1150–1157. Kerkyra, Greece

	Odometry-Based Viterbi Localization with Artificial Neural Networks and Laser Range Finders for Mobile Robots
	Abstract
	Introduction
	Previous Work
	Robot Localization with Artificial Neural Networks
	Robot Localization and Hidden Markov Models
	Viterbi Localization

	Robot Localization and HMMs
	The Robot Localization Problem
	Classical Approaches in Robot Localization
	Data--data Associations
	Data--model Associations

	The Sensor Model
	The World Model
	The Observation Model
	Scene, View and Observation
	Simulating the Observations
	The Motion Model
	Probabilistic Localization
	Markov Assumption
	Bayes Rule

	Kalman Filters
	Monte Carlo Localization
	Hidden Markov Models and Robot Localization

	Viterbi Localization
	The Viterbi Algorithm
	Viterbi Algorithm vs. Probabilistic Localization Approaches
	Viterbi Forward Procedure
	Disadvantages of Viterbi Localization against Particle Filters
	Viterbi Localization Mathematical Foundations

	Motion Model Implementation
	Partitioning the State--Space
	Vector Quantization Considerations
	Transition Vectors
	Estimating Transition Probabilities
	Complexity

	Observation Model Construction
	Random Sampling
	Simulating Observations vs. Real Gathering
	Building a Metrical Representation
	Simulating the Observations
	Lowering the Dimensionality
	Vector Quantization ANNs
	Vector Quantization with Self Organized Maps

	Building a Tolerant Observation Model

	Path Reconstruction
	Optimizations
	Node Location Selection
	Update Triggering
	Observation Update Nesting
	Memory Usage

	Odometry-based Viterbi Localization Algorithm
	Initialization
	Recursion
	Transition Probability Estimation
	Normalization
	Pose Estimation

	Termination

	Experiments
	Physical Robot
	The Experiments
	Model Parameters Evaluation
	Map Construction
	Best OVL Parameter Set
	OVL Performance Evaluation

	Exhaustive OVL Evaluation for PT, GL and RK
	Tests with Real Data with and Without a TOM
	Comparison Against a State-of-the-Art Algorithm
	Method Performance on Small Processors

	Results
	Model Parameters Evaluation
	Best Parameter Set
	Exhaustive OVL Evaluation for PT, GL and RK
	Tests with Real Data with a TOM
	Tests with Real Data Without a TOM
	Comparison Against a State-of-the-Art Algorithm
	Method Performance Evaluation

	Discussion
	Conclusions
	Future Works
	References

